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Abstract: We prove the computational intractability of rotating and placing n square tiles into a 1 × n
array such that adjacent tiles are compatible—either equal edge colors, as in edge-matching puzzles, or
matching tab/pocket shapes, as in jigsaw puzzles. Beyond basic NP-hardness, we prove that it is NP-
hard even to approximately maximize the number of placed tiles (allowing blanks), while satisfying the
compatibility constraint between nonblank tiles, within a factor of 0.9999999702. (On the other hand,
there is an easy 1

2 -approximation.) This is the first (correct) proof of inapproximability for edge-matching
and jigsaw puzzles. Along the way, we prove NP-hardness of distinguishing, for a directed graph on n
nodes, between having a Hamiltonian path (length n − 1) and having at most 0.999999284(n − 1) edges
that form a vertex-disjoint union of paths. We use this gap hardness and gap-preserving reductions to
establish similar gap hardness for 1 × n jigsaw and edge-matching puzzles.

1. Introduction
Jigsaw puzzles [20] and edge-matching puzzles [12] are

two ancient types of puzzles, going back to the 1760s and
1890s, respectively. Jigsaw puzzles involve fitting together
a given set of pieces (usually via translation and rotation)
into a desired shape (usually a rectangle), often revealing a
known image or pattern. The pieces are typically squares
with a pocket cut out of or a tab attached to each side,
except for boundary pieces which have one flat side and
corner pieces which have two flat sides. Most jigsaw puz-
zles have unique tab/pocket pairs that fit together, but we
consider the generalization to “ambiguous mates” where
multiple tabs and pockets have the same shape and are
thus compatible.

Edge-matching puzzles are similar to jigsaw puzzles in
that they too feature square tiles, but instead of pock-
ets or tabs, each edge has a color or pattern. In signed
edge-matching puzzles, the edge labels come in comple-
mentary pairs (e.g., the head and tail halves of a colored
lizard), and adjacent tiles must have complementary edge
labels on their shared edge (e.g., forming an entire lizard
of one color). This puzzle type is essentially identical to
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jigsaw puzzles, where complementary pairs of edge labels
act as identically shaped tab/pocket pairs. In unsigned
edge-matching puzzles, edge labels are arbitrary, and the
requirement is that adjacent tiles must have identical edge
labels. In both cases, the goal is to place (via transla-
tion and rotation) the tiles into a target shape, typically a
rectangle.

A recent popular (unsigned) edge-matching puzzle is
Eternity II [19], which featured a US$2,000,000 prize for
the first solver (before 2011). The puzzle remains unsolved
(except presumably by its creator, Christopher Monckton).
The best partial solution to date [16] either places 247 out
of the 256 pieces without error, or places all 256 pieces
while correctly matching 467 out of 480 edges.
Previous work.

The first study of jigsaw and edge-matching puzzles
from a computational complexity perspective proved NP-
hardness [6]. Four years later, unsigned edge-matching
puzzles were proved NP-hard even for a target shape
of a 1 × n rectangle [7]. There is a simple reduc-
tion from unsigned edge-matching puzzles to signed edge-
matching/jigsaw puzzles [6], which expands the puzzle by
a factor of two in each dimension, thereby establishing
NP-hardness of 2×n jigsaw puzzles. Unsigned 2×n edge-
matching puzzles were claimed to be APX-hard (implying
they have no PTAS) [1], but the proof is incorrect.*1

Our results.
We prove that 1 × n jigsaw puzzles and 1 × n edge-

*1 Personal communication with Antonios Antoniadis, October
2014. In particular, Lemma 3’s proof is incomplete.
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matching puzzles are both NP-hard, even to approximate
within a factor of 0.9999999702 (> 33519359

33519360 ). This is
the first correct inapproximability result for either prob-
lem. Even NP-hardness is new for 1 × n signed edge-
matching/jigsaw puzzles. By a known reduction [6], these
results imply NP-hardness for polyomino packing (exact
packing of a given set of polyominoes into a given rectan-
gle) when the polyominoes all have area Θ(log n); the pre-
vious NP-hardness proof [6] needed polyominoes of area
Θ(log2 n).

We prove inapproximability for two different optimiza-
tion versions of the problems. First, we consider placing
the maximum number of tiles without any violations of
the matching constraints. This objective has a simple 1

2 -
approximation for 1 × n puzzles: alternate between plac-
ing a tile and leaving a blank. (A 2

3 -approximation is also
possible; see Section 7.) Second, we consider placing all
of the tiles while maximizing the number of compatible
edges between adjacent tiles (as in [1]).*2 This objective
also has a simple 1

2 -approximation for 1 × n puzzles, via
a maximum-cardinality matching on the tiles in a graph
where edges represent having any compatible edges: any
solution with k compatibilities induces a matching of size
at least k/2 [1]. Thus, up to constant factors, we resolve
the approximability of these puzzles.

Our reduction is from Hamiltonian path on directed
graphs whose vertices each has maximum in-degree and
out-degree 2, which was shown to be NP-complete by
Plesńık [15]. To prove inapproximability, we reduce from a
maximization version of this Hamiltonicity problem, called
maximum vertex-disjoint path cover, where the goal is to
choose as many edges as possible to form vertex-disjoint
paths. (A Hamiltonian path would be an ideal path cover,
forming a single path of length |V |− 1.) This problem has
a 12

17 -approximation [18], and is NP-hard to approximate
within some constant factor [8] via a known connection to
Asymmetric TSP with weights in {1, 2} [18].

We prove that maximum vertex-disjoint path cover sat-
isfies a stronger type of hardness, called gap hardness: it
is NP-hard to distinguish between a directed graph hav-
ing a Hamiltonian path versus one where all vertex-disjoint
path covers having at most 0.999999284 |V | (> 1396639

1396640 |V |)
edges, given the promise that the graph falls into one
of these two categories. This gap hardness immediately
implies inapproximability within a factor of 0.999999284
(though this constant is weaker than the known inapprox-
imability bound [8]). More useful is that our reduction
to 1 × n jigsaw/edge-matching puzzles is gap-preserving,
implying gap hardness and inapproximability for the lat-
ter. This approach lets us focus on “perfect” instances
(where all tiles are compatible) versus “very bad” instances
(where many tiles are incompatible), which seems far eas-

*2 A dual objective would be to place all tiles while minimizing
the number of mismatched edges, but this problem is already
NP-hard to distinguish between an answer of zero and positive,
so it cannot be approximated.

ier than standard L-reductions used in many inapprox-
imability results, where we must distinguish between an
arbitrary optimal and a factor below that arbitrary op-
timal. We posit that gap hardness—where the high end
of the gap is “perfect”, attaining the maximum possible
bound, and thus matching the NP-hardness of the original
decision problem—is the better way to prove hardness of
approximation for many puzzles and games, and hope that
our results and approach find use in other research as well.

2. Problem Definitions
In this section, we formally define the relevant concepts

and problems we consider in this paper.

2.1 Approximation Algorithms and Gap Prob-
lems

One approach to dealing with NP-hard problems is to
allow an algorithm to approximate the answer to the prob-
lem instead of solving it exactly. The quality of such an
approximation algorithm is given by its approximation ra-
tio as defined below. For the purposes of this paper, we
define approximation ratio and subsequent notions only
for maximization problems, though these concepts can be
extended for minimization problems as well.
Definition 1. An approximation algorithm for a maxi-
mization problem has an approximation ratio ρ ≤ 1 if it
outputs a solution that has value at least ρ times the opti-
mum. We call such an algorithm a ρ-approximation algo-
rithm.

Whereas many NP-hard problems admit polynomial-
time ρ-approximation algorithms for some sensible ρ’s,
some are proved to be NP-hard to approximate to within
some approximation ratio. To prove such inapproximabil-
ity results, one typically reduces from a known NP-hard
problem (e.g., 3SAT) to a maximization problem so that,
if the original instance is a yes instance, then the opti-
mum of the resulting instance is large and, if the original
instance is a no instance, then the optimum is small. This
polynomial-time reduction implies that the optimization is
NP-hard to approximate to within the ratio between the
optimums in the two cases. For convenience, we use the
following notation of gap problems to describe these inap-
proximability results.
Definition 2. For a maximization problem P and β > γ,
Gap P [β, γ] is the problem of distinguishing whether an
instance of P has optimum at least β or at most γ.

Gap problems are widely used in hardness of approx-
imation because NP-hardness of Gap P [β, γ] (which we
refer to informally as gap hardness) implies NP-hardness
of approximating P to within a factor of γ/β [4].

2.2 Edge-Matching and Jigsaw Puzzles
Next, we give formal definitions of our main problems

of interest, (unsigned) edge-matching and signed edge-
matching puzzles (or jigsaw puzzles), as described in the
introduction. While our paper will focus on the 1×n rect-
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Fig. 1: An example of a 2 × 3 Edge-Matching Puzzle
instance consisting of 6 tiles (left), where all tiles can be as-
sembled into a 2×3 rectangular grid, with matching colors
on the edges of adjacent tiles (right). Colors are specified
redundantly as numbers.

angular grid case, we define the more general problem of
edge-matching puzzles on an h × w rectangular grid. We
begin with the unsigned decision problem:
Definition 3. h×w Edge-Matching Puzzle is the fol-
lowing problem:

Input: n = hw unit-square tiles where each of the four
sides has a color.

Output: whether the tiles can be assembled into the
h × w rectangular grid (board) so that any two adjacent
pieces have the same color on the shared edge.

Figure 1 shows an example of a 2× 3 Edge-Matching
Puzzle. We write T (c1, c2, c3, c4) to denote a tile with
colors c1, c2, c3, c4 on its left, upper, right, and lower edges
respectively. For example, the first tile in Figure 1 is
T (1, 2, 3, 4).

In an assembly, we allow tiles to be rotated but not re-
flected. It is easy to see from the proofs that all of our
results hold if we allow reflections in addition to rotations.
On the other hand, if rotations are prohibited, then 1× n
Edge-Matching Puzzle is in P [7]: with this restric-
tion, the problem becomes equivalent to finding an Eule-
rian path (a path that visits every edge exactly once) in
the directed graph whose vertices represent the colors and
whose edges represent the tiles, which can be solved in
linear time.

Next, we define two optimization versions of the edge-
matching problem. In the first version, the goal is to put
as many tiles in the grid without any shared edge being
labeled with different colors on two tiles. In the second
version (previously considered in [1]), we must place all n
tiles into the rectangular grid, and the goal is to maximize
the total number of matching edges between adjacent tiles.
Definition 4. h×w Max-Placement Edge-Matching
Puzzle is the following problem:

Input: n = hw unit-square tiles where each of the four
sides has a color.

Output: the maximum number of the tiles that can be
assembled*3 into the h× w rectangular grid such that any
two adjacent pieces have the same color on the shared edge.
Definition 5. h × w Max-Matched Edge-Matching
Puzzle is the following problem:

Input: n = hw unit-square tiles where each of the four

*3 To avoid confusion, we specify that each tile must be placed
parallel to the board’s borders with integer-coordinated cor-
ners, i.e., the board has hw unit-square slots and each tile is
either put in a slot or left out of the board.
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Fig. 2: An instance (top) corresponding to both a 2 × 3
Max-Placement Edge-Matching Puzzle whose opti-
mal tiling contains 5 tiles (bottom left), and a 2× 3 Max-
Matched Edge-Matching Puzzle whose optimal tiling
yields 6 matched edges (bottom right); the mismatched
edge is indicated with a thick line.

sides has a color and a sign on it.
Output: the maximum number of same-color edges be-

tween adjacent tiles obtained by assembling all n tiles into
h× w rectangular grid.

Figure 2 shows an example comparing both optimization
problems. In this paper, we focus on proving inapproxima-
bility of 1×n Max-Placement Edge-Matching Puzzle, then
later show how to modify the proof to establish hardness
under the Max-Matched variation.

Next we define the signed variation of the puzzle, where
each edge has a sign and the signs on the shared edge of
two pieces must be opposite.
Definition 6. h×w Signed Edge-Matching Puzzle is
the following problem:

Input: n = hw unit-square tiles where each of the four
sides has a color and a sign (+ or −).

Output: whether the tiles can be assembled into the
h×w rectangular grid so that any two adjacent pieces have
the same color but opposite signs on the shared edge.

Likewise, we use T (s1c1, s2c2, s3c3, s4c4) to denote a tile
with colors c1, c2, c3, c4 and signs s1, s2, s3, s4 on its left,
upper, right, and lower edges respectively.

Signed edge-matching puzzles can be viewed as jigsaw
puzzles: + and − signs correspond to tabs and pockets
respectively. It is worth noting, however, that the defini-
tion above is slightly different from typical jigsaw puzzles:
signed edge-matching puzzles allow tabs and pocket on the
borders, whereas jigsaw puzzles normally forbid this. If the
borders of the puzzle must be flat (have no color or sign),
then 1 × n jigsaw puzzles become solvable in polynomial
time in a similar fashion to edge-matching puzzles without
rotations.

For signed edge-matching puzzles, we can define an op-
timization version similarly:
Definition 7. h × w Max-Placement Signed Edge-
Matching Puzzle is the following problem:

Input: n = hw unit-square tiles where each of the four
sides has a color and a sign on it.

Output: the maximum number of the tiles that can be
assembled into the h × w rectangular grid such that any
two adjacent pieces have the same color and different signs

c© 1992 Information Processing Society of Japan 3
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on the shared edge.
It is possible to define the Max-Matched variation for

signed edge-matching puzzles, and our inapproximability
result still holds. Note, however, that this variation is un-
natural when interpreted as a jigsaw puzzle, because it
would be physically difficult to place mismatched jigsaw
pieces adjacent to each other.

2.3 Hamiltonian Path and Maximum Vertex-
Disjoint Path Cover

The Hamiltonian cycle problem is to decide whether a
given (directed) graph has a Hamiltonian cycle—a cycle
that visits each vertex in the graph exactly once. This
problem has long been known to be NP-complete; it was
on Karp’s initial list of 21 NP-complete problems [13]. In
this paper, we are more interested in its close relative, the
Hamiltonian path problem:
Definition 8. Hamiltonian Path is the following prob-
lem:

Input: a directed graph G = (V,E), a source s, and a
sink t.*4

Output: whether there exists a Hamiltonian path (a
path visiting each vertex exactly once) starting at s and
ending at t.

Like the Hamiltonian cycle problem, the Hamilto-
nian path problem has long been known to be NP-
complete [10].*5 Garey, Johnson, and Tarjan [11] showed
that the problem remains NP-hard even on undirected
graphs where each vertex has degree at most three. Plesńık
[15] extended the result to planar directed graphs with
bounded in-degrees and out-degrees.

While we do not use Plesńık’s result directly, we use his
reduction from 3SAT to prove gap hardness of 1×n Max-
Placement Edge-Matching Puzzle. To do so, we need
an optimization version of the Hamiltonian path problem:
Definition 9. Max Vertex-Disjoint Path Cover(d)
is the following problem:

Input: a directed graph G = (V,E) with a unique source
and a unique sink such that the in-degree and out-degree of
each vertex are at most d.

Output: the maximum number of edges in any vertex-
disjoint path cover—a collection of paths such that each
vertex appears in exactly one path. Here we allow paths of
length zero (i.e., a single vertex).

Max Vertex-Disjoint Path Cover(d) can be viewed
as an optimization version of the Hamiltonian path prob-
lem because a graph has a vertex-disjoint path cover with

*4 A source of a directed graph is a vertex with in-degree zero; a
sink is a vertex with out-degree zero.

*5 The conventional definition of Hamiltonian Path (e.g., in [10])
does not require s and t to be a source and a sink, respectively.
We may easily reduce the conventional problem to our variant
by adding a new starting vertex s′ with a single incident edge
from s′ to s, and a new target vertex t′ with a single incident
edge from t to t′. Any Hamiltonian path in one instance can be
converted into a corresponding Hamiltonian path in the other
instance by adding or removing these new vertices and edges,
establishing NP-hardness result for our variant.

|V | − 1 edges if and only if there exists a Hamiltonian
path. The uniquenesses of source and sink, and the degree
requirement, are imposed for technical reasons to help with
our reduction to edge-matching puzzles.

Engebretsen [8] proved that Asymmetric TSP with
weights in {1, 2} is NP-hard to approximate within a fac-
tor of 2805

2804 − ε, which implies [18] that Max Vertex-
Disjoint Path Cover(d) is NP-hard to approximate
within some constant factor (better than the constant we
will obtain). Their proof implies a gap hardness result,
but not one where the high end of the gap has perfect so-
lutions (optimal value |V | − 1, i.e., Hamiltonian), at least
not without modification. To fix this problem, and for
self-containedness, we analyze our own construction here.

2.4 Max-3SAT
To establish gap hardness for Max Vertex-Disjoint

Path Cover(d), we resort to a classic problem: Max-
3SAT. Recall that a Boolean formula is in conjunctive
normal form (CNF) if it is a conjunction (and) of zero
or more clauses, where each clause is a disjunction (or) of
at most three literals, each of which is either a variable or
its negation. For example, (x1∨x2)∧(x1∨x3∨x4)∧(x2∨x4)
is in CNF with three clauses.

Cook’s celebrated Theorem (also known as Cook-Levin
Theorem) states that it is NP-hard to decide whether a
CNF formula is satisfiable [5]. Shortly afterward, Karp
[13] proved NP-completeness of the more restricted ver-
sion 3SAT, where each clause has at most three literals.
Because we are aiming for an inapproximability result, we
will use an optimization version of 3SAT:
Definition 10. Max-3SAT(k) is the following problem:

Input: a CNF formula such that each clause contains
at most three literals and each variable appears in at most
k clauses.

Output: the maximum number of clauses satisfied by
any assignment.

The PCP Theorem, considered a landmark in mod-
ern complexity theory, essentially states that Max-3SAT
(without the bound k on variable occurrences) is NP-hard
to approximate to within some constant factor [2], [3].
Max-3SAT(k) has also been researched intensively. Even
before the PCP Theorem was proved, Papadimitriou and
Yannakakis [14] showed that, for some constant k, Max-
3SAT(k) is a complete problem for a complexity class
MaxSNP. Later, Feige [9] proved that Max-3SAT(5) is
NP-hard to approximate up to some constant factor. For
the purpose of this paper, we will use the following gap
hardness of Max-3SAT(29) from [17], pp. 314, which has
a more concrete ratio than that from [9].
Lemma 1. For any constant α3SAT < 1

344 , Gap Max-
3SAT(29)[m, (1− α3SAT)m] is NP-hard.

3. Our Contributions
With formal problem statements in hand, we now for-

mally state our results, starting with our main result for
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1× n Max-Placement Edge-Matching Puzzle.
Theorem 1. For any nonnegative constant αEMP <

1
33519360 , Gap 1 × n Max-Placement Edge-Matching
Puzzle[n, (1 − αEMP)n] is NP-hard. In particular, it is
NP-hard to approximate 1 × n Max-Placement Edge-
Matching Puzzle to within a factor of 33519359

33519360 + δ of
optimal for any sufficiently small constant δ > 0.

Although NP-hardness of h×w Edge-Matching Puz-
zle is known for every h ≥ 1 [7], we are not aware of any
existing inapproximability result for edge-matching puz-
zles. Our proof for the above theorem also yields an anal-
ogous result for 1 × n Max-Placement Signed Edge-
Matching Puzzle as stated below.
Corollary 1. For any nonnegative constant αEMP <

1
33519360 , Gap 1 × n Max-Placement Signed Edge-
Matching Puzzle[n, (1−αEMP)n] is NP-hard. In partic-
ular, it is NP-hard to approximate 1×n Max-Placement
Signed Edge-Matching Puzzle to within a factor of
33519359
33519360 + δ of optimal for any sufficiently small constant
δ > 0.

In addition, we prove a similar inapproximability result
for the variation considered in [1] as stated below. Note
that this result also holds for its corresponding signed vari-
ation by simply applying the proofs of both corollaries.
Corollary 2. For any nonnegative constant αEMP <

1
33519360 , Gap 1 × n Max-Matched Edge-Matching
Puzzle[n − 1, (1 − αEMP)(n − 1)] is NP-hard. In partic-
ular, it is NP-hard to approximate 1 × n Max-Matched
Edge-Matching Puzzle to within a factor of 33519359

33519360 +δ
of optimal for any sufficiently small constant δ > 0.

As an intermediate step to showing the results above,
we prove gap hardness for Max Vertex-Disjoint Path
Cover(2):
Theorem 2. For any nonnegative constant
αMPC < 1

1396640 , Gap Max Vertex-Disjoint Path
Cover(2)[|V | − 1, (1 − αMPC)(|V | − 1)] is NP-hard. In
particular, it is NP-hard to approximate Max Vertex-
Disjoint Path Cover(2) to within a factor of 1396639

1396640 +δ
of optimal for any sufficiently small constant δ > 0.

The outline for the rest of the paper is as follows. In
Section 4, we prove NP-hardness of 1 × n Signed Edge-
Matching Puzzle by a reduction from Hamiltonian
Path; this is not one of the main results described above,
yet its simple proof provides good intuition for the sub-
sequent inapproximability proofs. Next, in Section 5, we
prove the inapproximability results for 1×n edge-matching
puzzles, Theorem 1 and Corollaries 1–2, using a similar
reduction from Max Vertex-Disjoint Path Cover(2),
an intermediate problem in achieving our results. We
then prove the inapproximability result for Max Vertex-
Disjoint Path Cover(2) in Section 6. Finally, we dis-
cuss further potential directions for research for the edge-
matching problem in Section 7.

4. NP-hardness of 1 × n Signed Edge-
Matching Puzzle

In this section we give a simple proof of NP-hardness
of 1 × n Signed Edge-Matching Puzzle. We provide
a polynomial-time reduction from Hamiltonian Path to
1×n Signed Edge-Matching Puzzle in Section 4.1. We
then prove in Section 4.2 that our reduction satisfies the
following lemma:
Lemma 2. The polynomial-time reduction from Hamil-
tonian Path to 1× n Signed Edge-Matching Puzzle
described in Section 4.1 is such that the Hamiltonian
Path instance contains a Hamiltonian path if and only if
the tiles of the constructed 1×n Signed Edge-Matching
Puzzle instance can be assembled into an 1×n grid with-
out any mismatched edges.

This lemma and NP-hardness of Hamiltonian Path
imply our desired hardness result:
Corollary 3. 1× n Signed Edge-Matching Puzzle is
NP-hard.

4.1 Construction of 1× n Signed Edge-Matching
Puzzle Instance from Hamiltonian Path In-
stance

The overall strategy of the reduction from Hamiltonian
Path to 1×n Signed Edge-Matching Puzzle is to rep-
resent each vertex and each edge by tiles, encoding the
path in the ordering of the tiles. The leftover edge tiles
will be packed at the end of the tiling. The path and the
leftover edges in our tiling are then joined by a bridge tile.

The reduction, illustrated in Figure 3a–3b, takes an in-
stance of Hamiltonian Path, which is a directed graph
G = (V,E) with a source s and a sink t, then produces
an instance of 1× n Signed Edge-Matching Puzzle as
follows:
• For each vertex vi ∈ V , we add a vertex tile Tvi with

positive vertex colors +Ivi and +Ovi on opposite edges
(each represents entering and leaving vi, respectively),
and the unique unmatchable color +Uvi on the re-
maining edges; i.e., Tvi = T (+Ivi ,+Uvi ,+Ovi ,+Uvi).

• For each edge eij ∈ E from vi to vj , we add an edge
tile Teij with negative vertex colors −Ovi and −Ivj on
opposite edges (each represents leaving vi and enter-
ing vj , respectively), and the matching garbage colors
pair +X and −X on the two remaining edges. In other
words, Teij = T (−Ovi ,+X,−Ivj ,−X).

• Finally, we have one bridge tile TB with the nega-
tive vertex color −Ot on one edge, one garbage color
−X on the opposite edge, and a unique unmatch-
able color +UB on the remaining edges. That is,
TB = T (−Ot,+UB ,−X,+UB).

4.2 Proof of Lemma 2
Our reduction is clearly a polynomial-time reduction.

We must now show that the existence of a Hamiltonian
path in the Hamiltonian Path instance implies the exis-
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(a) An example of a Hamiltonian Path in-
stance, a directed graph G with source s = v1
and sink t = v5. There is a Hamiltonian path
from s to t, shown with thick edges.
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(b) The constructed 1 × n Signed Edge-Matching Puzzle instance (with
n = 12). On the graph structure are the vertex tiles (light gray) and the edge
tiles (white). The only bridge tile (dark gray) is given on the right.
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+X −X

−Ov3

−Iv5

bridge tile

Hamiltonian path unused edges

(c) The tiling constructed from the Hamiltonian path above. The path is represented in the first nine slots; observe
that each slot contains a tile along the path in the above figure. The tenth slot contains the bridge tile, whereas the
last two are filled with unused edge tiles sharing garbage-colored edges.

Fig. 3: An example of the reduction described in Section 4.1, together with a Hamiltonian path of the Hamiltonian Path
instance, and the corresponding tiling without any mismatched edges in the constructed 1 × n Signed Edge-Matching
Puzzle instance.

tence of a tiling scheme without any mismatched edges in
the constructed 1 × n Signed Edge-Matching Puzzle
instance, and vice versa.
Hamiltonian Path =⇒ 1×n Signed Edge-Matching
Puzzle

Turning a Hamiltonian path into a tiling scheme is easy;
an example of this process can be found in Figure 3c. We
encode our path into the leftmost 2|V | − 1 slots in the
grid by placing the tiles corresponding to the vertices and
edges in the path alternately in the grid. More specifi-
cally, let the Hamiltonian path be vπ(1), . . . , vπ(|V |) where
vπ(1) = s and vπ(|V |) = t. For j = 1, . . . , |V |, we place the
vertex tile Tvj oriented as T (+Ivπ(j) , X,+Ovπ(j) , X) in the
(2j − 1)th slot. For j = 1, . . . , |V | − 1, we place the edge
tile Teπ(j)π(j+1) oriented as T (−Ovπ(j) ,+X,−Ivπ(j+1) ,−X)
in the (2j)th slot.

We then place the bridge tile oriented as TB =
T (−Ot,+UB ,−X,+UB) in the (2|V |)th slot; because t

is the last vertex in the Hamiltonian path, this tile

is compatible with the last tile in the (2|V | − 1)th

slot. For the remaining edge tiles, we rotate them as
T (+X,−Ivj ,−X,−Ovi) so that the matching garbage col-
ors are on the left and right, then put them into the rest of
the slots. Clearly, we have placed every tile on the board
without any conflict and, hence, we have completed the
first half of the proof.
1 × n Signed Edge-Matching Puzzle =⇒ Hamil-
tonian Path

Assume that there exists a tiling scheme on a 1 × n

grid without any mismatched edges. Observe that the
bridge tile must be oriented so that its unique color +UB
is on its upper and lower edges because this color can-
not be matched by any tile. Without loss of general-
ity, suppose that the bridge tile is oriented as TB =
T (−Ot,+UB ,−X,+UB). (Otherwise, rotate the whole
grid 180◦.)

Consider first the tiles on the right side of the bridge tile.
By our construction, we may only place edge tiles tile ori-
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ented as T (+X,−Ivj ,−X,−Ovi) in order to match their
garbage-colored edges. Consequently, none of the vertex
tiles may be placed; all of them must appear on the left
side of the bridge tile.

Now consider the tiles on the left side of the bridge tile.
Observe that, to be compatible with the color −Ovj to the
right, we may only place the vertex tile Tvj oriented as
T (+Ivj ,+Uvj ,+Ovj ,+Uvj ). Similarly, to be compatible
with the color +Ivj to the right, we may only place some
edge tile Teij oriented as T (−Ovi ,+X,−Ivj ,−X). There-
fore, these tiles may only be placed if they correspond to
a path on G ending at t. Because all vertex tiles appear
to the left of the bridge tile, we have a path visiting all
vertices ending at t. Moreover, as our starting vertex s

is a source, the color +Is cannot be matched by any tile.
Thus Ts must be the left-most tile on the grid. That is,
the tiles to the left of the bridge tile encode a Hamiltonian
path of G, as desired.

5. Inapproximability of 1 × n Edge-
Matching Puzzles

In this section, we generalize the approach from Sec-
tion 4 in order to prove Theorem 1, NP-hardness of ap-
proximation of 1× n Max-Placement Edge-Matching
Puzzle. To this end, we use the optimization variant of
Hamiltonian Path called Max Vertex-Disjoint Path
Cover defined earlier, and provide a gap-preserving reduc-
tion from Max Vertex-Disjoint Path Cover to 1 × n
Max-Placement Edge-Matching Puzzle. We largely
focus on the unsigned variant because it is the more com-
plicated case. Specifically, by removing the signs in the
reduction of Section 4.1, it becomes possible to place two
edge tiles next to each other without using the garbage
color because they share an additional color if they have
the same starting vertex or ending vertex. We circum-
vent this problem by restricting to graphs of in-degrees and
out-degrees of at most two. This requires us to later show
the hardness of approximation for Max Vertex-Disjoint
Path Cover(2) in this more restricted family of graphs.

We describe our reduction from Max Vertex-Disjoint
Path Cover(2) to 1 × n Max-Placement Edge-
Matching Puzzle in Section 5.1. We then prove in Sec-
tion 5.2 that the reduction satisfies the properties stated
in the lemma below:
Lemma 3. For any nonnegative constants αMPC and
αEMP < αMPC/24, the following properties hold for the
reduction described in Section 5.1 when |V | is sufficiently
large:
• if the optimum of the Max Vertex-Disjoint Path

Cover(2) instance is |V | − 1 (the graph contains a
Hamiltonian path), then the optimum of the resulting
1×n Max-Placement Edge-Matching Puzzle in-
stance is at least n, i.e., every tile can be placed com-
patibly on the board, and,

• if the optimum of the Max Vertex-Disjoint Path
Cover(2) instance is at most (1 − αMPC)(|V | −

1), then the optimum of the resulting 1 × n Max-
Placement Edge-Matching Puzzle is at most (1−
αEMP)n.

We will later show NP-hardness of approximation of
Max Vertex-Disjoint Path Cover(2), namely Theo-
rem 2, in Section 6. The above lemma and Theorem 2 im-
mediately imply Theorem 1; in particular, because αMPC

from Theorem 2 can be 1
1396640−δ for any sufficiently small

δ > 0, αEMP can also be 1
33519360 − δ

′ for any sufficiently
small δ′ > 0.

Then, we describe how to modify the reduction to ar-
rive at a similar inapproximability result for 1 × n Max-
Placement Signed Edge-Matching Puzzle (Corol-
lary 1) in Section 5.3. Lastly, we provide another re-
duction to obtain the inapproximability result for 1 × n

Max-Matched Edge-Matching Puzzle (Corollary 2)
in Section 5.4.

5.1 Construction of 1 × n Max-Placement Edge-
Matching Puzzle Instance from Max Vertex-
Disjoint Path Cover(2) Instance

The overall strategy of the reduction from Max
Vertex-Disjoint Path Cover(2) to 1 × n Max-
Placement Edge-Matching Puzzle remains un-
changed from Section 4.1, except that the signs on
the tiles are now removed, as shown in Figure 4. For
completeness, we include a concise specification below:
• For each vertex vi ∈ V , add a vertex tile Tvi =
T (Ivi , Uvi , Ovi , Uvi).

• For each edge eij ∈ E, add an edge tile Teij =
T (Ovi , X, Ivj , X).

• Add a bridge tile TB = T (Ot, UB , X, UB).
Turning a vertex-disjoint path cover into a tiling scheme

is still straightforward. We can simply encode each path by
placing the tiles corresponding to the vertices and edges in
the path alternately in the grid, leaving spaces between
paths as necessary. Finally, we arrange the remaining
edge tiles together by sharing garbage-colored edges. Intu-
itively, if there are only few paths in the path cover, then
the number of blank spaces on the board is also small. In
particular, if there is a Hamiltonian path, then all tiles can
still be placed without any mismatched edges.

On the other hand, converting a tiling configuration to
a path cover is not as easy. Ideally, we want every edge
tile Teij that is packed in the grid to fall into one of the
following categories.
• It is oriented so that the vertex-colored edges are

on the left and the right (T (Ovi , X, Ivj , X) or
T (Ivj , X,Ovi , X)) and is placed between two vertex
tiles. In this case, the corresponding edge should be
included in the path cover.

• It is oriented so that the garbage colors are on the left
and right (i.e., T (X, Ivj , X,Ovi) or T (X,Ovi , X, Ivj )).
These edges are discarded from the path cover.

Unfortunately, it is possible for two edge tiles to be
placed next to each other without the shared border being
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Tv1

Iv1 Ov1

Uv1

Uv1

Tv2

Iv2 Ov2

Uv2

Uv2

Tv3

Iv3 Ov3

Uv3

Uv3

Tv4

Iv4 Ov4

Uv4

Uv4

Tv5

Iv5 Ov5

Uv5

Uv5

TB

Ov5 X

UB

UB

Te12

Ov1 Iv2

X

X

Te14

Ov1 Iv4

X

X

Te25

Ov2 Iv5

X

X

Te32

Ov3 Iv2

X

X

Te35

Ov3 Iv5

X

X

Te43

Ov4 Iv3

X

X

Fig. 4: The tiles of the 1×n Max-Placement Edge-Matching Puzzle instance created by the reduction in Section 5.1,
where the Max Vertex-Disjoint Path Cover(2) instance is the same graph from Figure 3a.

labeled with the garbage color; for instance, if there are
edges e12 and e13, then we can rotate their corresponding
tiles to be T (Ov2 , X, Iv1 , X) and T (Iv1 , X,Ov3 , X), and
place them next to each other. Here is where the bounded
degree constraint comes in. Suppose that each vertex in
the graph has in-degree and out-degree at most two. If
two edge tiles are placed consecutively with vertex color
on the shared edge, there must be an empty slot, blank
space or the board’s border next to the vertex tile corre-
sponding to that color (if the vertex tile is placed on the
board). As a result, if there are not too many empty slots,
we can reason that there must also be a small number of
such pairs of edge tiles. We can then remove these prob-
lematic edge tiles and arrive at a path cover as desired.
These arguments are formalized below.

5.2 Proof of Lemma 3
We prove each half of Lemma 3 in turn.

Max Vertex-Disjoint Path Cover(2) =⇒ 1 × n

Max-Placement Edge-Matching Puzzle
This proof remains unchanged from the case of Hamil-

tonian Path =⇒ 1×n Signed Edge-Matching Puzzle
in Section 4.2, as removing the signs only makes the puzzle
easier to solve.
1×n Max-Placement Edge-Matching Puzzle =⇒
Max Vertex-Disjoint Path Cover(2)

The proof is by contrapositive. Suppose that the re-
sulting 1×n Max-Placement Edge-Matching Puzzle
instance has optimum more than (1 − αEMP)n, i.e., there
is a tiling with less than αEMPn empty slots. We translate
the tiling to a path cover as follows:
( 1 ) Remove the bridge tile from the board.
( 2 ) Consider all edge tiles that are rotated in such a way

that left and right edges are vertex-colored. Among
these tiles, remove the ones that are adjacent to a
blank space, a (left or right) border of the board or
another edge tile.

( 3 ) After the previous step, two consecutive edge tiles can
only share a garbage-colored edge. Moreover, from
the colors we choose for vertex tiles, two vertex tiles
cannot be placed next to each other. As a result, each
connected component (a maximal set of contiguous

nonempty slots) either (1) alternates between vertex
and edge tiles, or (2) consists solely of edge tiles that
share only garbage-colored edges.
Because we removed all edge tiles with left and right
vertex-colored edges that are next to a blank space
or a board’s border, each sequence of the first type
must start and end with vertex tiles, which repre-
sents a path. We create a path cover consisting of
all paths corresponding to such sequences, and length-
zero paths, one for each vertex tile not in the board.

Figure 5 shows the algorithm in action for an example
tiling scheme. Clearly, the resulting collection of paths is
a vertex-disjoint path cover. We next argue that this path
cover indeed contains more than (|V |−1)(1−αMPC) edges.
We start by proving the following useful lemma.
Lemma 4. After Step 2, the number of connected compo-
nents of empty slots that are not adjacent to any border of
the board is less than 7αEMP + 5.

Proof. After the bridge tile is removed, there are less than
αEMPn + 1 empty slots. This quantity is also an upper
bound on the total number of connected components of
empty slots that are not adjacent to any border. Further-
more, the removal of edge tiles that are adjacent to a blank
space or a border of the board does not increase the num-
ber of such connected components of empty slots.

The rest of the edge tiles must be removed because they
share a vertex color-labeled edge with other edge tiles. Ob-
serve that these edge tiles are never removed individually;
two or more of such consecutive edge tiles must be removed
together. Thus, the number of connected components of
empty slots introduced in this step is at most one half of
the number of these removed edge tiles.

Suppose that the shared edge of two consecutive edge
tiles is labeled Ivi or Ovi for some vertex vi. Because vi
has in-degree and out-degree at most two, the tile Tvi must
be either omitted from the board or is next to a blank
space or a border of the board. There can be at most
αEMPn+ 2αEMPn+ 2 = 3αEMPn+ 2 such Tvi ’s. For each
such Tvi , there are at most four edge tiles that have Ivi
or Ovi . Hence, the number of edge tiles removed by such
cause is at most 4(3αEMPn + 2) = 12αEMPn + 8. There-
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Uv3

Uv3
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X
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Iv5 Ov2

X

X
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Ov2 Iv2

Uv2

Uv2

Te32

Iv2 Ov3

X

X

Tv1

Iv1 Ov1

Uv1

Uv1

Te14

Ov1 Iv4

X

X

Tv4

Iv4 Ov4

Uv4

Uv4

Te43

Ov4 Iv3

X

X

Tv3

Iv3 Ov3

Uv3

Uv3

Tv2

Ov2 Iv2
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v1 v4 v3 v2 v5

Fig. 5: An example of how the algorithm works for a tiling scheme for the instance from Figure 4. The upper tiling is
the input. Because the bridge tile is not put on the board, the tiling is not modified in Step 1. In Step 2, Te12 and Te32

are removed because they are next to a blank space and a board border, respectively, while Te35 and Te25 are removed
because they share a vertex-colored edge. This results in the lower tiling. The third step of the algorithm then picks two
paths (v1 → v4 → v3 and v2) from the board and one (v5) from an unused vertex tile.

fore, at most 1
2 (12αEMPn + 8) = 6αEMPn + 4 connected

components of empty slots are introduced by this step.
Thus, the number of connected components of empty

slots that are not adjacent to any border of the board is
less than (αEMPn+ 1) + (6αEMPn+ 4) = 7αEMPn+ 5.

Next, recall that the number of edges in the path cover
is |V | minus the number of paths. For the vertices whose
tiles are placed on the board, the number of paths involving
these vertices is one more than the number of connected
components of empty slots that are not adjacent to any
border of the board. By Lemma 4, the number of such
paths is less than 7αEMPn + 6. There are also less than
αEMPn vertices whose tiles are not placed on the board,
each of which contributes one path (of length zero). Thus,
the number of edges in the path cover is more than

|V | − (7αEMPn+ 6 + αEMPn)
= |V | − 6− 8αEMP(|V |+ |E|+ 1)
≥ |V | − 6− 8αEMP(|V |+ 2|V |+ 1)
= (1− 24αEMP)|V | − 14.

Finally, because αEMP < αMPC/24, when |V | is suf-
ficiently large, the last quantity is more than (1 −
αMPC)(|V | − 1). We have thus completed the proof of
Lemma 3.

5.3 Proof of Corollary 1 (Signed Variation)
Because the proof of Corollary 1 largely resembles that

of Theorem 1, we will not repeat the whole proof here.
The main difference is in the reduction: we instead need
to follow the reduction from Section 4.1 by restoring the
omitted signs. Apart from this, the rest of the proof re-
mains unchanged.

5.4 Proof of Corollary 2 (Max-Matched)
In this section, we provide a gap reduction to the

maximum-matched variation, although this time our in-

stance does not need to be modified. More specifically, we
prove the following lemma.
Lemma 5. For any constant α < 1, the following proper-
ties hold:
• if the optimum of 1 × n Max-Placement Edge-

Matching Puzzle is n, then the optimum of 1 ×
n Max-Matched Edge-Matching Puzzle on the
same instance is n− 1, and,

• if the optimum of 1 × n Max-Placement Edge-
Matching Puzzle is at most (1−α)n, then the opti-
mum of 1×n Max-Matched Edge-Matching Puz-
zle on the same instance is at most (1− α)(n− 1).

By picking α = αEMP from Theorem 1, Lemma 5 to-
gether with Theorem 1 immediately implies NP-hardness
of Gap 1 × n Max-Matched Edge-Matching Puz-
zle[n− 1, (1− αEMP)(n− 1)], establishing Corollary 2.

Proof of Lemma 5. We prove each direction in turn.
Max-Placement =⇒ Max-Matched

This direction is straightforward because a perfect tiling
contains n− 1 matched edges.
Max-Matched =⇒ Max-Placement

The proof is again by contrapositive. Suppose that the
maximum matched edges variation has a solution with
more than (1−α)(n−1) matched edges. That is, there are
less than α(n−1) < αn mismatched edges. We create a so-
lution to the original problem by removing all tiles whose
right edges are mismatched. Because each mismatched
edge contributes to at most one empty slot, there are less
than αn blank spaces, i.e., the number of tiles is more than
(1− α)n.

Our proof holds for the signed variation, and so does our
inapproximability result.

6. Inapproximability of Max Vertex-
Disjoint Path Cover(2)

We now prove the inapproximability of Max Vertex-
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Disjoint Path Cover(2) via a reduction from Max-
3SAT(29). Throughout section, let n and m denote the
number of variables and clauses in the CNF instance of
Max-3SAT(29), respectively.

Our proof of the inapproximability of Max Vertex-
Disjoint Path Cover(2) primarily relies on the reduc-
tion used to prove NP-hardness of the Hamiltonian cycle
problem on graphs with degree bound two in [15]. We
modify Plesńık’s construction to create a gap-preserving
reduction, then apply our reduction on Max-3SAT(29).
Section 6.1 addresses the construction in detail. This con-
struction turns a CNF instance of Max-3SAT(29) into
a graph instance G = (V,E) of Max Vertex-Disjoint
Path Cover(2) satisfying the following lemma.
Lemma 6. For any nonnegative constants α3SAT and
αMPC = α3SAT/4060, the following properties hold for
the reduction described in Section 6.1:
• if the optimum of the Max-3SAT(29) instance is m

(the corresponding CNF formula is satisfiable), then
the optimum of the resulting Max Vertex-Disjoint
Path Cover(2) instance is |V |−1 (the corresponding
graph contains a Hamiltonian path), and,

• if the optimum of the Max-3SAT(29) instance is at
most (1−α3SAT)m, then the optimum of the resulting
Max Vertex-Disjoint Path Cover(2) is at most
(1− αMPC)(|V | − 1).

Our proof of Lemma 6 is provided in Section 6.2.
Lemma 6 and Lemma 1 immediately imply the NP-
hardness for the gap problem of Max Vertex-Disjoint
Path Cover(2) described in Theorem 2. In particular, as
α3SAT can be 1

344 − δ for any sufficiently small δ > 0 by
Lemma 1, αMPC can be 1

1396640 − δ
′ for any sufficiently

small δ′ > 0.

6.1 Construction of Max Vertex-Disjoint Path
Cover(2) Instance from Max-3SAT(29) In-
stance

Assume that we are given a Max-3SAT(29) instance φ;
namely, φ consists of n variables x1, . . . , xn, and m clauses
c1, . . . , cm where each cj is a disjunction of (at most) 3
literals yj1, yj2, yj3 ∈ {x1, x1, . . . , xn, xn}, such that no
variable appears as literals more than 29 times. Using
Plesńık’s construction, we similarly define the clause gad-
get and the variable gadget as shown in Figure 6a, where
each gadget is enclosed in a rounded dashed rectangle.*6

Each variable gadget has two literal edges corresponding
to xi and xi, respectively. Figure 6b shows how we con-
nect our gadgets together. Unlike Plesńık’s construction,
we create a source node s and a target node t rather than
creating an edge between the top vertices of the first clause
and variable gadgets.

Each arc with black circular endpoints is a shorthand
notation for an exclusive-or line (XOR line). The XOR
gadget, which is the realization of an XOR line, is given
*6 We contracted some edges in Plesńık’s gadgets; this allows us

to achieve a slightly better value of αMPC.

cj

xi

xi

xi

(a)

t s

c1

c2

...

cm

x1

x2

...

xn

...

(b)

Fig. 6: (a) A clause gadget for cj (left) and a variable
gadget for xi (right), where cj contains xi as its second
literal; the shaded area indicates xi’s variable territory.
(b) Full construction of our Max Vertex-Disjoint Path
Cover(2) instance.

in Figures 7a-7b. There is one XOR line within a variable
gadget on the right, and an XOR line in the middle con-
necting a literal edge to each occurrence of that literal in
each clause. In Figure 6a, for example, clause cj contains
three literals, the middle of which is yj2 = xi.

For each variable xi, we define its variable territory as
the set of vertices in its variable gadget, along with the
eight vertices introduced by each of its XOR lines, includ-
ing those on the clause gadgets where xi or xi appear. This
territory is illustrated as the shaded region on Figure 6a.
We also define a clause territory of each clause cj as the
union between the vertices of cj ’s variable gadget, and the
variable territories of variables whose literals appear in cj .
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(a) (b)

(c)

Fig. 7: (a) The shorthand notation for an XOR line.
(b) The XOR gadget realizing the XOR line of (a). (c) The
only two possible configurations of path cover (thick edges)
without inducing endpoints within an XOR line.

6.2 Proof of Lemma 6
We prove each half of Lemma 6 in turn.

Max-3SAT(29) =⇒ Max Vertex-Disjoint Path
Cover(2)

Suppose that the input Max-3SAT(29) instance is sat-
isfiable. We need to show that the constructed Max
Vertex-Disjoint Path Cover(2) instance contains a
path cover of size |V | − 1. Observe that there is a path
cover of size |V | − 1 if and only if the path cover consists
entirely of a single (Hamiltonian) path from s to t.

Let us define endpoints of a path cover as a set of the
sources and the destinations of paths in the cover. Then,
it is sufficient to give a path cover that has no other end-
points besides s and t. First, we establish the following
observation which can be easily checked via a simple case
analysis.
Observation 1. Consider Figure 7c. If a path cover has
no endpoints on any of the eight vertices introduced by an
XOR line, then exactly one edge of the XOR line (in the
shorthand notation) is in the path cover. More precisely,
in the actual realization, either the pair of edges entering
and leaving the XOR gadget on the left, or the pair on the
right, is in the path cover.

Now we are ready to explicitly provide the path cover.

...

...

...

...

xi

xi

e1

e2

Fig. 8: Thick edges indicate edges that must be in the
path cover when xi is set to True. Edge e1 corresponds
to a True literal (xi), so it must not be traversed when
we visit the clause side of the graph; edge e2 corresponds
to a False literal (xi) and therefore must be traversed.

This construction is largely the same as that from [15],
but included here for completeness. We begin by adding
the literal edges corresponding to the optimal (satisfy-
ing) assignment of the Max-3SAT(29) instance; that is, if
xi = True we add the literal edge xi to the cover; other-
wise we add the literal edge xi. By Observation 1 above,
the edges in the variable gadgets in our cover are fully de-
termined. Figure 8 gives an example in the case that xi is
set to True. Observe that the path starting from s visits
all vertices of all variable gadgets, and, at the same time,
restricts that the edge on the opposite end of the XOR
line is traversed if and only if the corresponding literal is
False.

Now consider our path when it reaches the clause side of
the graph. As shown in Figure 9a, if the clause is satisfied,
some edges on the right of the clause gadget do not need to
be traversed. By a simple case analysis, we can cover all
unvisited vertices on the clause gadget without breaking
up our path. Thus, we have constructed a path cover of
size |V | − 1, as needed.
Max Vertex-Disjoint Path Cover(2) =⇒ Max-
3SAT(29)

We prove that second part of Lemma 6 via contra-
positive. That is, suppose that the optimum of the
constructed Max Vertex-Disjoint Path Cover(2) in-
stance is greater than (1− αMPC)(|V | − 1), we must show
that the optimum of the original Max-3SAT(29) instance
is greater than (1− α3SAT)m.

Consider an optimal path cover of our constructed Max
Vertex-Disjoint Path Cover instance. Our path cover

c© 1992 Information Processing Society of Japan 11



Journal of Information Processing Vol.0 No.0 1–14 (??? 1992)

(a)

(b)

Fig. 9: (a) Possible constructions of path covers when the
clause is satisfied (symmetric cases are omitted). (b) The
shaded region must contain an endpoint if the path cover
includes all thick edges.

has size greater than (1−αMPC)(|V | − 1), so it must con-
tain less than αMPC|V | + αMPC ≤ αMPC|V | + 1 paths.
That is, besides s and t, our path cover must contain less
than 2αMPC|V | other endpoints. To complete our proof,
we will explicitly construct an assignment satisfying more
than (1− α3SAT)m clauses.

Now, observe that if a variable territory contains no end-
points, then exactly one of the two literal edges are in the
path cover because of the XOR lines as argued in Ob-
servation 1. We construct our assignment as follows. If
there are no endpoints in xi’s variable territory, we assign
the truth value according to the literal in the path cover.
Otherwise, we assign an arbitrary one. We now show that
our assignment fails to satisfy strictly less than α3SATm

clauses.

First, we prove the following lemma.
Lemma 7. If a clause cj is not satisfied by our assign-
ment, then cj ’s clause territory contains an endpoint.

Proof. Suppose that there are no endpoints in any of the
variable territories of any variable occurring in cj . Then
for cj to be unsatisfied, all literal edges in cj must be False
and not included in the path cover. Observation 1 implies
that we must traverse all three edges on the right of cj ’s
clause gadget. Figure 9b draws these edges as curved thick
edges. Notice that our path leaves the shaded vertices dis-
connected from the remaining part of the graph, which
requires at least one additional path to cover. That is,
there must still be an endpoint in the clause territory of
cj .

Lemma 7 implies that an endpoint must be present for a
clause to be unsatisfied. Next, we show that each endpoint
cannot be contained in many clause territories.
Lemma 8. Each endpoint is in at most 29 clause territo-
ries.

Proof. If the endpoint is not in any variable territory, then
it is in at most one clause territory because clause gadgets
do not overlap. Otherwise, notice that the endpoint can
be only in one variable territory as variable territories also
do not overlap. One variable may occur at most 29 times,
so a variable territory can be in at most 29 clause territo-
ries. Therefore, any endpoint can be in at most 29 clause
territories.

Each endpoint may cause up to 29 clauses to become
unsatisfied. Recall that there are less than 2αMPC|V | end-
points that belong to some clause territories. Thus our
assignment leaves less than 29 · 2αMPC|V | = 58αMPC|V |
clauses unsatisfied.

Finally, we relate |V | and m in order to establish our
claim. Notice that we add vertices s and t to our graph
for convenience when defining endpoints, but they can
be safely removed as their only neighbors do not have
other incoming or outgoing edges, respectively. Then,
the number of vertices becomes |V | ≤ 11n + 37m ≤
11(3m)+37m = 70m. As the number of unsatisfied clauses
is less than 58αMPC(70m) = 4060m, our claim holds be-
cause αMPC = α3SAT/4060, as desired.

7. Conclusion and Open Problems
Our results establish an upper bound on the optimal

approximation factor at 33519359
33519360 , and the simple approx-

imation algorithms mentioned in the introduction give a
lower bound of 1

2 . The optimal approximation factor re-
mains an open question, though the right answer is prob-
ably closer to 1

2 . We believe our inapproximability factor
can be tightened somewhat by further modifying Plesńık’s
construction, or by reducing from a different problem; e.g.,
find a variation of SAT that yields a better trade-off in the
reduction, or make use of the tighter bounds on {1, 2}-TSP
from [8].
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For the objective of placing the maximum tiles without
violations, we can improve the approximation factor for
1 × n puzzles to 2

3 by computing a maximum-cardinality
matching on the tiles, and interspersing matched groups
(of size 2 or 1) with blanks. Suppose that an optimal so-
lution contains OPT =

⌈
n
2
⌉

+ k tiles. Such a solution
contains n − (

⌈
n
2
⌉

+ k) =
⌊
n
2
⌋
− k blank slots, leaving

at least (n − 1) − 2(
⌊
n
2
⌋
− k) ≥ 2k − 1 matched edges,

inducing a matching of cardinality at least
⌈ 2k−1

2
⌉

= k

for these matched edges which form paths. If k ≥ n
3 ,

this leads to an approximate solution consisting of pairs of
matched tiles, except possibly for the last tile, packing at
least 2

3n ≥
2
3 OPT tiles (because OPT ≤ n). Otherwise,

the solution contains 2k tiles in the first 3k slots, ending
with a blank slot, followed by alternation in the remaining
n− 3k spaces, for a total of 2k +

⌈ 1
2 (n− 3k)

⌉
≥
⌈
n+k

2
⌉

=⌈
OPT

2 + bn/2c
2

⌉
≥ 2

3 OPT tiles placed.
Another natural question is whether our inapproximabil-

ity results also apply to the original NP-hardness scenario
of square target shapes [6]. We expect that our proofs can
be adapted to this case, but avoiding introducing addi-
tional errors into the approximation factor requires extra
caution.

Edge-matching puzzles are also common with tiles in
the shape of regular hexagons or equilateral triangles. Are
these problems NP-hard and inapproximable for “1 × n”
(but bumpy) target shapes? Our results carry over di-
rectly to hexagons, just by leaving two opposite edges of
each hexagon unlabeled, and using the other two pairs of
opposite edges to simulate a square tile. Two triangles
connected by a unique glue can simulate a square, which
suffices to prove NP-hardness, but more care would be re-
quired for inapproximability to consider the case that the
triangle pair gets separated.
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