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Abstract We study the question of testing structured properties (classes) of dis-
crete distributions. Specifically, given sample access to an arbitrary distribution
D over [n] and a property P , the goal is to distinguish between D ∈ P and
�1(D,P) > ε. We develop a general algorithm for this question, which applies to
a large range of “shape-constrained” properties, including monotone, log-concave,
t-modal, piecewise-polynomial, and Poisson Binomial distributions. Moreover, for
all cases considered, our algorithm has near-optimal sample complexity with regard
to the domain size and is computationally efficient. For most of these classes, we
provide the first non-trivial tester in the literature. In addition, we also describe a
generic method to prove lower bounds for this problem, and use it to show our upper
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bounds are nearly tight. Finally, we extend some of our techniques to tolerant testing,
deriving nearly–tight upper and lower bounds for the corresponding questions.

Keywords Property testing · Distribution testing · Probability distributions ·
Algorithms · Lower bounds · Discrete distributions

1 Introduction

Inferring information about the probability distribution that underlies a data sample
is an essential question in Statistics, and one that has ramifications in every field
of the natural sciences and quantitative research. In many situations, it is natural to
assume that this data exhibits some simple structure because of known properties of
the origin of the data, and in fact these assumptions are crucial in making the problem
tractable. Such assumptions translate as constraints on the probability distribution—
e.g., it is supposed to be Gaussian, or to meet a smoothness or “fat tail” condition
(see e.g., [36, 39, 48]).

As a result, the problem of deciding whether a distribution possesses such a struc-
tural property has been widely investigated both in theory and practice, in the context
of shape restricted inference [8, 47] and model selection [41]. Here, it is guaranteed
or thought that the unknown distribution satisfies a shape constraint, such as having a
monotone or log-concave probability density function [7, 25, 46, 54]. From a differ-
ent perspective, a recent line of work in Theoretical Computer Science, originating
from the papers of Batu et al. [10, 11, 35] has also been tackling similar questions in
the setting of property testing (see [13, 43–45] for surveys on this field). This very
active area has seen a spate of results and breakthroughs over the past decade, cul-
minating in very efficient (both sample and time-wise) algorithms for a wide range
of distribution testing problems [1, 2, 9, 18, 24, 28, 34]. In many cases, this led to
a tight characterization of the number of samples required for these tasks as well as
the development of new tools and techniques, drawing connections to learning and
information theory [26, 50, 51, 53].

In this paper, we focus on the following general property testing problem: given a
class (property) of distributions P and sample access to an arbitrary distribution D,
one must distinguish between the case that (a) D ∈ P , versus (b) ‖D − D′‖1 > ε

for all D′ ∈ P (i.e., D is either in the class, or far from it). While many of the
previous works have focused on the testing of specific properties of distributions or
obtained algorithms and lower bounds on a case-by-case basis, an emerging trend
in distribution testing is to design general frameworks that can be applied to sev-
eral property testing problems [27, 28, 49, 51]. This direction, the testing analog
of a similar movement in distribution learning [4, 15–17], aims at abstracting the
minimal assumptions that are shared by a large variety of problems, and giving algo-
rithms that can be used for any of these problems. In this work, we make significant
progress in this direction by providing a unified framework for the question of test-
ing various properties of probability distributions. More specifically, we describe a
generic technique to obtain upper bounds on the sample complexity of this question,
which applies to a broad range of structured classes. Our technique yields sample
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near-optimal and computationally efficient testers for a wide range of distribution
families. Conversely, we also develop a general approach to prove lower bounds on
these sample complexities, and use it to derive tight or nearly tight bounds for many
of these classes.

Related Work Batu et al. [12] initiated the study of efficient property testers for
monotonicity and obtained (nearly) matching upper and lower bounds for this prob-
lem; while [2] later considered testing the class of Poisson Binomial Distributions,
and settled the sample complexity of this problem (up to the precise dependence on
ε). Indyk, Levi, and Rubinfeld [37], focusing on distributions that are piecewise con-
stant on t intervals (“t-histograms”) described a Õ(

√
tn/ε5)-sample algorithm for

testing membership to this class. Another body of work by [9, 12], and [24] shows
how assumptions on the shape of the distributions can lead to significantly more
efficient algorithms. They describe such improvements in the case of identity and
closeness testing as well as for entropy estimation, under monotonicity or k-modality
constraints. Specifically, Batu et al. show in [12] how to obtain a O

(
log3 n/ε3

)
-

sample tester for closeness in this setting, in stark contrast to the �
(
n2/3

)
general

lower bound. Daskalakis et al. [24] later gave O(
√
log n) and O(log2/3 n)-sample

testing algorithms for testing respectively identity and closeness of monotone dis-
tributions, and obtained similar results for k-modal distributions. Finally, we briefly
mention two related results, due respectively to [9] and [22]. The first one states that
for the task of getting a multiplicative estimate of the entropy of a distribution, assum-
ing monotonicity enables exponential savings in sample complexity—O

(
log6 n

)
,

instead of�(nc) for the general case. The second describes how to test if an unknown
k-modal distribution is in fact monotone, using only O(k/ε2) samples. Note that
the latter line of work differs from ours in that it presupposes the distributions sat-
isfy some structural property, and uses this knowledge to test something else about
the distribution; while we are given a priori arbitrary distributions, and must check
whether the structural property holds. Except for the properties of monotonicity and
being a PBD, nothing was previously known on testing the shape restricted properties
that we study.

Moreover, for the specific problems of identity and closeness testing,1 recent
results of [27, 28] describe a general algorithm which applies to a large range of
shape or structural constraints, and yields optimal identity testers for classes of dis-
tributions that satisfy them. We observe that while the question they answer can be
cast as a specialized instance of membership testing, our results are incomparable to
theirs, both because of the distinction above (testing with versus testing for structure)
and as the structural assumptions they rely on are fundamentally different from ours.

Concurrent and Followup Work Independently and concurrently to this work,
Acharya, Daskalakis, and Kamath [3] obtained a sample near-optimal efficient

1Recall that the identity testing problem asks, given the explicit description of a distributionD∗ and sample
access to an unknown distribution D, to decide whether D is equal to D∗ or far from it; while in closeness
testing both distributions to compare are unknown.
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algorithm for testing log-concavity, as well as sample-optimal algorithms for testing
the classes of monotone, unimodal, and monotone hazard rate distributions (along
with matching lower bounds on the sample complexity of these tasks). Their work
builds on ideas from [2] and their techniques are orthogonal to ours: namely, while
at some level both works follow a “testing-by-learning” paradigm, theirs rely on first
learning in the (more stringent) χ2 distance, then applying a testing algorithm which
is robust to some amount of noise (i.e., tolerant testing) in this χ2 sense (as opposed
to noise in an �1 sense, which is known to be impossible without a near-linear number
of samples [50]).

Subsequent to the publication of the conference version of this work, [14]
improved on both [37] and our results for the specific class of t-histograms, pro-
viding nearly tight upper and lower bounds on testing membership to this class.
Specifically, it obtains an upper bound of Õ(

√
n/ε2 + t/ε3), complemented with an

�(
√

n/ε2 + t/(ε log t)) lower bound on the sample complexity.
Building on our work, Fischer, Lachish, and Vasudev recently generalized in [33]

our approach and algorithm to the conditional sampling model of [19, 20], obtain-
ing analogues of our testing results in this different setting of distribution testing
where the algorithm is allowed to condition the samples it receives on subsets of
the domain of its choosing. In the “standard” sampling setting, [33] additionally
provides an alternative to the first subroutine of our testing algorithm: this yields a
simpler and non-recursive algorithm, with a factor log n shaved off at the price of a
worse dependency on the distance parameter ε. (Namely, their sample complexity is
dominated by O(

√
nL log2(1/ε)/ε5), to be compared to the O(

√
nL log n/ε3) term

of Theorem 3.3.)

1.1 Results and Techniques

Upper Bounds A natural way to tackle our membership testing problem would be to
first learn the unknown distribution D as if it satisfied the property, before checking
if the hypothesis obtained is indeed both close to the original distribution and to the
property. Taking advantage of the purported structure, the first step could presumably
be conducted with a small number of samples; things break down, however, in the
second step. Indeed, most approximation results leading to the improved learning
algorithms one would apply in the first stage only provide very weak guarantees,
that is in the �1 sense only. For this reason, they lack the robustness that would be
required for the second part, where it becomes necessary to perform tolerant testing
between the hypothesis and D—a task that would then entail a number of samples
almost linear in the domain size. To overcome this difficulty, we need to move away
from these global �1 closeness results and instead work with stronger requirements,
this time in �2 norm.

At the core of our approach is an idea of Batu et al. [12], which show that
monotone distributions can be well-approximated (in a certain technical sense) by
piecewise constant densities on a suitable interval partition of the domain; and lever-
age this fact to reduce monotonicity testing to uniformity testing on each interval
of this partition. While the argument of [12] is tailored specifically for the setting
of monotonicity testing, we are able to abstract the key ingredients, and obtain a
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generic membership tester that applies to a wide range of distribution families. In
more detail, we provide a testing algorithm which applies to any class of distributions
which admit succinct approximate decompositions—that is, each distribution in the
class can be well-approximated (in a strong �2 sense) by piecewise constant densities
on a small number of intervals (we hereafter refer to this approximation property, for-
mally defined in Definition 3.1, as (Succinctness); and extend the notation to apply
to any class C of distributions for which all D ∈ C satisfy (Succinctness)). Crucially,
the algorithm does not care about how these decompositions can be obtained: for the
purpose of testing these structural properties we only need to establish their existence.
Specific examples are given in the corollaries below. Informally, our main algorith-
mic result, informally stated (see Theorem 3.3 for a detailed formal statement), is as
follows:

Theorem 1.1 (Main Theorem) There exists an algorithm TESTSPLITTABLE which,
given sampling access to an unknown distribution D over [n] and parameter
ε ∈ (0, 1], can distinguish with probability 2/3 between (a) D ∈ P versus (b)
�1(D,P) > ε, for any property P that satisfies the above natural structural criterion
(Succinctness). Moreover, for many such properties this algorithm is computation-
ally efficient, and its sample complexity is optimal (up to logarithmic factors and the
exact dependence on ε).

We then instantiate this result to obtain “out-of-the-box” computationally efficient
testers for several classes of distributions, by showing that they satisfy the premise of
our theorem (the definition of these classes is given in Section 2.1):

Corollary 1.2 The algorithm TESTSPLITTABLE can test the classes of mono-
tone, unimodal, log-concave, concave, convex, and monotone hazard rate (MHR)
distributions, with Õ(

√
n/ε7/2) samples.

Corollary 1.3 The algorithm TESTSPLITTABLE can test the class of t-modal
distributions, with Õ(

√
tn/ε7/2) samples.

Corollary 1.4 The algorithm TESTSPLITTABLE can test the classes of t-
histograms and t-piecewise degree-d distributions, with Õ(

√
tn/ε3) and

Õ(
√

t (d + 1)n/ε7/2 + t (d + 1)/ε3) samples respectively.

Corollary 1.5 The algorithm TESTSPLITTABLE can test the classes of Binomial and
Poisson Binomial Distributions, with Õ(n1/4/ε7/2) samples.

We remark that the aforementioned sample upper bounds are information-
theoretically near-optimal in the domain size n (up to logarithmic factors).
See Table 1 and the following subsection for the corresponding lower bounds. We did
not attempt to optimize the dependence on the parameter ε, though a more careful
analysis might lead to such improvements.

We stress that prior to our work, no non-trivial testing bound was known for
most of these classes – specifically, our nearly-tight bounds for t-modal with t > 1,



Theory Comput Syst (2018) 62:4–62 9

Table 1 Summary of results

Class Upperbound Lowerbound

Monotone Õ
(√

n

ε6

)
[12], Õ

( √
n

ε7/2

)
(Corollary 1.2), �

(√
n

ε2

)
[12], �

(√
n

ε2

)

O
(√

n

ε2

)
[3](‡) (Corollary 1.6)

Unimodal Õ
( √

n

ε7/2

)
(Corollary 1.2), O

(√
n

ε2

)
[3](‡) �

(√
n

ε2

)
(Corollary 1.6)

t-modal Õ
(√

tn

ε7/2

)
(Corollary 1.3) �

(√
n

ε2

)
(Corollary 1.6)

Concave, convex Õ
( √

n

ε7/2

)
(Corollary 1.2) �

(√
n

ε2

)
(Corollary 1.6)

Log-concave Õ
( √

n

ε7/2

)
(Corollary 1.2), O

(√
n

ε2

)
[3](‡) �

(√
n

ε2

)
(Corollary 1.6)

Monotone Hazard Õ
( √

n

ε7/2

)
(Corollary 1.2), O

(√
n

ε2

)
[3](‡) �

(√
n

ε2

)
(Corollary 1.6)

Rate (MHR)

Binomial, Poisson Õ
(

n1/4

ε2
+ 1

ε6

)
[2], �

(
n1/4

ε2

)
([2], Corollary 1.7)

Binomial (PBD) Õ
(

n1/4

ε7/2

)
(Corollary 1.5)

t-histograms Õ
(√

tn

ε5

)
[37], Õ

(√
n

ε2
+ t

ε3

)
[14](‡), �

(√
tn
)
(for t ≤ 1

ε
) [37],

Õ
(√

tn

ε3

)
(Corollary 1.4) �

(√
n

ε2
+ t

ε

)
[14](‡),

�
(√

n

ε2

)
(Corollary 1.6)

t-piecewise degree-d Õ
(√

t (d+1)n
ε7/2

+ t (d+1)
ε3

)
(Corollary 1.4) �

(√
n

ε2

)
(Corollary 1.6)

k-SIIRV �
(

k1/2n1/4

ε2

)
(Corollary 1.8)

(‡) indicates a result independent of or subsequent to our work

log-concave, concave, convex, MHR, and piecewise polynomial distributions are
new. Moreover, although a few of our applications were known in the literature
(the Õ

(√
n/ε6

)
upper and �

(√
n/ε2

)
lower bounds on testing monotonicity can be

found in [12], while the �
(
n1/4

)
sample complexity of testing PBDs was recently

given2 in [2], and the task of testing t-histograms is considered in [37]), the crux
here is that we are able to derive them in a unified way, by applying the same
generic algorithm to all these different distribution families. We note that our upper
bound for t-histograms (Corollary 1.4) also significantly improves on the previous
Õ
(√

tn/ε5
)
-sample tester with regard to the dependence on the proximity parameter

ε. In addition to its generality, our framework yields much cleaner and conceptually
simpler proofs of the upper and lower bounds from [2].

Lower Bounds To complement our upper bounds, we give a generic framework
for proving lower bounds against testing classes of distributions. In more detail, we
describe how to reduce—under a mild assumption on the property C—the problem of
testingmembership to C (“doesD ∈ C?”) to testing identity toD∗ (“doesD = D∗?”),

2For the sample complexity of testing monotonicity, [12] originally states an Õ
(√

n/ε4
)
upper bound,

but the proof seems to only result in an Õ
(√

n/ε6
)
bound. Regarding the class of PBDs, [2] obtain an

n1/4 · Õ
(
1/ε2

) + Õ
(
1/ε6

)
sample complexity, to be compared with our Õ

(
n1/4/ε7/2

) + O
(
log4 n/ε4

)

upper bound; as well as an �
(
n1/4/ε2

)
lower bound.
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for any explicit distribution D∗ in C. While these two problems need not in general
be related,3 we show that our reduction-based approach applies to a large number of
natural properties, and obtain lower bounds that nearly match our upper bounds for
all of them. Moreover, this lets us derive a simple proof of the lower bound of [2]
on testing the class of PBDs. The reader is referred to Theorem 6.1 for the formal
statement of our reduction-based lower bound theorem. In this section, we state the
concrete corollaries we obtain for specific structured distribution families:

Corollary 1.6 Testing log-concavity, convexity, concavity, MHR, unimodality,
t-modality, t-histograms, and t-piecewise degree-d distributions each require
�
(√

n/ε2
)
samples (the last three for t = o(

√
n) and t (d + 1) = o(

√
n),

respectively), for any ε ≥ 1/nO(1).

Corollary 1.7 Testing the classes of Binomial and Poisson Binomial Distributions
each require �

(
n1/4/ε2

)
samples, for any ε ≥ 1/nO(1).

Corollary 1.8 There exist absolute constants c > 0 and ε0 > 0 such that testing the
class of k-SIIRV distributions requires �

(
k1/2n1/4/ε2

)
samples, for any k = o (nc)

and 1/nO(1) ≤ ε ≤ ε0.

Tolerant Testing Using our techniques, we also establish nearly–tight upper and
lower bounds on tolerant testing4 for shape restrictions. Similarly, our upper and
lower bounds are matching as a function of the domain size. More specifically, we
give a simple generic upper bound approach (namely, a learning followed by tolerant
testing algorithm). Our tolerant testing lower bounds follow the same reduction-
based approach as in the non-tolerant case. In more detail, our results are as follows
(see Sections 6 and 7):

Corollary 1.9 Tolerant testing of log-concavity, convexity, concavity, MHR, uni-

modality, and t-modality can be performed with O
(

1
(ε2−ε1)

2
n

log n

)
samples, for ε2 ≥

Cε1 (where C > 2 is an absolute constant).

Corollary 1.10 Tolerant testing of the classes of Binomial and Poisson Binomial

Distributions can be performed withO

(
1

(ε2−ε1)
2

√
n log(1/ε1)
log n

)
samples, for ε2 ≥ Cε1

(where C > 2 is an absolute constant).

Corollary 1.11 Tolerant testing of log-concavity, convexity, concavity, MHR, uni-

modality, and t-modality each require �
(

1
(ε2−ε1)

n
log n

)
samples (the latter for t =

o(n)).

3As a simple example, consider the class C of all distributions, for which testing membership is trivial.
4Tolerant testing of a property P is defined as follows: given 0 ≤ ε1 < ε2 ≤ 1, one must distinguish
between (a) �1(D,P) ≤ ε1 and (b) �1(D,P) ≥ ε2. This turns out to be, in general, a much harder task
than that of “regular” testing (where we take ε1 = 0).
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Corollary 1.12 Tolerant testing of the classes of Binomial and Poisson Binomial

Distributions each require �
(

1
(ε2−ε1)

√
n

log n

)
samples.

On the Scope of our Results We point out that our main theorem is likely to apply to
many other classes of structured distributions, due to the mild structural assumptions
it requires. However, we did not attempt here to be comprehensive; but rather to
illustrate the generality of our approach. Moreover, for all properties considered in
this paper the generic upper and lower bounds we derive through our methods turn
out to be optimal up to at most polylogarithmic factors (with regard to the support
size). The reader is referred to Table 1 for a summary of our results and related work.

1.2 Organization of the Paper

We start by giving the necessary background and definitions in Section 2, before
turning to our main result, the proof of Theorem 1.1 (our general testing algorithm)
in Section 3. In Section 4, we establish the necessary structural theorems for each
class of distributions considered, enabling us to derive the upper bounds of Table 1.
Section 5 introduces a slight modification of our algorithm which yields stronger
testing results for classes of distributions with small effective support, and use it
to derive Corollary 1.5, our upper bound for Poisson Binomial distributions. Sec-
ond, Section 6 contains the details of our lower bound methodology, and of its
applications to the classes of Table 1. Finally, Section 6.2 is concerned with the exten-
sion of this methodology to tolerant testing, of which Section 7 describes a generic
upper bound counterpart.

2 Notation and Preliminaries

2.1 Definitions

We give here the formal descriptions of the classes of distributions involved in this
work, starting with that of monotone distributions.

Definition 2.1 (monotone) A distribution D over [n] is monotone (non-increasing)
if its probability mass function (pmf) satisfies D(1) ≥ D(2) ≥ . . . D(n).

A natural generalization of the class M of monotone distributions is the set of t-
modal distributions, i.e. distributions whose pmf can go “up and down” or “down and
up” up to t times:5

Definition 2.2 (t-modal) Fix any distribution D over [n], and integer t . D is said
to have t modes if there exists a sequence i0 < · · · < it+1 such that either

5Note that this slightly deviates from the Statistics literature, where only the peaks are counted as modes
(so that what is usually referred to as a bimodal distribution is, according to our definition, 3-modal).
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(−1)jD(ij ) < (−1)jD(ij+1) for all 0 ≤ j ≤ t , or (−1)jD(ij ) > (−1)jD(ij+1)

for all 0 ≤ j ≤ t . We call D t-modal if it has at most t modes, and write Mt for the
class of all t-modal distributions (omitting the dependence on n). The particular case
of t = 1 corresponds to the set M1 of unimodal distributions.

Definition 2.3 (Log-concave) A distribution D over [n] is said to be log-concave
if it satisfies the following conditions: (i) for any 1 ≤ i < j < k ≤ n such that
D(i)D(k) > 0, D(j) > 0; and (ii) for all 1 < k < n, D(k)2 ≥ D(k−1)D(k+1). We
write L for the class of all log-concave distributions (omitting the dependence on n).

Definition 2.4 (Concave and Convex) A distributionD over [n] is said to be concave
if it satisfies the following conditions: (i) for any 1 ≤ i < j < k ≤ n such that
D(i)D(k) > 0, D(j) > 0; and (ii) for all 1 < k < n such that D(k−1)D(k+1) > 0,
2D(k) ≥ D(k − 1) + D(k + 1); it is convex if the reverse inequality holds in (ii). We
writeK− (resp.K+) for the class of all concave (resp. convex) distributions (omitting
the dependence on n).

It is not hard to see that convex and concave distributions are unimodal; moreover,
every concave distribution is also log-concave, i.e.K− ⊆ L. Note that in both Defini-
tion 2.3 and Definition 2.4, condition (i) is equivalent to enforcing that the distribution
be supported on an interval.

Definition 2.5 (Monotone Hazard Rate) A distribution D over [n] is said to have

monotone hazard rate (MHR) if its hazard rateH(i)
def= D(i)∑n

j=iD(j)
is a non-decreasing

function. We write MHR for the class of all MHR distributions (omitting the
dependence on n).

It is known that every log-concave distribution is both unimodal and MHR (see
e.g. [6, Proposition 10]), and that monotone distributions are MHR. Two other classes
of distributions have elicited significant interest in the context of density estimation,
those of histograms (piecewise constant) and piecewise polynomial densities:

Definition 2.6 (Piecewise Polynomials [16]) A distribution D over [n] is said to be a
t-piecewise degree-d distribution if there is a partition of [n] into t disjoint intervals
I1, . . . , It such that D(i) = pj (i) for all i ∈ Ij , where each p1, . . . pt is a univariate
polynomial of degree at most d. We write Pt,d for the class of all t-piecewise degree-
d distributions (omitting the dependence on n). (We note that t-piecewise degree-0
distributions are also commonly referred to as t-histograms, and write Ht for Pt,0.)

Finally, we recall the definition of the two following classes, which both extend
the family of Binomial distributions BIN n: the first, by removing the need for each
of the independent Bernoulli summands to share the same bias parameter.

Definition 2.7 A random variable X is said to follow a Poisson Binomial Distribu-
tion (with parameter n ∈ N) if it can be written as X = ∑n

k=1 Xk , where X1 . . . , Xn
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are independent, non-necessarily identically distributed Bernoulli random variables.
We denote by PBDn the class of all such Poisson Binomial Distributions.

It is not hard to show that Poisson Binomial Distributions are in particular log-
concave. One can generalize even further, by allowing each random variable of the
summation to be integer-valued:

Definition 2.8 Fix any k ≥ 0. We say a random variableX is a k-Sum of Independent
Integer Random Variables (k-SIIRV) with parameter n ∈ N if it can be written asX =∑n

j=1 Xj , where X1 . . . , Xn are independent, non-necessarily identically distributed
random variables taking value in {0, 1, . . . , k − 1}. We denote by k-SIIRVn the
class of all such k-SIIRVs.

2.2 Tools from Previous Work

We first restate a result of Batu et al. relating closeness to uniformity in �2 and �1
norms to “overall flatness” of the probability mass function, and which will be one
of the ingredients of the proof of Theorem 1.1:

Lemma 2.9 ([10, 11]) Let D be a distribution on a domain S. (a) If maxi∈S D(i) ≤
(1 + ε)mini∈S D(i), then ‖D‖2 ≤ (1 + ε2)/ |S|. (b) If ‖D‖2 ≤ (1 + ε2)/ |S|, then
‖D − US‖ ≤ ε.

To check condition (b) above we shall rely on the following, which one can derive
from the techniques in [28] and whose proof we defer to Appendix A:

Theorem 2.10 (Adapted from [28, Theorem 11]) There exists an algorithm CHECK-
SMALL-�2 which, given parameters ε, δ ∈ (0, 1) and c · √|I |/ε2 log(1/δ) indepen-
dent samples from a distributionD over I (for some absolute constant c > 0), outputs
either yes or no, and satisfies the following.

• If ‖D − UI‖2 > ε/
√|I |, then the algorithm outputs no with probability at least

1 − δ;
• If ‖D − UI‖2 ≤ ε/2

√|I |, then the algorithm outputs yes with probability at
least 1 − δ.

Finally, we will also rely on a classical result from probability, the Dvoretzky–
Kiefer–Wolfowitz (DKW) inequality, restated below:

Theorem 2.11 ([32, 40]) Let D be a distribution over [n]. Given m independent
samples x1, . . . , xm from D, define the empirical distribution D̂ as follows:

D̂(i)
def=

∣∣{ j ∈ [m] : xj = i
}∣∣

m
, i ∈ [n].

Then, for all ε > 0, Pr
[
‖D−D̂‖Kol>ε

]
≤ 2e−2mε2 , where ‖·−·‖Kol denotes the

Kolmogorov distance (i.e., the �∞ distance between cumulative distribution functions).
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In particular, this implies that O
(
1/ε2

)
samples suffice to learn a distribution up

to ε in Kolmogorov distance.

3 The General Algorithm

In this section, we obtain our main result, restated below:

Theorem 1.1 (Main Theorem) There exists an algorithm TESTSPLITTABLE which,
given sampling access to an unknown distribution D over [n] and parameter
ε ∈ (0, 1], can distinguish with probability 2/3 between (a) D ∈ P versus (b)
�1(D,P) > ε, for any property P that satisfies the above natural structural criterion
(Succinctness). Moreover, for many such properties this algorithm is computation-
ally efficient, and its sample complexity is optimal (up to logarithmic factors and the
exact dependence on ε).

Intuition Before diving into the proof of this theorem, we first provide a high-level
description of the argument. The algorithm proceeds in 3 stages: the first, the decom-
position step, attempts to recursively construct a partition of the domain in a small
number of intervals, with a very strong guarantee. If the decomposition succeeds,
then the unknown distribution D will be close (in �1 distance) to its “flattening” on
the partition; while if it fails (too many intervals have to be created), this serves as
evidence that D does not belong to the class and we can reject. The second stage,
the approximation step, then learns this flattening of the distribution—which can be
done with few samples since by construction we do not have many intervals. The last
stage is purely computational, the projection step: where we verify that the flatten-
ing we have learned is indeed close to the class C. If all three stages succeed, then by
the triangle inequality it must be the case that D is close to C; and by the structural
assumption on the class, if D ∈ C then it will admit succinct enough partitions, and
all three stages will go through.

Turning to the proof, we start by defining formally the “structural criterion” we
shall rely on, before describing the algorithm at the heart of our result in Section 3.1.
(We note that a modification of this algorithm will be described in Section 5, and will
allow us to derive Corollary 1.5.)

Definition 3.1 (Decompositions) Let γ, ζ > 0 and L = L(γ, ζ, n) ≥ 1. A class of
distributions C on [n] is said to be (γ, ζ, L)-decomposable if for every D ∈ C there
exists � ≤ L and a partition I(γ, ζ, D) = (I1, . . . , I�) of the interval [1, n] such that,
for all j ∈ [�], one of the following holds:
(i) D(Ij ) ≤ ζ

L
; or

(ii) max
i∈Ij

D(i) ≤ (1 + γ ) · min
i∈Ij

D(i).

Further, if I(γ, ζ, D) is dyadic (i.e., each Ik is of the form [j · 2i + 1, (j + 1) · 2i] for
some integers i, j , corresponding to the leaves of a recursive bisection of [n]), then C
is said to be (γ, ζ, L)-splittable.
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Lemma 3.2 If C is (γ, ζ, L)-decomposable, then it is (γ, ζ, L′)-splittable for
L′(γ, ζ, n) = O(log n) · L(γ,

ζ
2(log n+1) , n).

Proof We will begin by proving a claim that for every partition I = {I1, I2, ..., IL}
of the interval [1, n] into L intervals, there exists a refinement of that partition which
consists of at most L · O(log n) dyadic intervals. So, it suffices to prove that every
interval [a, b] ⊆ [1, n] can be partitioned in at most O (log n) dyadic intervals.
Indeed, let � be the largest integer such that 2� ≤ b−a

2 and let m be the smallest inte-
ger such that m ·2� ≥ a. If follows that m ·2� ≤ a+ b−a

2 = a+b
2 and (m+1) ·2� ≤ b.

So, the interval I = [m · 2� + 1, (m + 1) · 2�] is fully contained in [a, b] and has size
at least b−a

4 .
We will also use the fact that, for every �′ ≤ �,

m · 2� = m · 2�−�′ · 2�′ = m′ · 2�′
(1)

Now consider the following procedure: Starting from right (resp. left) side of the
interval I , we add the largest interval which is adjacent to it and fully contained
in [a, b] and recurse until we cover the whole interval [(m + 1) · 2� + 1, b] (resp.
[a,m · 2�]). Clearly, at the end of this procedure, the whole interval [a, b] is cov-
ered by dyadic intervals. It remains to show that the procedure takes O (log n) steps.
Indeed, using (1), we can see that at least half of the remaining left or right inter-
val is covered in each step (except maybe for the first 2 steps where it is at least
a quarter). Thus, the procedure will take at most 2 log n + 2 = O (log n) steps in
total. From the above, we can see that each of the L intervals of the partition I
can be covered with O (log n) dyadic intervals, which completes the proof of the
claim.

In order to complete the proof of the lemma, notice that the two conditions
in Definition 3.1 are closed under taking subsets: so that the second is immedi-
ately verified, while for the first we have that for any of the “new” intervals I that
D(I) ≤ ζ

L
≤ ζ ·(2 log n+2)

L′ .

3.1 The Algorithm

Theorem 1.1, and with it Corollary 1.2, Corollary 1.3, and Corollary 1.4 will follow
from the theorem below, combined with the structural theorems from Section 4:

Theorem 3.3 Let C be a class of distributions over [n] for which the following holds.
1. C is (γ, ζ, L(γ, ζ, n))-splittable;
2. there exists a procedure PROJECTIONDISTC which, given as input a parameter

α ∈ (0, 1) and the explicit description of a distribution D over [n], returns yes
if the distance �1(D, C) to C is at most α/10, and no if �1(D, C) ≥ 9α/10 (and
either yes or no otherwise).
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Then the algorithm TESTSPLITTABLE (Algorithm 1) is a O(max(
√

nL log
n/ε3, L/ε2))-sample tester for C, for L = L(O(ε), O(ε), n). (Moreover, if
PROJECTIONDISTC is computationally efficient, then so is TESTSPLITTABLE.)

Algorithm 1 TestSplittable

Require: Domain (interval), sample access to over ; subroutine
PROJECTIONDIST

Input: Parameters and “splittable” function (·, ·, ·).
1: SETTING UP

2: Define
def

80 ,
def

( , , | |),
def

160 ,
def 1

10 ; and [let] 0 be
as in Lemma 2.10.

3: Set
def

· max 1 , 3 · log | | = 3 is an absolute
constant.

4: Obtain a sequence s of independent samples from . For any I ,
let be the
number of sam-
ples falling in J.

5:

6: DECOMPOSITION

7: while max · 2 log 1 , and at most splits have been

performed do
8: Run CHECK-SMALL- 2 (from Lemma 2.10) with parameters 40 and ,

using the samples of s belonging to .
9: if CHECK-SMALL- 2 outputs no then
10: Bisect , and recurse on both halves (using the same samples).
11: end if
12: end while
13: if more than splits have been performed then
14: return reject
15: else
16: Let

def
( 1, . . . , ) be the partition of from the leaves of the

recursion. .
17: end if
18:

19: APPROXIMATION

20: Learn the flattening ) of to 1 error 20 (with probability 1/ 10),

using 2 new samples. Let be the resulting hypothesis. is an
-histogram.

21:

22: OFFLINE CHECK

23: return accept if and only if PROJECTIONDIST ( , ) returns yes. No
samples needed.

24:
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3.2 Proof of Theorem 3.3

We now give the proof of our main result (Theorem 3.3), first analyzing the sample
complexity of Algorithm 1 before arguing its correctness. For the latter, we will need
the following simple fact from [37], restated below:

Fact 3.4 ([37, Fact 1]) Let D be a distribution over [n], and δ ∈ (0, 1]. Given m ≥
C · log n

δ

η
independent samples from D (for some absolute constant C > 0), with

probability at least 1 − δ we have that, for every interval I ⊆ [n]:
(i) if D(I) ≥ η

4 , then
D(I)
2 ≤ mI

m
≤ 3D(I)

2 ;
(ii) if mI

m
≥ η

2 , then D(I) >
η
4 ;

(iii) if mI

m
<

η
2 , then D(I) < η;

where mI
def= ∣∣{ j ∈ [m] : xj ∈ I

}∣∣ is the number of the samples falling into I .

3.3 Sample Complexity

The sample complexity is immediate, and comes from Steps 4 and 20. The total
number of samples is

m+O

(
�

ε2

)
=O

(√|I | · L

ε3
log |I |+ L

ε
log |I |+ L

ε2

)
=O

(√|I | · L

ε3
log |I |+ L

ε2

)
.

3.4 Correctness

Say an interval I considered during the execution of the “Decomposition” step is
heavy if mI is big enough on Step 7, and light otherwise; and let H and L denote
the sets of heavy and light intervals respectively. By choice of m, we can assume that
with probability at least 9/10 the guarantees of Fact 3.4 hold simultaneously for all
intervals considered. We hereafter condition on this event.

We first argue that if the algorithm does not reject in Step 13, then with probability
at least 9/10 we have ‖D−�(D, I)‖1 ≤ ε/20 (where�(D, I) denotes the flattening
of D over the partition I). Indeed, we can write

‖D − �(D, I)‖1 =
∑

k : Ik∈L
D(Ik) · ‖DIk

− UIk
‖1 +

∑

k : Ik∈H
D(Ik) · ‖DIk

− UIk
‖1

≤ 2
∑

k : Ik∈L
D(Ik) +

∑

k : Ik∈H
D(Ik) · ‖DIk

− UIk
‖1 .

Let us bound the two terms separately.

• If I ′ ∈ H, then by our choice of threshold we can apply Lemma 2.10 with
δ = 1

10L ; conditioning on all of the (at most L) events happening, which overall
fails with probability at most 1/10 by a union bound, we get

‖DI ′ ‖22 = ‖DI ′ − UI ′ ‖22 + 1

|I ′| ≤
(
1 + ε2

1600

)
1

|I ′|
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as CHECK-SMALL-�2 returned yes; and by Lemma 2.9 this implies
‖DI ′ − UI ′ ‖1 ≤ ε/40.

• If I ′ ∈ L, then we claim that D(I ′) ≤ max(κ, 2c ·
√|I ′|
mε2

log 1
δ
). Clearly, this is

true if D(I ′) ≤ κ , so it only remains to show that D(I ′) ≤ 2c ·
√|I ′|
mε2

log 1
δ
. But

this follows from Fact 3.4 (i), as if we had D(I ′) > 2c ·
√|I ′|
mε2

log 1
δ
then mI ′

would have been big enough, and I ′ /∈ L. Overall,

∑

I ′∈L
D(I ′) ≤

∑

I ′∈L

(
κ + 2c ·

√|I ′|
mε2

log
1

δ

)
≤ Lκ + 2

∑

I ′∈L
c ·

√|I ′|
mε2

log
1

δ

≤ ε

160

(

1 +
∑

I ′∈L

√
|I ′|
|I | L

)

≤ ε

80

for a sufficiently big choice of constant C > 0 in the definition of m; where we

first used that |L| ≤ L, and then that
∑

I ′∈L
√ |I ′|

|I | ≤ √
L by Jensen’s inequality.

Putting it together, this yields

‖D − �(D, I)‖1 ≤ 2 · ε

80
+ ε

40

∑

I ′∈H
D(Ik) ≤ ε/40 + ε/40 = ε/20.

Soundness. By contrapositive, we argue that if the test returns accept, then (with
probability at least 2/3) D is ε-close to C. Indeed, conditioning on D̃ being ε/20-
close to �(D, I), we get by the triangle inequality that

‖D − C‖1 ≤ ‖D − �(D, I)‖1 + ‖�(D, I) − D̃‖1 + dist
(
D̃, C

)

≤ ε

20
+ ε

20
+ 9ε

10
= ε.

Overall, this happens except with probability at most 1/10+ 1/10+ 1/10 < 1/3.
Completeness. AssumeD ∈ C. Then the choice of of γ andL ensures the existence

of a good dyadic partition I(γ, γ, D) in the sense of Definition 3.1. For any I in
this partition for which (i) holds (D(I) ≤ γ

L
< κ

2 ), I will have mI

m
< κ and be

kept as a “light leaf” (this by contrapositive of Fact 3.4 (ii)). For the other ones,
(ii) holds: let I be one of these (at most L) intervals.

• If mI is too small on Step 7, then I is kept as “light leaf.”
• Otherwise, then by our choice of constants we can use Lemma 2.9 and

apply Lemma 2.10 with δ = 1
10L ; conditioning on all of the (at most L) events

happening, which overall fails with probability at most 1/10 by a union bound,
CHECK-SMALL-�2 will output yes, as

‖DI − UI‖22 = ‖DI‖22 − 1

|I | ≤
(
1 + ε2

6400

)
1

|I | − 1

|I | = ε2

6400 |I |
and I is kept as “flat leaf.”
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Therefore, as I(γ, γ, D) is dyadic the DECOMPOSITION stage is guaranteed to
stop within at mostL splits (in the worst case, it goes on until I(γ, γ, D) is consid-
ered, at which point it succeeds).6 Thus Step 13 passes, and the algorithm reaches
the APPROXIMATION stage. By the foregoing discussion, this implies �(D, I) is
ε/20-close to D (and hence to C); D̃ is then (except with probability at most 1/10)
( ε
20 + ε

20 = ε
10 )-close to C, and the algorithm returns accept.

4 Structural Theorems

In this section, we show that a wide range of natural distribution families are
succinctly decomposable, and provide efficient projection algorithms for each class.

4.1 Existence of Structural Decompositions

Theorem 4.1 (Monotonicity) For all γ, ζ > 0, the class M of monotone distribu-

tions on [n] is (γ, ζ, L)-splittable for L
def= O

(
log2 n

ζ

γ

)
.

Note that this proof can already be found in [12, Theorem 10], interwoven with the
analysis of their algorithm. For the sake of being self-contained, we reproduce the
structural part of their argument, removing its algorithmic aspects:

Proof of Theorem 4.1 We define the I recursively as follows: I(0) = ([1, n]), and
for j ≥ 0 the partition I(j+1) is obtained from I(j) = (I

(j)

1 , . . . , I
(j)

�j
) by going over

the I
(j)
i = [a(j)

i , b
(j)
i ] in order, and:

(a) if D(I
(j)
i ) ≤ ζ

L
, then I

(j)
i is added as element of I(j+1) (“marked as leaf”);

(b) else, if D(a
(j)
i ) ≤ (1 + γ )D(b

(j)
i ), then I

(j)
i is added as element of I(j+1)

(“marked as leaf”);

(c) otherwise, bisect I (j) in I
(j)
L , I (j)

R (with
∣∣∣I (j)
L

∣∣∣ = ⌈∣∣I (j)
∣∣ /2

⌉
) and add both I

(j)
L

and I
(j)
R as elements of I(j+1).

and repeat until convergence (that is, whenever the last item is not applied for any
of the intervals). Clearly, this process is well-defined, and will eventually terminate
(as (�j )j is a non-decreasing sequence of natural numbers, upper bounded by n). Let
I = (I1, . . . , I�) (with Ii = [ai, ai+1)) be its outcome, so that the Ii’s are consecutive
intervals all satisfying either (a) or (b). As (b) clearly implies (ii), we only need to

6In more detail, we want to argue that if D is in the class, then a decomposition with at most L

pieces is found by the algorithm. Since there is a dyadic decomposition with at most L pieces (namely,
I(γ, γ,D) = (I1, . . . , It )), it suffices to argue that the algorithm will never split one of the Ij ’s (as every
single Ij will eventually be considered by the recursive binary splitting, unless the algorithm stopped
recursing in this “path” before even considering Ij , which is even better). But this is the case by the above
argument, which ensures each such Ij will be recognized as satisfying one of the two conditions for “good
decomposition” (being either close to uniform in �2 distance, or having very little mass).
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show that � ≤ L; for this purpose, we shall leverage as in [12] the fact that D is
monotone to bound the number of recursion steps.

The recursion above defines a complete binary tree (with the leaves being the
intervals satisfying (a) or (b), and the internal nodes the other ones). Let t be the
number of recursion steps the process goes through before converging to I (height
of the tree); as mentioned above, we have t ≤ log n (as we start with an interval of
size n, and the length is halved at each step.). Observe further that if at any point
an interval I

(j)
i = [a(j)

i , b
(j)
i ] has D(a

(j)
i ) ≤ ζ

nL
, then it immediately (as well as all

the I
(j)
k ’s for k ≥ i by monotonicity) satisfies (a) and is no longer split (“becomes a

leaf”). So at any j ≤ t , the number of intervals ij for which neither (a) nor (b) holds
must satisfy

1 ≥ D
(
a

(j)

1

)
>(1 + γ )D

(
a

(j)

2

)
>(1 + γ )2D

(
a

(j)

3

)
> · · · > (1 + γ )ij −1D

(
a

(j)
ij

)

≥ (1 + γ )ij −1 ζ

nL

where ak denotes the beginning of the k-th interval (again we use monotonicity to
argue that the extrema were reached at the ends of each interval), so that ij ≤ 1 +
log nL

ζ

log(1+γ )
. In particular, the total number of internal nodes is then

t∑

i=1

ij ≤ t ·
(

1 + log nL
ζ

log(1 + γ )

)

≤ 2 log2 n
ζ

log(1 + γ )
≤ L .

This implies the same bound on the number of leaves �.

Corollary 4.2 (Unimodality) For all γ, ζ > 0, the class M1 of unimodal distribu-

tions on [n] is (γ, ζ, L)-decomposable for L
def= O

(
log2 n

ζ

γ

)
.

Proof For any D ∈ M1, [n] can be partitioned in two intervals I , J such that DI ,
DJ are either monotone non-increasing or non-decreasing. Applying Theorem 4.1 to
DI and DJ and taking the union of both partitions yields a (no longer necessarily
dyadic) partition of [n].

The same argument yields an analogous statement for t-modal distributions:

Corollary 4.3 (t-modality) For any t ≥ 1 and all γ, ζ > 0, the classMt of t-modal

distributions on [n] is (γ, ζ, L)-decomposable for L
def= O

(
t log2 n

ζ

γ

)
.

Corollary 4.4 (Log-concavity, concavity and convexity) For all γ, ζ > 0, the classes
L,K− andK+ of log-concave, concave and convex distributions on [n] are (γ, ζ, L)-

decomposable for L
def= O

(
log2 n

ζ

γ

)
.
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Proof This is directly implied by Corollary 4.2, recalling that log-concave, concave
and convex distributions are unimodal.

Theorem 4.5 (Monotone Hazard Rate) For all γ, ζ > 0, the class MHR of MHR

distributions on [n] is (γ, ζ, L)-decomposable for L
def= O

(
log n

ζ

γ

)
.

Proof This follows from adapting the proof of [15], which establishes that every
MHR distribution can be approximated in �1 distance by a O (log(n/ε)/ε)-
histogram. For completeness, we reproduce their argument, suitably modified to our
purposes, in Appendix B.

Theorem 4.6 (Piecewise Polynomials) For all γ, ζ > 0, t, d ≥ 0, the class Pt,d

of t-piecewise degree-d distributions on [n] is (γ, ζ, L)-decomposable for L
def=

O
(

t (d+1)
γ

log2 n
ζ

)
. (Moreover, for the class of t-histogramsHt (d = 0) one can take

L = t .)

Proof The last part of the statement is obvious, so we focus on the first claim.
Observing that each of the t pieces of a distribution D ∈ Pt,d can be subdivided in
at most d + 1 intervals on which D is monotone (being degree-d polynomial on each
such piece), we obtain a partition of [n] into at most t (d+1) intervals.D being mono-
tone on each of them, we can apply an argument almost identical to that of Theorem
4.1 to argue that each interval can be further split into O(log2 n/γ ) subintervals,
yielding a good decomposition with O(t(d + 1) log2(n/ζ )/γ ) pieces.

4.2 Projection Step: Computing the Distances

This section contains details of the distance estimation procedures for these classes,
required in the last stage of Algorithm 1. (Note that some of these results are phrased
in terms of distance approximation, as estimating the distance �1(D, C) to sufficient
accuracy in particular yields an algorithm for this stage.)

We focus in this section on achieving the sample complexities stated in Corol-
lary 1.2, Corollary 1.3, and Corollary 1.4—that is, our procedures will not require
any additional sample from the distribution. While almost all the distance estima-
tion procedures we give in this section are efficient, running in time polynomial in
all the parameters or even with only a polylogarithmic dependence on n, there are
two exceptions—namely, the procedures for monotone hazard rate (Lemma 4.9) and
log-concave (Lemma 4.10) distributions. We do describe computationally efficient
procedures for these two cases as well in Section 4.2.1, at a modest additive cost
in the sample complexity (that is, these more efficient procedures will require some
additional samples from the distribution).

Lemma 4.7 (Monotonicity [12, Lemma 8]) There exists a procedure
PROJECTIONDISTM that, on input n as well as the full (succinct) specification of
an �-histogram D on [n], computes the (exact) distance �1(D,M) in time poly(�).
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A straightforward modification of the algorithm above (e.g., by adapting the
underlying linear program to take as input the location m ∈ [�] of the mode of the
distribution; then trying all � possibilities, running the subroutine � times and picking
the minimum value) results in a similar claim for unimodal distributions:

Lemma 4.8 (Unimodality) There exists a procedure PROJECTIONDISTM1 that, on
input n as well as the full (succinct) specification of an �-histogram D on [n],
computes the (exact) distance �1(D,M1) in time poly(�).

A similar result can easily be obtained for the class of t-modal distributions as
well, with a poly(�, t)-time algorithm based on a combination of dynamic and lin-
ear programming. Analogous statements hold for the classes of concave and convex
distributions K+,K−, also based on linear programming (specifically, on running
O
(
n2
)
different linear programs—one for each possible support [a, b] ⊆ [n]—and

taking the minimum over them).

Lemma 4.9 (MHR) There exists a (non-efficient) procedure PROJECTIONDISTMHR
that, on input n, ε, as well as the full specification of a distribution D on [n],
distinguishes between �1(D,MHR) ≤ ε and �1(D,MHR) > 2ε in time 2Õε(n).

Lemma 4.10 (Log-concavity) There exists a (non-efficient) procedure
PROJECTIONDISTL that, on input n, ε, as well as the full specification of a dis-
tribution D on [n], distinguishes between �1(D,L) ≤ ε and �1(D,L) > 2ε in

time 2Õε(n).

Proof of Lemma 4.9 and Lemma 4.10 We here give a naive algorithm for these two
problems, based on an exhaustive search over a (huge) ε-cover S of distributions over
[n]. Essentially, S contains all possible distributions whose probabilities p1, . . . , pn

are of the form jε/n, for j ∈ {0, . . . , n/ε} (so that |S| = O ((n/ε)n)). It is not
hard to see that this indeed defines an ε-cover of the set of all distributions, and
moreover that it can be computed in time poly(|S|). To approximate the distance from
an explicit distribution D to the class C (either MHR or L), it is enough to go over
every element S of S, checking (this time, efficiently) if ‖S − D‖1 ≤ ε and if there
is a distribution P ∈ C close to S (this time, pointwise, that is |P(i) − S(i)| ≤ ε/n

for all i)—which also implies ‖S − P ‖1 ≤ ε and thus ‖P − D‖1 ≤ 2ε. The test
for pointwise closeness can be done by checking feasibility of a linear program with
variables corresponding to the logarithm of probabilities, i.e. xi ≡ lnP(i). Indeed,
this formulation allows to rephrase the log-concave and MHR constraints as linear
constraints, and pointwise approximation is simply enforcing that ln(S(i) − ε/n) ≤
xi ≤ ln(S(i) + ε/n) for all i. At the end of this enumeration, the procedure accepts
if and only if for some S both ‖S − D‖1 ≤ ε and the corresponding linear program
was feasible.

Lemma 4.11 (Piecewise Polynomials) There exists a procedure PROJECTIONDISTPt,d

that, on input n as well as the full specification of an �-histogram D on [n],
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computes an approximation � of the distance �1(D,Pt,d ) such that �1(D,Pt,d ) ≤
� ≤ 3�1(D,Pt,d ) + ε, and runs in time O

(
n3
) · poly(�, t, d, 1

ε
).

Moreover, for the special case of t-histograms (d = 0) there exists a procedure
PROJECTIONDISTHt

, which, given inputs as above, computes an approximation �

of the distance �1(D,Ht ) such that �1(D,Ht ) ≤ � ≤ 4�1(D,Ht ) + ε, and runs in
time poly(�, t, 1

ε
), independent of n.

Proof We begin with PROJECTIONDISTHt
. Fix any distribution D on [n]. Given

any explicit partition of [n] into intervals I = (I1, . . . , It ), one can easily show
that ‖D − �(D, I)‖1 ≤ 2OPTI , where OPTI is the optimal distance of D to any
histogram on I (recall that we write�(D, I) for the flattening ofD over the partition
I). To get a 2-approximation of �1(D,Ht ), it thus suffices to find the minimum, over
all possible partitionings I of [n] into t intervals, of the quantity ‖D − �(D, I)‖1
(which itself can be computed in time T = O(min(t�, n))). By a simple dynamic
programming approach, this can be performed in time O

(
tn2 · T

)
. The quadratic

dependence on n, which follows from allowing the endpoints of the t intervals to be
at any point of the domain, is however far from optimal and can be reduced to (t/ε)2,
as we show below.

For η > 0, define an η-granular decomposition of a distribution D over [n] to be
a partition of [n] into s = O (1/η) intervals J1, . . . , Js such that each interval Ji is
either a singleton or satisfies D(Ji) ≤ η. (Note that if D is a known �-histogram,
one can compute an η-granular decomposition of D in time O (�/η) in a greedy
fashion.)

Claim 4.12 LetD be a distribution over [n], and J = (J1, . . . , Js) be an η-granular
decomposition of D (with s ≥ t). Then, there exists a partition of [n] into t intervals
I = (I1, . . . , It ) and a t-histogram H on I such that ‖D − H‖1 ≤ 2�1(D,Ht ) +
2tη, and I is a coarsening of J .

Before proving it, we describe how this will enable us to get the desired time
complexity for PROJECTIONDISTHt

. Phrased differently, the claim above allows us
to run our dynamic program using the O (1/η) endpoints of the O (1/η) instead of
the n points of the domain, paying only an additive error O(tη). Setting η = ε

4t , the
guarantee for PROJECTIONDISTHt

follows.

Proof of Claim 4.12 Let J = (J1, . . . , Js) be an η-granular decomposition of D,
and H ∗ ∈ Ht be a histogram achieving OPT = �1(D,Ht ). Denote further by
I∗ = (I ∗

1 , . . . , I ∗
t ) the partition of [n] corresponding to H ∗. Consider now the

r ≤ t endpoints of the I∗
i ’s that do not fall on one of the endpoints of the Ji’s: let

Ji1 , . . . , Jir be the respective intervals in which they fall (in particular, these cannot
be singleton intervals), and S = ∪r

j=1Jij their union. By definition of η-granularity,

D(S) ≤ tη, and it follows that H ∗(S) ≤ tη + 1
2 OPT. We define H from H ∗ in two

stages: first, we obtain a (sub)distribution H ′ by modifying H ∗ on S, setting for each
x ∈ Jij the value of H to be the minimum value (among the two options) that H ∗
takes on Jij . H

′ is thus a t-histogram, and the endpoints of its intervals are endpoints
of J as wished; but it may not sum to one. However, by construction we have that
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H ′([n]) ≥ 1 − H ∗(S) ≥ 1 − tη − 1
2 OPT. Using this, we can finally define our t-

histogram distribution H as the renormalization of H ′. It is easy to check that H is a
valid t-histogram on a coarsening of J , and

‖D − H‖1 ≤ ‖D − H ′‖1 + (1 − H ′([n])) ≤ ‖D − H ∗‖1 + ‖H ∗ − H ′‖1 + tη

+1

2
OPT ≤ 2OPT + 2tη

as stated.

Turning now to PROJECTIONDISTPt,d
, we apply the same initial dynamic pro-

gramming approach, which will result on a running time of O
(
n2t · T

)
, where T

is the time required to estimate (to sufficient accuracy) the distance of a given
(sub)distribution over an interval I onto the space Pd of degree-d polynomials.
Specifically, we will invoke the following result, adapted from [16] to our setting:

Theorem 4.13 Let p be an �-histogram over [−1, 1). There is an algorithm
PROJECTSINGLEPOLY(d, η) which runs in time poly(�, d + 1, 1/η), and outputs
a degree-d polynomial q which defines a pdf over [−1, 1) such that ‖p − q‖1 ≤
3�1(p,Pd) + O(η).

The proof of this modification of [16, Theorem 9] is deferred to Appendix C.
Applying it as a blackbox with η set to O (ε/t) and noting that computing the �1
distance to our explicit distribution on a given interval of the degree-d polynomial
returned incurs an additional O (n) factor, we obtain the claimed guarantee and
running time.

4.2.1 Computationally Efficient Procedures for Log-Concave and MHR
Distributions

We now describe how to obtain efficient testing for the classes L andMHR—that is,
how to obtain polynomial-time distance estimation procedures for these two classes,
unlike the ones described in the previous section. At a very high-level, the idea is in
both cases to write down a linear program on variables related logarithmically to the
probabilities we are searching, as enforcing the log-concave and MHR constraints on
these new variables can be done linearly. The catch now becomes the �1 objective
function (and, to a lesser extent, the fact that the probabilities must sum to one), now
highly non-linear.

The first insight is to leverage the structure of log-concave (resp. monotone hazard
rate) distributions to express this objective as slightly stronger constraints, specif-
ically pointwise (1 ± ε)-multiplicative closeness, much easier to enforce in our
“logarithmic formulation.” Even so, doing this naively fails, essentially because of
a too weak distance guarantee between our explicit histogram D̂ and the unknown
distribution we are trying to find: in the completeness case, we are only promised
ε-closeness in �1, while we would also require good additive pointwise closeness of
the order ε2 or ε3.
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The second insight is thus to observe that we “almost” have this for free: indeed,
if we do not reject in the first stage of the testing algorithm, we do obtain an explicit
k-histogram D̂ with the guarantee that D is ε-close to the distribution P to test.
However, we also implicitly have another distribution D̂′ that is

√
ε/k-close to P

in Kolmogorov distance: as in the recursive descent we take enough samples to use
the DKW inequality (Theorem 2.11) with this parameter, i.e. an additive overhead of
O (k/ε) samples (on top of the Õ(

√
kn/ε7/2)). If we are willing to increase this over-

head by just a small amount, that is to take Õ
(
max(k/ε, 1/ε4)

)
, we can guarantee

that D̂′ be also Õ
(
ε2
)
-close to P in Kolmogorov distance.

Combining these ideas yield the following distance estimation lemmas:

Lemma 4.14 (MonotoneHazardRate) There exists a procedure PROJECTIONDIST∗
MHR

that, on input n as well as the full specification of a k-histogram distribution D on
[n] and of an �-histogram distribution D′ on [n], runs in time poly(n, 1/ε), and
satisfies the following.

• If there is P ∈ MHR such that ‖D − P ‖1 ≤ ε and ‖D′ − P ‖Kol ≤ ε3, then the
procedure returns yes;

• If �1(D,MHR) > 100ε, then the procedure returns no.

Theorem 4.15 (Log-Concavity) There exists a procedure PROJECTIONDIST∗
L that,

on input n as well as the full specifications of a k-histogram distributionD on [n] and
an �-histogram distribution D′ on [n], runs in time poly(n, k, �, 1/ε), and satisfies
the following.

• If there is P ∈ L such that ‖D − P ‖1 ≤ ε and ‖D′ − P ‖Kol ≤ ε2

log2(1/ε)
, then

the procedure returns yes;
• If �1(D,L) ≥ 100ε, then the procedure returns no.

The proofs of these two lemmas are quite technical and deferred to Appendix C.
With these in hand, a simple modification of our main algorithm (specifically,
setting m = Õ(max(

√
L |I |/ε3, L/ε2, 1/εc)) for c either 4 or 6 instead of

Õ(max(
√

L |I |/ε3, L/ε2)), to get the desired Kolmogorov distance guarantee; and
providing the empirical histogram defined by these m samples along to the distance
estimation procedure) suffices to obtain the following counterpart to Corollary 1.2:

Corollary 4.16 The algorithm TESTSPLITTABLE, after this modification, can effi-
ciently test the classes of log-concave and monotone hazard rate (MHR) distribu-
tions, with respectively Õ

(√
n/ε7/2 + 1/ε4

)
and Õ

(√
n/ε7/2 + 1/ε6

)
samples.

We observe that Lemma 4.14 and Lemma 4.15 actually imply efficient proper
learning algorithms for the classes of respectively MHR and log-concave distri-
butions, with sample complexity O

(
1/ε4

)
and O

(
1/ε6

)
. Along with analogous

subroutines of [3], these were the first proper learning algorithms (albeit with sub-
optimal sample complexity) for these classes. (Subsequent work of Diakonikolas,
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Kane, and Steward [30] recently obtained, through a completely different approach,
a sample-optimal and efficient learning algorithm for the class of log-concave
distributions which is both proper and agnostic.)

5 Going Further: Reducing the Support Size

The general approach we have been following so far gives, out-of-the-box, an
efficient testing algorithm with sample complexity Õ

(√
n
)
for a large range of prop-

erties. However, this sample complexity can for some classesP be brought down a lot
more, by taking advantage in a preprocessing step of good concentration guarantees
of distributions in P .

As a motivating example, consider the class of Poisson Binomial Distributions
(PBD). It is well-known (see e.g. [38, Section 2]) that PBDs are unimodal, and more
specifically that PBDn ⊆ L ⊆ M1. Therefore, using our generic framework we
can test Poisson Binomial Distributions with Õ

(√
n
)
samples. This is, however, far

from optimal: as shown in [2], a sample complexity of �
(
n1/4

)
is both necessary

and sufficient. The reason our general algorithm ends up making quadratically too
many queries can be explained as follows. PBDs are tightly concentrated around
their expectation, so that they “morally” live on a support of size m = O

(√
n
)
. Yet,

instead of testing them on this very small support, in the above we still consider the
entire range [n], and thus end up paying a dependence √

n – instead of
√

m.
If we could use that observation to first reduce the domain to the effective support

of the distribution, then we could call our testing algorithm on this reduced domain
of size O

(√
n
)
. In the rest of this section, we formalize and develop this idea, and

in Section 5.2 will obtain as a direct application a Õ
(
n1/4

)
-query testing algorithm

for PBDn.

Definition 5.1 Given ε > 0, the ε-effective support of a distributionD is the smallest
interval I such that D(I) ≥ 1 − ε.

The last definition we shall require is that of the conditioned distributions of a
class C:

Definition 5.2 For any class of distributions C over [n], define the set of condi-

tioned distributions of C (with respect to ε > 0 and interval I ⊆ [n]) as Cε,I def=
{DI : D ∈ C, D(I) ≥ 1 − ε}.

Finally, we will require the following simple result:

Lemma 5.3 Let D be a distribution over [n], and I ⊆ [n] an interval such that
D(I) ≥ 1 − ε

10 . Then,

• If D ∈ C, then DI ∈ C ε
10 ,I ;
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• If �1(D, C) > ε, then �1(DI , C
ε
10 ,I ) > 7ε

10 .

Proof The first item is obvious. As for the second, let P ∈ C be any distribution with
P(I) ≥ 1 − ε

10 . By assumption, ‖D − P ‖1 > ε: but we have, writing α = 1/10,

‖D − P ‖x1 =
∑

i∈I

∣∣∣∣
D(i)

D(I)
− P(i)

P (I)

∣∣∣∣=
1

D(I)

∑

i∈I

∣∣∣∣D(i) − P(i) + P(i)

(
1− D(I)

P (I)

)∣∣∣∣

≥ 1

D(I)

(
∑

i∈I

|D(i) − P(i)| −
∣∣∣∣1 − D(I)

P (I)

∣∣∣∣
∑

i∈I

P (i)

)

= 1

D(I)

(
∑

i∈I

|D(i) − P(i)| − |P(I) − D(I)|
)

≥ 1

D(I)

(
∑

i∈I

|D(i) − P(i)| − αε

)

≥ 1

D(I)

(

‖D − P ‖1 −
∑

i /∈I

|D(i) − P(i)| − αε

)

≥ 1

D(I)
(‖D − P ‖1 − 3αε)

> (1 − 3α)ε = 7

10
ε.

We now proceed to state and prove our result—namely, efficient testing of
structured classes of distributions with nice concentration properties.

Theorem 5.4 Let C be a class of distributions over [n] for which the following holds.
1. there is a function M(·, ·) such that each D ∈ C has ε-effective support of size at

most M(n, ε);
2. for every ε ∈ [0, 1] and interval I ⊆ [n], Cε,I is (γ, ζ, L)-splittable;
3. there exists an efficient procedure PROJECTIONDISTCε,I which, given as input

the explicit description of a distribution D over [n] and interval I ⊆ [n],
computes the distance �1(DI , Cε,I ).

Then, the algorithm TESTEFFECTIVESPLITTABLE (Algorithm 2) is a O(max( 1
ε3√

m� log m, �

ε2
))-sample tester for C, where m = M(n, ε

60 ) and � = L( ε
1200 ,

ε
1200 , m).

5.1 Proof of Theorem 5.4

By the choice of m and the DKW inequality, with probability at least 23/24 the
estimate D̂ satisfies ‖D − D̂‖Kol ≤ ε

60 . Conditioning on that from now on, we get

that D(I) ≥ D̂(I ) − ε
30 ≥ 1 − ε

10 . Furthermore, denoting by j and k the two inner

endpoints of J andK in Steps 4 and 5, we haveD(J∪{j+1}) ≥ D̂(J∪{j+1})− ε
60 >



28 Theory Comput Syst (2018) 62:4–62

ε
60 (similarly for D(K ∪ {k − 1})), so that I has size at most σ + 1, where σ is the
ε
60 -effective support size of D.

Finally, note that since D(I) = �(1) by our conditioning, the simulation of
samples by rejection sampling will succeed with probability at least 23/24 and the
algorithm will not output fail.

Sample Complexity The sample complexity is the sum of the O
(
1/ε2

)
in Step 3

and the O (q) in Step 11. From Theorem 1.1 and the choice of I , this lat-

ter quantity is O
(
max

(
1
ε3

√
m� logm, �

ε2

))
where m = M(n, ε

60 ) and � =
L( ε

1200 ,
ε

1200 , M(n, ε
60 )).

Correctness If D ∈ C, then by the setting of τ (set to be an upper bound on the ε
60 -

effective support size of any distribution in C) the algorithm will go beyond Step 6.
The call to TESTSPLITTABLE will then end up in the algorithm returning accept in
Step 12, with probability at least 2/3 by Lemma 5.3, Theorem 1.1 and our choice of
parameters.

Similarly, ifD is ε-far from C, then either its effective support is too large (and then
the test on Step 6 fails), or the main tester will detect that its conditional distribution
on I is 7ε

10 -far from C and output reject in Step 12.
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Overall, in either case the algorithm is correct except with probability at most
1/24 + 1/24 + 1/3 = 5/12 (by a union bound). Repeating constantly many times
and outputting the majority vote brings the probability of failure down to 1/3.

5.2 Application: Testing Poisson Binomial Distributions

In this section, we illustrate the use of our generic two-stage approach to test the class
of Poisson Binomial Distributions. Specifically, we prove the following result:

Corollary 5.5 The class of Poisson Binomial Distributions can be tested with
Õ
(
n1/4/ε7/2

) + Õ
(
log2 n/ε3

)
samples, using Algorithm 2.

This is a direct consequence of Theorem 5.4 and the lemmas below. The first one
states that, indeed, PBDs have small effective support:

Fact 5.6 For any ε > 0, a PBD has ε-effective support of size O
(√

n log(1/ε)
)
.

Proof By an additive Chernoff Bound, any random variable X following a Poisson

Binomial Distribution has Pr[ |X − EX| > γn ] ≤ 2e−2γ 2n. Taking γ
def=

√
1
2n ln 2

ε
,

we get that Pr[X ∈ I ] ≥ 1 − ε, where I
def= [EX −

√
n
2 ln

2
ε
,EX +

√
n
2 ln

2
ε
].

It is clear that if D ∈ PBDn (and therefore is unimodal), then for any interval I ⊆
[n] the conditional distribution DI is still unimodal, and thus the class of conditioned

PBDs PBDε,I
n

def= {DI : D ∈ PBDn, D(I) ≥ 1 − ε} falls under Corollary 4.2. The
last piece we need to apply our generic testing framework is the existence of an
algorithm to compute the distance between an (explicit) distribution and the class of
conditioned PBDs. This is provided by our next lemma:

Claim 5.7 There exists a procedure PROJECTIONDISTPBDε,I
n

that, on input n and
ε ∈ [0, 1], I ⊆ [n] as well as the full specification of a distribution D on
[n], computes a value τ such that τ ∈ [1 ± 2ε] · �1(D,PBDε,I

n ) ± ε
100 , in time

n2 (1/ε)O(log 1/ε).

Proof The goal is to find a γ = �(ε)-approximation of the minimum value of
∑

i∈I

∣∣∣ P(i)
P (I)

− D(i)
D(I)

∣∣∣, subject to P(I) = ∑
i∈I P (i) ≥ 1 − ε and P ∈ PBDn. We

first note that, given the parameters n ∈ N and p1, . . . , pn ∈ [0, 1] of a PBD P ,
the vector of (n + 1) probabilities P(0), . . . , P (n) can be obtained in time O

(
n2
)

by dynamic programming. Therefore, computing the �1 distance between D and
any PBD with known parameters can be done efficiently. To conclude, we invoke a
result of Diakonikolas, Kane, and Stewart, that guarantees the existence of a succinct
(proper) cover of PBDn:

Theorem 5.8 ([31, Theorem 4] (rephrased)) For all n, γ > 0, there exists a set
Sγ ⊆ PBDn such that:
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(i) Sγ is a γ -cover ofPBDn; that is, for allD ∈ PBDn there exists someD′ ∈ Sγ

such that ‖D − D′‖1 ≤ γ

(ii)
∣∣Sγ

∣∣ ≤ n (1/γ )O(log 1/γ )

(iii) Sγ can be computed in time n (1/γ )O(log 1/γ )

and each D ∈ Sγ is explicitly described by its set of parameters.

We further observe that the factor n in both the size of the cover and running time can
be easily removed in our case, as we know a good approximation of the support size
of the candidate PBDs. (That is, we only need to enumerate over a subset of the cover
of [31], that of the PBDs with effective support compatible with our distribution D.)

Set γ
def= ε

250 . Fix P ∈ PBDn such that P(I) ≥ 1 − ε, and Q ∈ Sγ such that
‖P − Q‖1 ≤ γ . In particular, it is easy to see via the correspondence between �1 and
total variation distance that |P(I) − Q(I)| ≤ γ /2. By a calculation similar to that
of Lemma 5.3, we have

‖PI − QI‖1 =
∑

i∈I

∣∣∣∣
P(i)

P (I)
− Q(i)

Q(I)

∣∣∣∣=
∑

i∈I

∣∣∣∣
P(i)

P (I)
− Q(i)

P (I)
+ Q(i)

(
1

P(I)
− 1

Q(I)

)∣∣∣∣

=
∑

i∈I

∣∣∣∣
P(i)

P (I)
− Q(i)

P (I)

∣∣∣∣ ±
∑

i∈I

Q(i)

∣∣∣∣
1

P(I)
− 1

Q(I)

∣∣∣∣

= 1

P(I)

(
∑

i∈I

|P(i) − Q(i)| ± |P(I) − Q(I)|
)

= 1

P(I)

(
∑

i∈I

|P(i) − Q(i)| ± γ

2

)

= 1

P(I)

(
‖P − Q‖1 ± 5γ

2

)

∈ [‖P − Q‖1 − 5γ /2, (1 + 2ε) (‖P − Q‖1 + 5γ /2)]

where we used the fact that
∑

i /∈I |P(i) − Q(i)| = 2(
∑

i /∈I : P(i)>Q(i)(P (i)−
Q(i))) + Q(I) − P(I) ∈ [−2γ, 2γ ]. By the triangle inequality, this implies that the
minimum of ‖PI − DI‖1 over the distributions P of Sε with P(I) ≥ 1 − (ε + γ /2)
will be within an additive O (ε) of �1(D,PBDε,I

n ). The fact that the former can be
found (by enumerating over the cover of size (1/ε)O(log 1/ε) by the above discussion,
and for each distribution in the cover computing the vector of probabilities and the
distance to D) in time O(n2) · |Sε| = n2 · (1/ε)O(log 1/ε) concludes the proof.

As previously mentioned, this approximation guarantee for �1(D,PBDε,I
n ) is

sufficient for the purpose of Algorithm 1.

Proof of Corollary 5.5 Combining the above, we invoke Theorem 5.4 with

M(n, ε) = O(
√

n log(1/ε)) (Fact 5.6) and L(γ, ζ, m) = O
(
1
γ
log2 m

ζ

)
(Corol-

lary 4.2). This yields the claimed sample complexity; finally, the efficiency is a direct
consequence of Claim 5.7.
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6 Lower Bounds

6.1 Reduction-Based Lower Bound Approach

We now turn to proving converses to our positive results—namely, that many of the
upper bounds we obtain cannot be significantly improved upon. As in our algorith-
mic approach, we describe for this purpose a generic framework for obtaining lower
bounds.

In order to state our results, we will require the usual definition of agnostic learn-
ing. Recall that an algorithm is said to be a semi-agnostic learner for a class C if it
satisfies the following. Given sample access to an arbitrary distribution D and param-
eter ε, it outputs a hypothesis D̂ which (with high probability) does “almost as well
as it gets”:

‖D − D̂‖1 ≤ c · OPTC,D + O (ε)

where OPTC,D
def= infD′∈C �1(D

′, D), and c ≥ 1 is some absolute constant (if c = 1,
the learner is said to be agnostic).

High-Level Idea The motivation for our result is the observation of [12] that “mono-
tonicity is at least as hard as uniformity.” Unfortunately, their specific argument does
not generalize easily to other classes of distributions, making it impossible to extend
it readily. The starting point of our approach is to observe that while uniformity test-
ing is hard in general, it becomes very easy under the promise that the distribution is
monotone, or even only close to monotone (namely, O

(
1/ε2

)
samples suffice.)7 This

can give an alternate proof of the lower bound for monotonicity testing, via a differ-
ent reduction: first, test if the unknown distribution is monotone; if it is, test whether
it is uniform, now assuming closeness to monotone.

More generally, this idea applies to any class C which (a) contains the uniform
distribution, and (b) for which we have a o

(√
n
)
-sample agnostic learner L, as fol-

lows. Assuming we have a tester T for C with sample complexity o
(√

n
)
, define a

uniformity tester as below.

• test if D ∈ C using T ; if not, reject (as U ∈ C, D cannot be uniform);
• otherwise, agnostically learn D with L (since D is close to C), and obtain

hypothesis D̂;
• check offline if D̂ is close to uniform.

By assumption, T and L each use o
(√

n
)
samples, so does the whole process; but

this contradicts the lower bound of [11, 42] on uniformity testing. Hence, T must use
�
(√

n
)
samples.

This “testing-by-narrowing” reduction argument can be further extended to other
properties than to uniformity, as we show below:

7Indeed, it is not hard to show that a monotone distribution can only be ε-far from uniform if it puts
probability weight 1/2 + � (ε) on the first half of the domain. Estimating this probability weight to an
additive O(ε) is thus sufficient to conclude.
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Theorem 6.1 Let C be a class of distributions over [n] for which the following holds:
(i) there exists a semi-agnostic learner L for C, with sample complexity qL(n, ε, δ)

and “agnostic constant” c;
(ii) there exists a subclass CHard ⊆ C such that testing CHard requires qH (n, ε)

samples.

Suppose further that qL(n, ε, 1/6) = o (qH (n, ε)). Then, any tester for C must use
�(qH (n, ε)) samples.

Proof The above theorem relies on the reduction outlined above, which we rigor-
ously detail here. Assuming C, CHard,L as above (with semi-agnostic constant c ≥ 1),
and a tester T for C with sample complexity qT (n, ε), we define a tester THard for
CHard. On input ε ∈ (0, 1] and given sample access to a distribution D on [n], THard
acts as follows:

• call T with parameters n, ε′
c
(where ε′ def= ε

3 ) and failure probability 1/6, to
ε′
c
-test if D ∈ C. If not, reject.

• otherwise, agnostically learn a hypothesis D̂ for D, with L called with parame-
ters n, ε′ and failure probability 1/6;

• check offline if D̂ is ε′-close to CHard, accept if and only if this is the case.
We condition on both calls (to T and L) to be successful, which overall happens with
probability at least 2/3 by a union bound. The completeness is immediate: if D ∈
CHard ⊆ C, T accepts, and the hypothesis D̂ satisfies ‖D̂ − D‖1 ≤ ε′. Therefore,
�1(D̂, CHard) ≤ ε′, and THard accepts.

For the soundness, we proceed by contrapositive. Suppose THard accepts; it means
that each step was successful. In particular, �1(D̂, C) ≤ ε′/c; so that the hypoth-
esis outputted by the agnostic learner satisfies ‖D̂ − D‖1 ≤ c · OPT + ε′ ≤ 2ε′.
In turn, since the last step passed and by a triangle inequality we get, as claimed,
�1(D, CHard) ≤ 2ε′ + �1(D̂, CHard) ≤ 3ε′ = ε.

Observing that the overall sample complexity is qT (n, ε′
c
) + qL(n, ε′, 1

6 ) =
qT (n, ε′

c
) + o

(
qH (n, ε′)

)
concludes the proof.

Taking CHard to be the singleton consisting of the uniform distribution, and from
the semi-agnostic learners of [15, 16] (each with sample complexity either poly(1/ε)
or poly(log n, 1/ε)), we obtain the following:8

Corollary 1.6 Testing log-concavity, convexity, concavity, MHR, unimodality,
t-modality, t-histograms, and t-piecewise degree-d distributions each require
�
(√

n/ε2
)
samples (the last three for t = o(

√
n) and t (d + 1) = o(

√
n),

respectively), for any ε ≥ 1/nO(1).

8Specifically, these lower bounds hold as long as ε = � (1/nα) for some absolute constant α > 0 (so that
the sample complexity of the agnostic learner is indeed negligible in front of

√
n/ε2).
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Similarly, we can use another result of [23] which shows how to agnostically learn
Poisson Binomial Distributions with Õ

(
1/ε2

)
samples.9 Taking CHard to be the single

Bin(n, 1/2) distribution (along with the testing lower bound of [53]), this yields the
following:

Corollary 1.7 Testing the classes of Binomial and Poisson Binomial Distributions
each require �

(
n1/4/ε2

)
samples, for any ε ≥ 1/nO(1).

Finally, we derive a lower bound on testing k-SIIRVs from the agnostic learner of [21]
(which has sample complexity poly(k, 1/ε), independent of n):

Corollary 1.8 There exist absolute constants c > 0 and ε0 > 0 such that testing the
class of k-SIIRV distributions requires �

(
k1/2n1/4/ε2

)
samples, for any k = o (nc)

and 1/nO(1) ≤ ε ≤ ε0.

Proof of Corollary 1.8 To prove this result, it is enough by Theorem 6.1 to exhibit
a particular k-SIIRV S such that testing identity to S requires this many samples.
Moreover, from [53] this last part amounts to proving that the (truncated) 2/3-norm
‖S−max−ε ‖2/3 of S is �

(
k1/2n1/4

)
(for every ε ∈ (0, ε0), for some small ε0 > 0).

Our hard instance S will be defined as follows: it is defined as the distribution of
X1 + · · · + Xn, where the Xi’s are independent integer random variables uniform
on {0, . . . , k − 1} (in particular, for k = 2 we get a Bin(n, 1/2) distribution). It is

straightforward to verify that ES = n(k−1)
2 and σ 2 def= Var S = (k2−1)n

12 = �
(
k2n

)
;

moreover, S is log-concave (as the convolution of n uniform distributions). From
this last point, we get that (i) the maximum probability of S, attained at its mode, is
‖S‖∞ = �(1/σ); and (ii) for every j in an interval I of length 2σ centered at this
mode, S(j) ≥ �(‖S‖∞) (see e.g. [29, Lemma 5.7] for the latter point). Define now
ε0 as an absolute constant such that 2ε0 ≤ D(I) = �(1).

We want to lower bound ‖S−max−ε ‖2/3, for ε ≤ ε0; as by the above the “−max” part
can only change the value by ‖S‖∞ = o(1), we can ignore it. Turning to the −ε part,
i.e. the removal of the ε probability mass of the elements with smallest probability,
note that this can only result in zeroing out at most ε

D(I)
|I | ≤ 1

2 |I | elements in I

(call these Jε ⊆ I ). From this, we obtain that

‖S−max−ε ‖2/3 ≥
⎛

⎝
∑

j∈I\Jε

S(j)2/3

⎞

⎠

3/2

≥
(
1

2
· 2σ · �(1/σ)2/3

)3/2

= �
(
σ 1/2

)

= �
(
k1/2n1/4

)

9Note the quasi-quadratic dependence on ε of the learner, which allows us to get ε into our lower bound
for n 
 poly log(1/ε).
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which concludes the proof.

6.2 Tolerant Testing

This lower bound framework from the previous section carries to tolerant testing as
well, resulting in this analogue to Theorem 6.1:

Theorem 6.2 Let C be a class of distributions over [n] for which the following holds:
(i) there exists a semi-agnostic learner L for C, with sample complexity qL(n, ε, δ)

and “agnostic constant” c;
(ii) there exists a subclass CHard ⊆ C such that tolerant testing CHard requires

qH (n, ε1, ε2) samples for some parameters ε2 > (4c + 1)ε1.

Suppose further that qL(n, ε2 − ε1, 1/10) = o (qH (n, ε1, ε2)). Then, any toler-
ant tester for C must use �(qH (n, ε1, ε2)) samples (for some explicit parameters
ε′
1, ε

′
2).

Proof The argument follows the same ideas as for Theorem 6.1, up to the details of
the parameters. Assuming C, CHard, L as above (with semi-agnostic constant c ≥ 1),
and a tolerant tester T for C with sample complexity q(n, ε1, ε2), we define a tolerant
tester THard for CHard. On input 0 < ε1 < ε2 ≤ 1 with ε2 > (4c + 1)ε1, and
given sample access to a distribution D on [n], THard acts as follows. After setting

ε′
1
def= ε2−ε1

4 , ε′
2
def= ε2−ε1

2 , ε′ def= ε2−ε1
16 and τ

def= 6ε2+10ε1
16 ,

• call T with parameters n,
ε′
1
c
,

ε′
2
c
and failure probability 1/6, to tolerantly test if

D ∈ C. If �1(D, C) > ε′
2/c, reject.

• otherwise, agnostically learn a hypothesis D̂ for D, with L called with parame-
ters n, ε′ and failure probability 1/6;

• check offline if D̂ is τ -close to CHard, accept if and only if this is the case.
We condition on both calls (to T and L) to be successful, which overall happens
with probability at least 2/3 by a union bound. We first argue completeness: assume
�1(D, CHard) ≤ ε1. This implies �1(D, C) ≤ ε1, so that T accepts as ε1 ≤ ε′

1/c

(which is the case because ε2 > (4c + 1)ε1). Thus, the hypothesis D̂ satisfies
‖D̂ − D‖1 ≤ c · ε′

1/c + ε′ = ε′
1 + ε′. Therefore, �1(D̂, CHard) ≤ ‖D̂ − D‖1 +

�1(D, CHard) ≤ ε′
1 + ε′ + ε1 < τ , and THard accepts.

For the soundness, we again proceed by contrapositive. Suppose THard accepts;
it means that each step was successful. In particular, �1(D̂, C) ≤ ε′

2/c; so that the
hypothesis outputted by the agnostic learner satisfies ‖D̂ − D‖1 ≤ c · OPT + ε′ ≤
ε′
2 + ε′. In turn, since the last step passed and by a triangle inequality we get, as
claimed, �1(D, CHard) ≤ ε′

2 + ε′ + �1(D̂, CHard) ≤ ε′
2 + ε′ + τ < ε2.

Observing that the overall sample complexity is qT (n,
ε′
1
c
,

ε′
2
c
) + qL(n, ε′, 1

10 ) =
qT (n, ε′

c
) + o

(
qH (n, ε′)

)
concludes the proof.
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As before, we instantiate the general theorem to obtain specific lower bounds
for tolerant testing of the classes we covered in this paper. That is, taking CHard to
be the singleton consisting of the uniform distribution (combined with the tolerant
testing lower bound of [50] (restated in Theorem D.3), which states that tolerant

testing of uniformity over [n] requires �
(

n
log n

)
samples), and again from the semi-

agnostic learners of [15, 16] (each with sample complexity either poly(1/ε) or
poly(log n, 1/ε)), we obtain the following:

Corollary 1.11 Tolerant testing of log-concavity, convexity, concavity, MHR, uni-

modality, and t-modality can be performed with O
(

1
(ε2−ε1)

2
n

log n

)
samples, for ε2 ≥

Cε1 (where C > 2 is an absolute constant).

Similarly, we again turn to the class of Poisson Binomial Distributions, for which
we can invoke as before the Õ

(
1/ε2

)
-sample agnostic learner of [23]. As before,

we would like to choose for CHard the single Bin(n, 1/2) distribution; however,
as no tolerant testing lower bound for this distribution exists—to the best of our
knowledge—in the literature, we first need to establish the lower bound we will rely
upon:

Theorem 6.3 There exists an absolute constant ε0 > 0 such that the following holds.
Any algorithm which, given sampling access to an unknown distribution D on �

and parameter ε ∈ (0, ε0), distinguishes with probability at least 2/3 between (i)

‖D − Bin(n, 1/2)‖1 ≤ ε and (ii) ‖D − Bin(n, 1/2)‖1 ≥ 100ε must use �
(
1
ε

√
n

log n

)

samples.

The proof relies on a reduction from tolerant testing of uniformity, drawing on a
result of Valiant and Valiant [50]; for the sake of conciseness, the details are deferred
to Appendix D. With Theorem 6.3 in hand, we can apply Theorem 6.2 to obtain the
desired lower bound:

Corollary 1.12 Tolerant testing of the classes of Binomial and Poisson Binomial

Distributions can be performed withO

(
1

(ε2−ε1)
2

√
n log(1/ε1)
log n

)
samples, for ε2 ≥ Cε1

(where C > 2 is an absolute constant).

We observe that both Corollary 1.11 and Corollary 1.12 are tight (with regard to
the dependence on n), as proven in the next section (Section 7).

7 A Generic Tolerant Testing Upper Bound

To conclude this work, we address the question of tolerant testing of distribution
classes. In the same spirit as before, we focus on describing a generic approach to



36 Theory Comput Syst (2018) 62:4–62

obtain such bounds, in a clean conceptual manner. The most general statement of the
result we prove in this section is stated below, which we then instantiate to match the
lower bounds from Section 6.2:

Theorem 7.1 Let C be a class of distributions over [n] for which the following holds:
(i) there exists a semi-agnostic learner L for C, with sample complexity qL(n, ε, δ)

and “agnostic constant” c;
(ii) for any η ∈ [0, 1], every distribution in C has η-effective support of size at most

M(n, η).

Then, there exists an algorithm that, for any fixed κ > 1 and on input ε1, ε2 ∈ (0, 1)
such that ε2 ≥ Cε1, has the following guarantee (where C > 2 depends on c and κ

only). The algorithm takesO
(

1
(ε2−ε1)

2
m

logm

)
+qL(n,

ε2−ε1
κ

, 1
10 ) samples (wherem =

M(n, ε1)), and with probability at least 2/3 distinguishes between (a) �1(D, C) ≤ ε1
and (b) �1(D, C) > ε2. (Moreover, one can take C = (1 + (5c + 6) κ

κ−1 ).)

Corollary 1.9 Tolerant testing of log-concavity, convexity, concavity, MHR, uni-

modality, and t-modality can be performed with O
(

1
(ε2−ε1)

2
n

log n

)
samples, for ε2 ≥

Cε1 (where C > 2 is an absolute constant).

Applying now the theoremwithM(n, ε) = √
n log(1/ε) (as per Corollary 5.5), we

obtain an improved upper bound for Binomial and Poisson Binomial distributions:

Corollary 1.10 Tolerant testing of the classes of Binomial and Poisson Binomial

Distributions can be performed withO

(
1

(ε2−ε1)
2

√
n log(1/ε1)
log n

)
samples, for ε2 ≥ Cε1

(where C > 2 is an absolute constant).

High-Level Idea Somewhat similar to the lower bound framework developed
in Section 6, the gist of the approach is to reduce the problem of tolerant testing
membership of D to the class C to that of tolerant testing identity to a known dis-
tribution—namely, the distribution D̂ obtained after trying to agnostically learn D.
Intuitively, an agnostic learner for C should result in a good enough hypothesis D̂

(i.e., D̂ close enough to both D and C) when D is ε1-close to C; but output a D̂

that is significantly far from either D or C when D is ε2-far from C—sufficiently
for us to be able to tell. Besides the many technical details one has to control for
the parameters to work out, one key element is the use of a tolerant testing algo-
rithm for closeness of two distributions due to [52], whose (tight) sample complexity
scales as n/ log n for a domain of size n. In order to get the right dependence on
the effective support (required in particular for Corollary 1.10), we have to per-
form a first test to identify the effective support of the distribution and check its
size, in order to only call this tolerant closeness testing algorithm on this much
smaller subset. (This additional preprocessing step itself has to be carefully done, and
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comes at the price of a slightly worse constant C = C(c, κ) in the statement of the
theorem.)

7.1 Proof of Theorem 7.1

As described in the preceding section, the algorithmwill rely on the ability to perform
tolerant testing of equivalence between two unknown distributions (over some known
domain of size m). This is ensured by an algorithm of Valiant and Valiant, restated
below:

Theorem 7.2 ([52, Theorem 3 and 4]) There exists an algorithm E which, given sam-
pling access to two unknown distributions D1, D2 over [m], satisfies the following.
On input ε ∈ (0, 1], it takesO( 1

ε2
m

logm
) samples fromD1 andD2, and outputs a value

� such that |‖D1 − D2‖1 − �| ≤ ε with probability 1 − 1/poly(m). (Furthermore,
E runs in time poly(m).)

For the proof, we will also need this fact, similar to Lemma 5.3, which relates the
distance of two distributions to that of their conditional distributions on a subset of
the domain:

Fact 7.3 Let D and P be distributions over [n], and I ⊆ [n] an interval such that
D(I) ≥ 1 − α and P(I) ≥ 1 − β. Then,

• ‖DI − PI‖1 ≤ 3
2

‖D−P‖1
D(I)

≤ 3‖D − P ‖1 (the last inequality for α ≤ 1
2 ); and• ‖DI − PI‖1 ≥ ‖D − P ‖1 − 2(α + β).

Proof To establish the first item, write:

‖DI − PI‖1 =
∑

i∈I

∣∣∣∣
D(i)

D(I)
− P(i)

P (I)

∣∣∣∣=
1

D(I)

∑

i∈I

∣∣∣∣D(i) − P(i) + P(i)

(
1− D(I)

P (I)

)∣∣∣∣

≤ 1

D(I)

(
∑

i∈I

|D(i) − P(i)| +
∣∣∣∣1 − D(I)

P (I)

∣∣∣∣
∑

i∈I

P (i)

)

= 1

D(I)

(
∑

i∈I

|D(i) − P(i)| + |P(I) − D(I)|
)

≤ 1

D(I)

(
∑

i∈I

|D(i) − P(i)| + 1

2
‖D − P ‖1

)

≤ 1

D(I)
· 3
2
‖D − P ‖1
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where we used the fact that |P(I) − D(I)| ≤ dTV(D, P ) = 1
2‖D − P ‖1. Turning

now to the second item, we have:

‖DI − PI‖1 = 1

D(I)

∑

i∈I

∣∣∣∣D(i) − P(i) + P(i)

(
1 − D(I)

P (I)

)∣∣∣∣

≥ 1

D(I)

(
∑

i∈I

|D(i) − P(i)| −
∣∣∣∣1 − D(I)

P (I)

∣∣∣∣
∑

i∈I

P (i)

)

= 1

D(I)

(
∑

i∈I

|D(i) − P(i)| − |P(I) − D(I)|
)

≥ 1

D(I)

(
∑

i∈I

|D(i) − P(i)| − (α + β)

)

≥ 1

D(I)

(

‖D − P‖1 −
∑

i /∈I

|D(i) − P(i)| − (α + β)

)

≥ 1

D(I)
(‖D − P ‖1 − 2(α + β))

≥ ‖D − P ‖1 − 2(α + β).

With these two ingredients, we are in position to establish our theorem:

Proof of Theorem 7.1 The algorithm proceeds as follows, where we set ε
def= ε2−ε1

17κ ,

θ
def= ε2 − ((6 + c)ε1 + 11ε), and τ

def= 2 (3+c)ε1+5ε
2 :

(1) using O( 1
ε2

) samples, get (with probability at least 1− 1/10, by Theorem 2.11)

a distribution D̃ ε
2 -close to D in Kolmogorov distance; and let I ⊆ [n] be the

smallest interval such that D̃(I ) > 1− 3
2ε1−ε. Output reject if |I | > M(n, ε1).

(2) invoke L on D with parameters ε and failure probability 1
10 , to obtain a

hypothesis D̂;
(3) call E (from Theorem 7.2) on DI , D̂I with parameter ε

6 to get an estimate �̂ of

‖DI − D̂I‖1;
(4) output reject if D̂(I ) < 1 − τ ;
(5) compute “offline” (an estimate accurate within ε of) �1(D̂, C), denoted �;
(6) output reject is � + �̂ > θ , and output accept otherwise.

The claimed sample complexity is immediate from Steps (2) and (3), along with The-
orem 7.2. Turning to correctness, we condition on both subroutines meeting their
guarantee (i.e., ‖D − D̂‖1 ≤ c · OPT + ε and ‖D − D̂‖1 ∈ [�̂ − ε, �̂ + ε]), which
happens with probability at least 8/10 − 1/poly(n) ≥ 3/4 by a union bound.
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Completeness If �1(D, C) ≤ ε1, then D is ε1-close to some P ∈ C, for which there
exists an interval J ⊆ [n] of size at mostM(n, ε1) such that P(J ) ≥ 1−ε1. It follows
that D(J ) ≥ 1 − 3

2ε1 (since |D(J ) − P(J )| ≤ ε1
2 ) and D̃(J ) ≥ 1 − 3

2ε1 − 2 · ε
2ε;

establishing existence of a good interval I to be found (and Step (1) does not end
with reject). Additionally, ‖D − D̂‖1 ≤ c · ε1 + ε and by the triangle inequality this
implies �1(D̂, C) ≤ (1 + c)ε1 + ε.

Moreover, as D(I) ≥ D̃(I ) − 2 · ε
2 ≥ 1 − 3

2ε1 − 2ε and
∣∣∣D̂(I ) − D(I)

∣∣∣ ≤
1
2‖D − D̂‖1, we do have

D̂(I ) ≥ 1 − 3

2
ε1 − 2ε − cε1

2
− ε

2
= 1 − τ

and the algorithm does not reject in Step (4). To conclude, one has by Fact 7.3 that

‖DI − D̂I‖1 7 ≤ 3

2

‖D − D̂‖1
D(I)

≤ 3

2

(cε1 + ε)

1 − 3
2ε1 − 2ε

≤ 3(cε1 + ε) (for ε1 < 1/4, as ε < 1/17)

Therefore, � + �̂ ≤ �1(D̂, C) + ε + ‖DI − D̂I‖1 + ε ≤ (4c + 1)ε1 + 6ε ≤ ε2 −
((6+ c)ε1 +11ε) = θ (the last inequality by the assumption on ε2, ε1), and the tester
accepts.

Soundness If �1(D, C) > ε2, then we must have ‖D − D̂‖1 + �1(D̂, C) > ε2. If the
algorithm does not already reject in Step (4), then D̂(I ) ≥ 1 − τ . But, by Fact 7.3,

‖DI −D̂I‖1 ≥ ‖D−D̂‖1−2(D(I c) + D̂(I c))≥‖DI −D̂I‖1 − 2

(
3

2
ε1 + 2ε + τ

)

= ‖D − D̂‖1 − ((6 + c)ε1 + 9ε)

we then have ‖DI − D̂I‖1+�1(D̂, C) > ε2−((6+c)ε1+9ε). This implies �+�̂ >

ε2−((6+c)ε1+9ε)−2ε = ε2−((6+c)ε1+11ε) = θ , and the tester rejects. Finally,
the testing algorithm defined above is computationally efficient as long as both the
learning algorithm (Step (2)) and the estimation procedure (Step (5)) are.
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Appendix A: Proof of Lemma 2.10

We now give the proof of Lemma 2.10, restated below:

Lemma 2.10 (Adapted from [28, Theorem 11]) There exists an algorithm CHECK-
SMALL-�2 which, given parameters ε, δ ∈ (0, 1) and c · √|I |/ε2 log(1/δ) indepen-
dent samples from a distributionD over I (for some absolute constant c > 0), outputs
either yes or no, and satisfies the following.
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• If ‖D − UI‖2 > ε/
√|I |, then the algorithm outputs no with probability at least

1 − δ;
• If ‖D − UI‖2 ≤ ε/2

√|I |, then the algorithm outputs yes with probability at
least 1 − δ.

Proof We first describe an algorithm that distinguishes between ‖D − U‖22 ≥ ε2/n

and ‖D − U‖22 < ε2/(2n) with probability at least 2/3, using C ·
√

n

ε2
samples. Boost-

ing the success probability to 1 − δ at the price of a multiplicative log 1
δ
factor can

then be achieved by standard techniques.
Similarly as in the proof of Theorem 11 (whose algorithm we use, but with a

threshold τ
def= 3

4
m2ε2

n
instead of 4m√

n
), define the quantities

Zk
def=

(
Xk − m

n

)2 − Xk, k ∈ [n]

and Z
def= ∑n

k=1 Zk , where the Xk’s (and thus the Zk’s) are independent by Pois-
sonization, and Xk ∼ Poisson(mD(k)). It is not hard to see that EZk = �2

k , where

�k
def= ( 1

n
− D(k)), so that EZ = m2‖D − U‖22. Furthermore, we also get

Var Zk = 2m2
(
1

n
− �k

)2

+ 4m3
(
1

n
− �k

)
�k

so that

Var Z = 2m2

(
n∑

k=1

�2
k + 1

n
− 2m

n∑

k=1

�3
k

)

(2)

(after expanding and since
∑n

k=1 �k = 0).

Soundness Almost straight from [28], but the threshold has changed.Assume �2 def=
‖D − U‖22 ≥ ε2/n; we will show that Pr[Z < τ ] ≤ 1/3. By Chebyshev’s inequality,
it is sufficient to show that τ ≤ EZ − √

3
√
Var Z, as

Pr
[
EZ − Z >

√
3
√
Var Z

]
≤ 1/3 .

As τ < 3
4EZ, arguing that

√
3
√
Var Z ≤ 1

4EZ is enough, i.e. that 48 VarZ ≤ (EZ)2.
From (2), this is equivalent to showing

�2 + 1

n
− 2m

n∑

k=1

�3
k ≤ m2�4

96
.

We bound the LHS term by term.

• As �2 ≥ ε2

n
, we get m2�2 ≥ C2

ε2
, and thus m2�4

288 ≥ C2

288ε2
�2 ≥ �2 (as C ≥ 17

and ε ≤ 1).
• Similarly, m2�4

288 ≥ C2

288ε2
· ε2

n
≥ 1

n
.
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• Finally, recalling that10

n∑

k=1

|�k|3 ≤
(

n∑

k=1

|�k|2
)3/2

= �3

we get that
∣∣2m

∑n
k=1 |�k|3

∣∣ ≤ 2m�3 = m2�4

288 · 2·288
m�

≤ m2�4

288 , using the fact
that m�

2·288 ≥ C
576ε ≥ 1 (by choice of C ≥ 576).

Overall, the LHS is at most 3 · m2�4

288 = m2�4

96 , as claimed.

Completeness Assume �2 = ‖D − U‖22 < ε2/(4n). We need to show that
Pr[Z ≥ τ ] ≤ 1/3. Chebyshev’s inequality implies

Pr
[
Z − EZ >

√
3
√
Var Z

]
≤ 1/3

and therefore it is sufficient to show that

τ ≥ EZ + √
3
√
Var Z

Recalling the expressions of EZ and Var Z from (2), this is tantamount to showing

3

4

m2ε2

n
≥ m2�2 + √

6m

√√√√�2 + 1

n
− 2m

n∑

k=1

�3
k

or equivalently

3

4

m√
n
ε2 ≥ m

√
n�2 + √

6

√√√√1 + n�2 − 2nm

n∑

k=1

�3
k .

Since
√
1 + n�2 − 2nm

∑n
k=1 �3

k ≤ √
1 + n�2 ≤ √

1 + ε2/4 ≤ √
5/4, we get that

the second term is at most
√
30/4 < 3. All that remains is to show that m

√
n�2 ≥

3m ε2

4
√

n
− 3. But as �2 < ε2/(4n), m

√
n�2 ≤ m ε2

4
√

n
; and our choice of m ≥ C ·

√
n

ε2

for some absolute constant C ≥ 6 ensures this holds.

Appendix B: Proof of Theorem 4.5

In this section, we prove our structural result for MHR distributions, Theorem 4.5:

10For any sequence x = (x1, . . . , xn) ∈ R
n, p > 0 �→ ‖x‖p is non-increasing. In particular, for 0 < p ≤

q < ∞, (
∑

i

|xi |q
)1/q

= ‖x‖q ≤ ‖x‖p =
(
∑

i

|xi |p
)1/p

.

To see why, one can easily prove that if ‖x‖p = 1, then ‖x‖q
q ≤ 1 (bounding each term |xi |q ≤ |xi |p),

and therefore ‖x‖q ≤ 1 = ‖x‖p . Next, for the general case, apply this to y = x/‖x‖p , which has unit �p

norm, and conclude by homogeneity of the norm.
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Theorem 4.5 (Monotone Hazard Rate) For all γ, ζ > 0, the class MHR of MHR

distributions on [n] is (γ, ζ, L)-decomposable for L
def= O

(
log n

ζ

γ

)
.

Proof We reproduce and adapt the argument of [15, Section 5.1] to meet our defi-
nition of decomposability (which, albeit related, is incomparable to theirs). First, we
modify the algorithm at the core of their constructive proof, in Algorithm 4: note that
the only two changes are in Steps 2 and 3, where we use parameters respectively ζ

n

and ζ

n2
.

Following the structure of their proof, we write Q = {I1, . . . , I|Q|}
with Ii = [ai, bi], and define Q′ = {Ii ∈ Q : D(ai) > D(ai+1)}, Q′′ =
{Ii ∈ Q : D(ai) ≤ D(ai+1)}.

We immediately obtain the analogues of their Lemmas 5.2 and 5.3:

Lemma B.1 We have
∏

Ii∈Q′ D(ai)
D(ai+1)

≤ n
ζ
.
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Lemma B.2 Step 4 of Algorithm 4 adds at most O
(
1
γ
log n

ζ

)
intervals to Q.

Sketch This derives from observing that now D(I ∪ I ′) ≥ ζ/n, which as in [15,
Lemma 5.3] in turn implies

1 ≥ ζ

n
(1 + γ )|Q′|−1

so that
∣∣Q′∣∣ = O

(
1
γ
log n

ζ

)
.

Again following their argument, we also get

D(a|Q|+1)

D(a1)
=

∏

Ii∈Q′′

D(ai+1)

D(ai)
·
∏

Ii∈Q′

D(ai+1)

D(ai)

by combining Lemma B.1 with the fact that D(a|Q|+1 ≤ 1 and that by construction
D(ai) ≥ ζ/n2, we get

∏

Ii∈Q′′

D(ai+1)

D(ai)
≤ n

ζ
· n2

ζ
= n3

ζ 2
.

But since each term in the product is at least (1 + γ ) (by construction of Q and the
definition of Q′′), this leads to

(1 + γ )|Q′′| ≤ n3

ζ 2

and thus
∣∣Q′′∣∣ = O

(
1
γ
log n

ζ

)
as well.

It remains to show that Q ∪ {I, I ′, I ′′} is indeed a good decomposition of [n] for
D, as per Definition 3.1. Since by construction every interval in Q satisfies item (ii),
we only are left with the case of I , I ′ and I ′′. For the first two, as they were returned
by RIGHT-INTERVAL either (a) they are singletons, in which case item (ii) trivially
holds; or (b) they have at least two elements, in which case they have probability mass
at most ζ

n
(by the choice of parameters for RIGHT-INTERVAL) and thus item (i) is

satisfied. Finally, it is immediate to see that by construction D(I ′′) ≤ n·ζ/n2 = ζ/n,
and item (i) holds in this case as well.

Appendix C: Proofs from Section 4

This section contains the proofs omitted from Section 4, namely the distance esti-
mation procedures for t-piecewise degree-d (Theorem 4.13), monotone hazard rate
(Lemma 4.14), and log-concave distributions (Lemma 4.15).

C.1 Proof of Theorem 4.13

In this section, we prove the following:
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Theorem C.1 (Theorem 4.13, restated) Let p be an �-histogram over [−1, 1). There
is an algorithm PROJECTSINGLEPOLY(d, ε) which runs in time poly(�, d + 1, 1/ε),
and outputs a degree-d polynomial q which defines a pdf over [−1, 1) such that
‖p − q‖1 ≤ 3�1(p,Pd) + O(ε).

As mentioned in Section 4, the proof of this statement is a rather straightforward
adaptation of the proof of [16, Theorem 9], with two differences: first, in our setting
there is no uncertainty or probabilistic argument due to sampling, as we are provided
with an explicit description of the histogram p. Second, Chan et al. require some
“well-behavedness” assumption on the distribution p (for technical reasons essen-
tially due to the sampling access), that we remove here. Besides these two points,
the proof is almost identical to theirs, and we only reproduce (our modification of) it
here for the sake of completeness. (Any error introduced in the process, however, is
solely our responsibility.)

Proof Some preliminary definitions will be helpful:

Definition C.2 (Uniform partition) Let p be a subdistribution on an interval I ⊆
[−1, 1). A partition I = {I1, . . . , I�} of I is (p, η)-uniform if p(Ij ) ≤ η for all
1 ≤ j ≤ �.

We will also use the following notation: For this subsection, let I = [−1, 1) (I
will denote a subinterval of [−1, 1) when the results are applied in the next subsec-
tion). We write ‖f ‖(I )

1 to denote
∫
I
|f (x)|dx, and we write dTV(I )(p, q) to denote

‖p − q‖(I )
1 /2. We write OPT

(I )
1,d to denote the infimum of the distance ‖p − g‖(I )

1
between p and any degree-d subdistribution g on I that satisfies g(I) = p(I).

The key step of PROJECTSINGLEPOLY is Step 2 where it calls the FINDSINGLE-
POLY procedure. In this procedure Ti(x) denotes the degree-i Chebychev polynomial
of the first kind. The function FINDSINGLEPOLY should be thought of as the CDF
of a “quasi-distribution” f ; we say that f = F ′ is a “quasi-distribution” and not
a bona fide probability distribution because it is not guaranteed to be non-negative
everywhere on [−1, 1). Step 2 of FINDSINGLEPOLY processes f slightly to obtain
a polynomial q which is an actual distribution over [−1, 1).
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The rest of this subsection gives the proof of Theorem 4.13. The claimed
running time bound is obvious (the computation is dominated by solving the
poly(d, 1/ε)-size LP in PROJECTSINGLEPOLY, with an additional term linear in �

when partitioning [−1, 1) in the initial first step), so it suffices to prove correctness.
Before launching into the proof we give some intuition for the linear program.

Intuitively F(x) represents the cdf of a degree-d polynomial distribution f where
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f = F ′. Constraint (a) captures the endpoint constraints that any cdf must obey if it
has the same total weight as p. Intuitively, constraint (b) ensures that for each interval
[ij , ik), the value F(ik) − F(ij ) (which we may alternately write as f ([ij , ik))) is
close to the weight p([ij , ik)) that the distribution puts on the interval. Recall that by
assumption p is OPT1,d -close to some degree-d polynomial r . Intuitively the variable
w� represents

∫
[i�,i�+1)

(r −p) (note that these values sum to zero by constraint (c)(4),
and y� represents the absolute value of w� (see constraint (c)(5)). The value τ , which
by constraint (c)(6) is at least the sum of the y�’s, represents a lower bound on OPT1,d .

The constraints in (d) and (e) reflect the fact that as a cdf, F should be bounded
between 0 and 1 (more on this below), and the (f) constraints reflect the fact that the
pdf f = F ′ should be everywhere nonnegative (again more on this below).

We begin by observing that PROJECTSINGLEPOLY calls FINDSINGLEPOLY with
input parameters that satisfy FINDSINGLEPOLY’s input requirements:

(I) the non-singleton intervals I0, . . . , Iz−1 are (p, η)-uniform; and
(II) the singleton intervals each have weight at least η

10 .

We then proceed to show that, from there, FINDSINGLEPOLY’s LP is feasible and
has a high-quality optimal solution.

Lemma C.3 Suppose p is an �-histogram over [−1, 1), so that conditions (I) and
(II) above hold; then the LP defined in Step 1 of FINDSINGLEPOLY is feasible; and
the optimal solution τ is at most OPT1,d .

Proof As above, let r be a degree-d polynomial pdf such that OPT1,d = ‖p − r‖1
and r(I ) = p(I).We exhibit a feasible solution as follows: take F to be the cdf of
r (a degree d polynomial). Take w� to be

∫
[i�,i�+1)

(r − p), and take y� to be |w�|.
Finally, take τ to be

∑
0≤�<z y�.

We first argue feasibility of the above solution. We first take care of the easy
constraints: since F is the cdf of a subdistribution over I it is clear that constraints (a)
and (e) are satisfied, and since both r and p are pdfs with the same total weight it
is clear that constraints (c)(4) and (f) are both satisfied. Constraints (c)(5) and (c)(6)
also hold. So it remains to argue constraints (b) and (d).

Note that constraint (b) is equivalent to p+(r−p) = r and r satisfying (I, ε/(d+
1), ε)-inequalities, therefore this constraint is satisfied.

To see that constraint (d) is satisfied we recall some of the analysis of Arora and
Khot [5, Section 3]. This analysis shows that since F is a cumulative distribution
function (and in particular a function bounded between 0 and 1 on I ) each of its
Chebychev coefficients is at most

√
2 in magnitude.

To conclude the proof of the lemma we need to argue that τ ≤ OPT1,d . Since w� =∫
[i�,i�+1)

(r − p) it is easy to see that τ = ∑
0≤�<z y� = ∑

0≤�<z |w�| ≤ ‖p − r‖1,
and hence indeed τ ≤ OPT1,d as required.

Having established that with high probability the LP is indeed feasible, henceforth
we let τ denote the optimal solution to the LP and F , f , w�, ci , y� denote the values
in the optimal solution. A simple argument (see e.g. the proof of [5, Theorem 8])
gives that ‖F‖∞ ≤ 2. Given this bound on ‖F‖∞, the Bernstein–Markov inequality
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implies that ‖f ‖∞ = ‖F ′‖∞ ≤ O((d + 1)2). Together with (f) this implies that
f (z) ≥ −ε/2 for all z ∈ [−1, 1). Consequently q(z) ≥ 0 for all z ∈ [−1, 1), and

∫ 1

−1
q(x)dx = ε + (1 − ε)

∫ 1

−1
f (x)dx = ε + (1 − ε)(F (1) − F(−1)) = 1.

So q(x) is indeed a degree-d pdf. To prove Theorem 4.13 it remains to show that
‖p − q‖1 ≤ 3OPT1,d + O(ε).

We sketch the argument that we shall use to bound ‖p − q‖1. A key step in achiev-
ing this bound is to bound the ‖·‖A distance between f and p̂m+w whereA = Ad+1
is the class of all unions of d + 1 intervals and w is a function based on the w� values
(see (9) below). If we can bound ‖(p+w)−f ‖A ≤ O(ε) then it will not be difficult
to show that ‖r − f ‖A ≤ OPT1,d + O(ε). Since r and f are both degree-d polyno-
mials we have ‖r − f ‖1 = 2‖r − f ‖A ≤ 2OPT1,d + O(ε), so the triangle inequality
(recalling that ‖p − r‖1 = OPT1,d ) gives ‖p − f ‖1 ≤ 3OPT1,d + O(ε). From this
point a simple argument (Proposition C.5) gives that ‖p − q‖1 ≤ ‖p − f ‖1 + O(ε),
which gives the theorem.

We will use the following lemma that translates (I, η, ε)-inequalities into a bound
on Ad+1 distance.

Lemma C.4 Let I = {I0 = [i0, i1), . . . , Iz−1 = [iz−1, iz)} be a (p, η)-uniform
partition of I , possibly augmented with singleton intervals. If h : I → R and p satisfy
the (I, η, ε)-inequalities, then

‖p − h‖(I )

Ad+1
≤ √

εz(d + 1) · η + error,

where error = O((d + 1)η).

Proof To analyze ‖p−h‖Ad+1
, consider any union of d + 1 disjoint non-overlapping

intervals S = J1∪· · ·∪Jd+1. We will bound ‖p−h‖Ad+1
by bounding |p(S) − h(S)|.

We lengthen intervals in S slightly to obtain T = J ′
1∪· · ·∪J ′

d+1 so that each J ′
j is

a union of intervals of the form [i�, i�+1). Formally, if Jj = [a, b), then J ′
j = [a′, b′),

where a′ = max� { i� : i� ≤ a } and b′ = min� { i� : i� ≥ b }. We claim that

|p(S) − h(S)| ≤ O((d + 1)η) + |p(T ) − f (T )| . (7)

Indeed, consider any interval of the form J = [i�, i�+1) such that J ∩ S �= J ∩ T (in
particular, such an interval cannot be one of the singletons). We have

|p(J ∩ S) − p(J ∩ T )| ≤ p(J ) ≤ O(η), (8)

where the first inequality uses non-negativity of p and the second inequality fol-
lows from the bound p([i�, i�+1)) ≤ η. The (I, η, ε)-inequalities (between h and p)
implies that the inequalities in (8) also hold with h in place of p. Now (7) follows
by adding (8) across all J = [i�, i�+1) such that J ∩ S �= J ∩ T (there are at most
2(d + 1) such intervals J ), since each interval Jj in S can change at most two such
J ’s when lengthened.
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Now rewrite T as a disjoint union of s ≤ d + 1 intervals [iL1 , iR1)∪· · ·∪[iLs , iRs ).
We have

|p(T ) − h(T )| ≤
s∑

j=1

√
Rj − Lj · √

εη

by (I, η, ε)-inequalities between p and h. Now observing that that 0 ≤ L1 ≤
R1 · · · ≤ Ls ≤ Rs ≤ t = O((d + 1)/ε), we get that the largest possible
value of

∑s
j=1

√
Rj − Lj is

√
sz ≤ √

(d + 1)z, so the RHS of (7) is at most

O((d + 1)η) + √
(d + 1)zεη, as desired.

Recall from above that F , f ,w�, ci , y�, τ denote the values in the optimal solution.
We claim that

‖(p + w) − f ‖A = O(ε), (9)
where w is the subdistribution which is constant on each [i�, i�+1) and has weight
w� there, so in particular ‖w‖1 ≤ τ ≤ OPT1,d . Indeed, this equality follows
by applying Lemma C.4 with h = f − w. The lemma requires h and p to sat-
isfy (I, η, ε)-inequalities, which follows from constraint (b) ((I, η, ε)-inequalities
between p + w and f ) and observing that (p + w) − f = p − (f − w). We have
also used η = �(ε/(d + 1)) to bound the error term of the lemma by O(ε).

Next, by the triangle inequality we have (writing A for Ad+1)

‖r − f ‖A ≤ ‖r − (p + w)‖A + ‖(p + w) − f ‖A.

The last term on the RHS has just been shown to be O(ε). The first term is bounded
by

‖r − (p + w)‖A ≤ 1

2
‖r − (p + w)‖1 ≤ 1

2
(‖r − p‖1 + ‖w‖1) ≤ OPT1,d .

Altogether, we get that ‖r − f ‖A ≤ OPT1,d + O(ε).
Since r and f are degree d polynomials, ‖r − f ‖1 = 2‖r − f ‖A ≤ 2OPT1,d +

O(ε). This implies ‖p − f ‖1 ≤ ‖p − r‖1 + ‖r − f ‖1 ≤ 3OPT1,d + O(ε). Finally,
we turn our quasidistribution f which has value ≥ −ε/2 everywhere into a distri-
bution q (which is nonnegative), by redistributing the weight. The following simple
proposition bounds the error incurred.

Proposition C.5 Let f and p be any sub-quasidistribution on I . If q =
εf (I )/ |I | + (1 − ε)f , then ‖q − p‖1 ≤ ‖f − p‖1 + ε(f (I ) + p(I)).

Proof We have

q − p = ε(f (I )/ |I | − p) + (1 − ε)(f − p).

Therefore

‖q − p‖1 ≤ ε‖f (I)/|I | − p‖1 + (1 − ε)‖f − p‖1 ≤ ε(f (I ) + p(I))

+‖f − p‖1.here

We now have ‖p − q‖1 ≤ ‖p − f ‖1 + O(ε) by Proposition C.5, concluding the
proof of Theorem 4.13.
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C.2 Proof of Lemma 4.14

Lemma 4.14 (Monotone Hazard Rate) There exists a procedure
PROJECTIONDIST∗

MHR that, on input n as well as the full specification of a k-
histogram distribution D on [n] and of an �-histogram distribution D′ on [n], runs
in time poly(n, 1/ε), and satisfies the following.

• If there is P ∈ MHR such that ‖D − P ‖1 ≤ ε and ‖D′ − P ‖Kol ≤ ε3, then the
procedure returns yes;

• If �1(D,MHR) > 100ε, then the procedure returns no.

Proof For convenience, let α
def= ε3; we also write [i, j ] instead of {i, . . . , j}.

First, we note that it is easy to reduce our problem to the case where, in the com-
pleteness case, we have P ∈ MHR such that ‖D − P ‖1 ≤ 2ε and ‖D − P ‖Kol ≤
2α; while in the soundness case �1(D,MHR) ≥ 99ε. Indeed, this can be done with
a linear program on poly(k, �) variables, asking to find a (k + �)-histogram D′′ on
a refinement of D and D′ minimizing the �1 distance to D, under the constraint that
the Kolmogorov distance to D′ be bounded by ε. (In the completeness case, clearly a
feasible solution exists, as P is one.) We therefore follow with this new formulation:
either

(a) D is ε-close to a monotone hazard rate distribution P (in �1 distance) and D is
α-close to P (in Kolmogorov distance); and

(b) D is 32ε-far from monotone hazard rate

where D is a (k + �)-histogram.
We then proceed by observing the following easy fact: suppose P is a MHR dis-

tribution on [n], i.e. such that the quantity hi
def= P(i)∑n

j=i P (i)
, i ∈ [n] is non-increasing.

Then, we have

P(i) = hi

i−1∏

j=1

(1 − hj ), i ∈ [n]. (10)

and there is a bijective correspondence between P and (hi)i∈[n].
We will write a linear program with variables y1, . . . , yn, with the correspondence

yi
def= ln(1 − hi). Note that with this parameterization, we get that if the (yi)i∈[n]

correspond to a MHR distribution P , then for i ∈ [n]

P([i, n]) =
i−1∏

j=1

eyj = e
∑i−1

j=1 yj

and asking that ln(1− ε) ≤ ∑i−1
j=1 yj − lnD([i, n]) ≤ ln(1+ ε) amounts to requiring

P([i, n]) ∈ [1 ± ε]D([i, n]).
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We focus first on the completeness case, to provide intuition for the linear pro-
gram. Suppose there exists P ∈ MHR such P ∈ MHR such that ‖D − P ‖1 ≤ ε

and ‖D′ − P ‖Kol ≤ α. This implies that for all i ∈ [n], |P([i, n]) − D([i, n])| ≤ 2α.
Define I = {b+1, . . . , n} to be the longest interval such that D({b+1, . . . , n}) ≤ ε

2 .
It follows that for every i ∈ [n] \ I ,

P([i, n])
D([i, n]) ≤ D([i, n]) + 2α

D([i, n]) ≤ 1 + 2α

ε/2
= 1 + 4ε2 ≤ 1 + ε (11)

and similarly P([i,n])
D([i,n]) ≥ D([i,n])−2α

D([i,n] ≥ 1−ε. This means that for the points i in [n]\I ,
we can write constraints asking for multiplicative closeness (within 1 ± ε) between

e
∑i−1

j=1 yj and D([i, n]), which is very easy to write down as linear constraints on the
yi’s.

The Linear Program Let T and S be respectively the sets of “light” and
“heavy” points, defined as T = {

i ∈ {1, . . . , b} : D(i) ≤ ε2
}

and S ={
i ∈ {1, . . . , b} : D(i) > ε2

}
, where b is as above. (In particular, |S| ≤ 1/ε2.)

Given a solution to the linear program above, define P̃ (a non-normalized prob-

ability distribution) by setting P̃ (i) = (1 − eyi )e
∑i−1

j=1 yj for i ∈ {1, . . . , b}, and
P̃ (i) = 0 for i ∈ I = {b + 1, . . . , n}. A MHR distribution is then obtained by
normalizing P̃ .

Completeness Suppose P ∈ MHR is as promised. In particular, by the Kol-
mogorov distance assumption we know that every i ∈ T has P(i) ≤ ε2 + 2α <

2ε2.
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• For any i ∈ T , we have that P(i)
P [i,n] ≤ 2ε2

(1−ε)ε
≤ 4ε, and

D(i) − εi

(1 + ε)D[i, n] ≤ P(i)

P [i, n] ≤ − ln(1 − P(i)

P [i, n] )︸ ︷︷ ︸
−yi

≤ (1 + 4ε)
P (i)

P [i, n]

= (1 + 4ε)
D(i) + εi

P [i, n] ≤ 1 + 4ε

1 − ε

D(i) + εi

D[i, n] (12)

where we used (11) for the two outer inequalities; and so (15), (16), and (17)

would follow from setting εi
def= |P(i) − D(i)| (along with the guarantees on �1

and Kolmogorov distances between P and D).
• For i ∈ S, Constraint (18) is also met, as P(i)

P ([i,n]) ∈
[

D(i)−2α
P ([i,n]) ,

D(i)+2α
P ([i,n])

]
⊆

[
D(i)−2α

(1+ε)D([i,n]) ,
D(i)+2α

(1−ε)D([i,n])
]
.

Soundness Assume a feasible solution to the linear program is found. We argue that
this implies D is O (ε)-close to some MHR distribution, namely to the distribution
obtained by renormalizing P̃ .

In order to do so, we bound separately the �1 distance between D and P̃ , from I ,

S, and T . First,
∑

i∈I

∣∣∣D(i) − P̃ (i)

∣∣∣ = ∑
i∈I D(i) ≤ ε

2 by construction. For i ∈ T ,

we have D(i)
D[i,n] ≤ ε, and

P̃ (i) = (1 − eyi))e
∑i−1

j=1 yj ∈ [1 ± ε] (1 − eyi )D([i, n]).
Now,

1 − (1 − ε)
D(i) − εi

(1 + ε)D[i, n] ≥ e
− D(i)−εi

(1+ε)D[i,n] ≥ eyi ≥ e
−(1+4ε)

D(i)+εi
(1−ε)D[i,n]

≥ 1 − (1 + 4ε)
D(i) + εi

(1 − ε)D[i, n]
so that

(1 − ε)
(1 − ε)

(1 + ε)
(D(i) − εi) ≤ P̃ (i) ≤ (1 + 4ε)

(1 + ε)

(1 − ε)
(D(i) + εi)

which implies

(1 − 10ε)(D(i) − εi) ≤ P̃ (i) ≤ (1 + 10ε)(D(i) + εi)

so that
∑

i∈T

∣∣∣D(i) − P̃ (i)

∣∣∣ ≤ 10ε
∑

i∈T D(i) + (1 + 10ε)
∑

i∈T εi ≤ 10ε + (1 +
10ε)ε ≤ 20ε where the last inequality follows from Constraint (16).

To analyze the contribution from S, we observe that Constraint (18) implies that,
for any i ∈ S,

D(i) − 2α

(1 + ε)D([i, n]) ≤ P̃ (i)

P̃ ([i, n]) ≤ D(i) + 2α

(1 − ε)D([i, n])
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which combined with Constraint (14) guarantees

D(i) − 2α

(1 + ε)2P̃ ([i, n]) ≤ P̃ (i)

P̃ ([i, n]) ≤ D(i) + 2α

(1 − ε)2P̃ ([i, n])
which in turn implies that

∣∣∣P̃ (i) − D(i)

∣∣∣ ≤ 3εP̃ (i)+2α. Recalling that |S| ≤ 1
ε2

and

α = ε3, this yields
∑

i∈S

∣∣∣D(i) − P̃ (i)

∣∣∣ ≤ 3ε
∑

i∈S P̃ (i) + 2ε ≤ 3ε(1 + ε) + 2ε ≤
8ε. Summing up, we get

∑n
i=1

∣∣∣D(i) − P̃ (i)

∣∣∣ ≤ 30ε which finally implies by the

triangle inequality that the �1 distance between D and the normalized version of P̃

(a valid MHR distribution) is at most 32ε.

Running Time The running time is immediate, from executing the two linear
programs on poly(n, 1/ε) variables and constraints.

C.3 Proof of Lemma 4.15

Lemma 4.15 (Log-concavity) There exists a procedure PROJECTIONDIST∗
L that, on

input n as well as the full specifications of a k-histogram distribution D on [n] and
an �-histogram distribution D′ on [n], runs in time poly(n, k, �, 1/ε), and satisfies
the following.

• If there is P ∈ L such that ‖D − P ‖1 ≤ ε and ‖D′ − P ‖Kol ≤ ε2

log2(1/ε)
, then

the procedure returns yes;
• If �1(D,L) ≥ 100ε, then the procedure returns no.

Proof We set α
def= ε2

log2(1/ε)
, β

def= ε2

log(1/ε) , and γ
def= ε2

10 (so that α � β � γ � ε),

Given the explicit description of a distribution D on [n], which a k-histogram
over a partition I = (I1, . . . , Ik) of [n] with k = poly(log n, 1/ε) and the explicit
description of a distribution D′ on [n], one must efficiently distinguish between:

(a) D is ε-close to a log-concave P (in �1 distance) and D′ is α-close to P (in
Kolmogorov distance); and

(b) D is 100ε-far from log-concave.

If we are willing to pay an extra factor of O (n), we can assume without loss of
generality that we know the mode of the closest log-concave distribution (which is
implicitly assumed in the following: the final algorithm will simply try all possible
modes).

Outline First, we argue that we can simplify to the case where D is unimodal.
Then, reduce to the case where where D and D′ are only one distribution, satis-
fying both requirements from the completeness case. Both can be done efficiently
(Section C.3.1), and make the rest much easier. Then, perform some ad hoc partition-
ing of [n], using our knowledge of D, into Õ

(
1/ε2

)
pieces such that each piece is

either a “heavy” singleton, or an interval I with weight very close (multiplicatively)
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to D(I) under the target log-concave distribution, if it exists (Section C.3.2). This
in particular simplifies the type of log-concave distribution we are looking for: it is
sufficient to look for distributions putting that very specific weight on each piece, up
to a (1 + o(1)) factor. Then, in Section C.3.3, we write and solve a linear program
to try and find such a “simplified” log-concave distribution, and reject if no feasible
solution exists.

Note that the first two sections allow us to argue that instead of additive (in �1)
closeness, we can enforce constraints onmultiplicative (within a (1+ε) factor) close-
ness between D and the target log-concave distribution. This is what enables a linear
program with variables being the logarithm of the probabilities, which plays very
nicely with the log-concavity constraints.

We will require the following result of Chan, Diakonikolas, Servedio, and Sun:

Theorem C.6 ([15, Lemma 4.1]) Let D be a distribution over [n], log-concave and
non-decreasing over {1, . . . , b} ⊆ [n]. Let a ≤ b such that σ = D({1, . . . , a −1}) >

0, and write τ = D({a, . . . , b}). Then D(b)
D(a)

≤ 1 + τ
σ
.

C.3.1 Step 1

Reducing to D Unimodal Using a linear program, find a closest unimodal distribu-
tion D̃ to D (also a k-histogram on I) under the constraint that ‖D − P ‖Kol ≤ α:
this can be done in time poly(k). If ‖D − D̃‖1 > ε, output reject.

• If D is ε-close to a log-concave distribution P as above, then it is in particular
ε-close to unimodal and we do not reject. Moreover, by the triangle inequality
‖D̃‖1 − P ≤ 2ε and ‖D̃ − P ‖Kol ≤ α ≤ 2α.

• If D is 100ε-far from log-concave and we do not reject, then �1(D̃,L) ≥ 99ε.

Reducing to D = D′ First, we note that it is easy to reduce our problem to the
case where, in the completeness case, we have P ∈ L such that ‖D − P‖1 ≤ 4ε
and ‖D − P ‖Kol ≤ 4α; while in the soundness case �1(D,L) ≥ 97ε. Indeed, this
can be done with a linear program on poly(k, �) variables and constraints, asking to
find a (k + �)-histogram D′′ on a refinement of D and D′ minimizing the �1 distance
to D, under the constraint that the Kolmogorov distance to D′ be bounded by 2α.
(In the completeness case, clearly a feasible solution exists, as (the flattening on this
(k+�)-interval partition) of P is one.) We therefore follow with this new formulation:
either

(a) D is 4ε-close to a log-concave P (in �1 distance) and D is 4α-close to P (in
Kolmogorov distance); and

(b) D is 97ε-far from log-concave;

where D is a (k + �)-histogram.
This way, we have reduced the problem to a slightly more convenient one, that

of Section C.3.2.
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Reducing to Knowing the Support [a, b] The next step is to compute a good
approximation of the support of any target log-concave distribution. This is easily
obtained in time O(k) as the interval {a, · · · , b} such that
• D({1, . . . , a − 1}) ≤ α but D({1, . . . , a}) > α; and
• D({b + 1, . . . , }n) ≤ α but D({b, . . . , n}) > α.

Any log-concave distribution that is α-close to D must include {a, · · · , b} in its sup-
port, since otherwise the �1 distance between D and P is already greater than α.
Conversely, if P is a log-concave distribution α-close to D, it is easy to see that the
distribution obtained by setting P to be zero outside {a, · · · , b} and renormalizing
the result is still log-concave, and O(α)-close to D.

C.3.2 Step 2

Given the explicit description of a unimodal distribution D on [n], which a k-
histogram over a partition I = (I1, . . . , Ik) of [n] with k = poly(log n, 1/ε), one
must efficiently distinguish between:

(a) D is ε-close to a log-concave P (in �1 distance) and α-close to P (in
Kolmogorov distance); and

(b) D is 24ε-far from log-concave,

assuming we know the mode of the closest log-concave distribution, which has
support [n].

In this stage, we compute a partition J of [n] into Õ
(
1/ε2

)
intervals (here, we

implicitly use the knowledge of the mode of the closest log-concave distribution, in
order to apply Theorem C.6 differently on two intervals of the support, corresponding
to the non-decreasing and non-increasing parts of the target log-concave distribution).

As D is unimodal, we can efficiently (O (log k)) find the interval S of heavy
points, that is

S
def= { x ∈ [n] : D(x) ≥ β } .

Each point in S will form a singleton interval in our partition. Let T
def= [n] \ S

be its complement (T is the union of at most two intervals T1, T2 on which D is
monotone, the head and tail of the distribution). For convenience, we focus on only
one of these two intervals, without loss of generality the “head” T1 (on which D is
non-decreasing).

1. Greedily find J = {1, . . . , a}, the smallest prefix of the distribution satisfying
D(J ) ∈ [

ε
10 − β, ε

10

]
.

2. Similarly, partition T1 \ J into intervals I ′
1, . . . , I

′
s (with s = O (1/γ ) =

O
(
1/ε2

)
) such that γ

10 ≤ D(I ′
j ) ≤ 9

10γ for all 1 ≤ j ≤ s − 1, and
γ
10 ≤ D(I ′

s) ≤ γ . This is possible as all points not in S have weight less than β,
and β � γ .
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Discussion: Why Doing This? We focus on the completeness case: let P ∈ L be
a log-concave distribution such that ‖D − P ‖1 ≤ ε and ‖D − P ‖Kol ≤ α. Apply-

ing Theorem C.6 on J and the I ′
j ’s, we obtain (using the fact that

∣∣∣P(I ′
j ) − D(I ′

j )

∣∣∣ ≤
2α) that:

maxx∈I ′
j
P (x)

minx∈I ′
j
P (x)

≤ 1+D(I ′
j ) + 2α

D(J ) − 2α
≤ 1+ γ + 2α

ε
10 − 2α

= 1+ε+O

(
ε2

log2(1/ε)

)
def= 1+κ.

Moreover, we also get that each resulting interval I ′
j will satisfy

D(I ′
j )(1 − κj ) = D(I ′

j ) − 2α ≤ P(I ′
j ) ≤ D(I ′

j ) + 2α = D(I ′
j )(1 + κj )

with κj
def= 2α

D(I ′
j )

= �
(
1/ log2(1/ε)

)
.

Summing up, we have a partition of [n] into |S| + 2 = Õ
(
1/ε2

)
intervals such

that:

• The (at most) two end intervals have D(J ) ∈ [
ε
10 − β, ε

10

]
, and thus P(J ) ∈[

ε
10 − β − 2α, ε

10 + 2α
]
;

• the Õ
(
1/ε2

)
singleton-intervals from S are points x with D(x) ≥ β, so that

P(x) ≥ β − 2α ≥ β
2 ;• each other interval I = I ′

j satisfies

(1 − κj )D(I) ≤ P(I) ≤ (1 + κj )D(I) (20)

with κj = O
(
1/ log2(1/ε)

)
; and

maxx∈I P (x)

minx∈I P (x)
≤ 1 + κ < 1 + 3

2
ε. (21)

We will use in the constraints of the linear program the fact that (1 + 3
2ε)(1 + κj ) ≤

1 + 2ε, and
1−κj

1+ 3
2 ε

≥ 1
1+2ε .

C.3.3 Step 3

We start by computing the partition J = (J1, . . . , J�) as in Section C.3.2; with
� = Õ

(
1/ε2

)
; and write Jj = {aj , . . . , bj } for all j ∈ [�]. We further denote by S

and T the set of heavy and light points, following the notations from Section C.3.2;

and let T ′ def= T1 ∪ T2 be the set obtained by removing the two “end intervals” (called
J in the previous section) from T .
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LemmaC.7 (Soundness) If the linear program (Algorithm 8) has a feasible solution,
then �1(D,L) ≤ O (ε).

Proof A feasible solution to this linear program will define (setting pi = exi ) a
sequence p = (p1, . . . , pn) ∈ (0, 1]n such that

• p takes values in (0, 1] (from (22));
• p is log-concave (from (23));
• p is “(1 + O(ε))-multiplicatively constant” on each interval Jj (from (24));
• p puts roughly the right amount of weight on each Ji :

– weight (1 ± O(ε))D(J ) on every J from T (from (24)), so that the �1
distance between D and p coming from T ′ is at most O(ε);

– it puts weight approximately D(J ) on every singleton J from S, i.e.
such that D(J ) ≥ β. To see why, observe that each εi is in [0, 2α] by
constraints (27). In particular, this means that εi

D(i)
≤ 2α

β
� 1, and we

have

D(i) − 4εi ≤ D(i) · e
−4

εi
D(i) ≤ pi = exi ≤ D(i) · e

2
εi

D(i) ≤ D(i) + 4εi

and together with (26) this guarantees that the �1 distance between D

and p coming from S is at most ε.

Note that the solution obtained this way may not sum to one—i.e., is not necessarily
a probability distribution. However, it is easy to renormalize p to obtain a bona fide
probability distribution P̃ as follows: set P̃ = p(i)∑

i∈S∪T ′ p(i)
for all i ∈ S ∪ T ′, and

p(i) = 0 for i ∈ T \ T ′.
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Since by the above discussion we know that p(S∪T ′) is withinO (ε) ofD(S∪T ′)
(itself in [1− 9ε

5 , 1+ 9ε
5 ] by construction of T ′), P̃ is a log-concave distribution such

that ‖P̃ − D1 = O (ε).

Lemma C.8 (Completeness) If there is P in L such that ‖D − P‖1 ≤ ε and
‖D − P ‖Kol ≤ α, then the linear program (Algorithm 8) has a feasible solution.

Proof Let P ∈ L such that ‖D − P ‖1 ≤ ε and ‖D − P ‖Kol ≤ α. Define xi
def=

lnP(i) for all i ∈ [n]. Constraints (22) and (23) are immediately satisfied, since P is
log-concave. By the discussion from Section C.3.2 (more specifically, (20) and (21)),
constraint (24) holds as well.

Letting εi
def= |P(i) − D(i)| for i ∈ S, we also immediately have (26) and (27)

(since ‖P − D‖1 ≤ ε and ‖D − P ‖Kol ≤ α by assumption). Finally, to see why (25)
is satisfied, we rewrite

xi − lnD(i) = ln
P(i)

D(i)
= ln

D(i) ± εi

D(i)
= ln

(
1 ± εi

D(i)

)

and use the fact that ln(1+ x) ≤ x and ln(1− x) ≥ −2x (the latter for x < 1
2 , along

with εi

D(i)
≤ 2α

β
� 1).

C.3.4 Putting it All Together: Proof of Lemma 4.15

The algorithm is as follows (keeping the notations from Sections C.3.1 to C.3.3):

• Set α, β, γ as above.
• Follow Section C.3.1 to reduce it to the case where D is unimodal and satisfies

the conditions for Kolmogorov and �1 distance; and a good [a, b] approximation
of the support is known

• For each of the O (n) possible modes c ∈ [a, b]:
– Run the linear program Algorithm 8, return accept if a feasible solution

is found

• None of the linear programs was feasible: return reject.

The correctness comes from Lemma C.7 and Lemma C.8 and the discussions
in Sections C.3.1 to C.3.3; as for the claimed running time, it is immediate from the
algorithm and the fact that the linear program executed each step has poly(n, 1/ε)
constraints and variables.

Appendix D: Proof of Theorem 6.3

In this section, we establish our lower bound for tolerant testing of the Binomial
distribution, restated below:
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Theorem 6.3 There exists an absolute constant ε0 > 0 such that the following holds.
Any algorithm which, given sampling access to an unknown distribution D on �

and parameter ε ∈ (0, ε0), distinguishes with probability at least 2/3 between (i)

‖D − Bin(n, 1/2)‖1 ≤ ε and (ii) ‖D − Bin(n, 1/2)‖1 ≥ 100ε must use �
(
1
ε

√
n

log n

)

samples.

The theorem will be a consequence of the (slightly) more general result below:

Theorem D.1 There exist absolute constants ε0 > 0 and λ > 0 such that the
following holds. Any algorithm which, given sample access to an unknown distribu-
tion D on � and parameter ε ∈ (0, ε0), distinguishes with probability at least 2/3

between (i) ‖D − Bin
(
n, 1

2

)
‖
1

≤ ε and (ii) ‖D − Bin
(
n, 1

2

)
‖
1

≥ λε1/3 − ε must use

�
(
ε

√
n

log(εn)

)
samples.

By choosing a suitable ε and working out the corresponding parameters, this for
instance enables us to derive the following:

Corollary D.2 There exists an absolute constant ε0 ∈ (0, 1/1000) such that the fol-
lowing holds. Any algorithm which, given sample access to an unknown distribution

D on �, distinguishes with probability at least 2/3 between (i) ‖D − Bin
(
n, 1

2

)
‖
1

≤
ε0 and (ii) ‖D − Bin

(
n, 1

2

)
‖
1

≥ 100ε0 must use �
( √

n
log n

)
samples.

By standard techniques, this will in turn imply Theorem 6.3.11

Proof of Theorem D.1 Hereafter, we write for convenience Bn
def= Bin

(
n, 1

2

)
. To

prove this lower bound, we will rely on the following:

TheoremD.3 ([50, Theorem 1]) For any constant φ ∈ (0, 1/4), following holds. Any
algorithm which, given sample access to an unknown distribution D on {1, . . . , N},
distinguishes with probability at least 2/3 between (i) ‖D − UN‖1 ≤ φ and (ii)
‖D − UN‖1 ≥ 1

2 − φ, must have sample complexity at least φ
32

N
logN

.

Without loss of generality, assume n is even (so that Bn has only one mode located

at n
2 ). For c > 0, we write In,c for the interval {n

2 − c
√

n, . . . , n
2 + c

√
n} and Jn,c

def=
� \ In,c.

11 Namely, for ε ∈ (0, ε0), define the mixture Dε
def= ε

ε0
D+(1− ε

ε0
)Bin(n, 1/2). Being able to distinguish

‖Dε − Bin(n, 1/2)‖1 ≤ ε from ‖Dε − Bin(n, 1/2)‖1 ≥ 100ε in q samples then allows one to distinguish
‖D − Bin(n, 1/2)‖1 ≤ ε0 from ‖D − Bin(n, 1/2)‖1 ≥ 100ε0 in O(ε · q) samples.
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Fact D.4 For any c > 0,

Bn(
n
2 + c

√
n)

Bn(n/2)
,
Bn(

n
2 − c

√
n)

Bn(n/2)
∼

n→∞ e−2c2

and

Bn(In,c) ∈ (1 ± o(1)) · [e−2c2 , 1] · 2c
√

2

π
= �(c) .

The reduction proceeds as follows: given sampling access to D on [N], we can
simulate sampling access to a distribution D′ on [n] (where n = �

(
N2

)
) such that

• if ‖D − UN‖1 ≤ φ, then ‖D′ − Bn‖1 < ε;
• if ‖D − UN‖1 ≥ 1

2 − φ, then ‖D′ − Bn‖1 > ε′ − ε

for ε
def= �(φ3/2) and ε′ def= �(φ

1
2 ); in a way that preserves the sample complex-

ity. The high-level idea is that (by the above fact) the Binomial distribution over �

is almost uniform on the middle O(
√

n) elements, and has a constant fraction of
its probability mass there: we can therefore “embed” the tolerant uniformity testing
lower bound (for support O(

√
n)) into this middle interval.

More precisely, define c
def=

√
1
2 ln

1
1−φ

= �
(√

φ
)
(so that φ = 1 − e−2c2 ) and

n such that
∣∣In,c

∣∣ = N (that is, n = (N/(2c))2 = �
(
N2/φ

)
). From now on, we

can therefore identify [N] to In,c in the obvious way, and see a draw from D as an
element in In,c.

Let p
def= Bn(In,c) = �

(√
φ
)
, and Bn,c, B̄n,c respectively denote the condi-

tional distributions induced by Bn on In,c and Jn,c. Intuitively, we want D to be
mapped to the conditional distribution of D′ on In,c, and the conditional distribu-
tion of D′ on Jn,c to be exactly B̄n,c. This is achieved by defining D′ by the process
below:

• with probability p, we draw a sample from D (seen as an element of In,c);
• with probability 1 − p, we draw a sample from B̄n,c.

Let B̃n be defined as the distribution which exactly matchesBn on Jn,c, but is uniform
on In,c:

B̃n(i) =
{

p

|In,c| i ∈ In,c

Bn(i) i ∈ Jn,c

From the above, we have that ‖D′ − B̃n‖1 = p · ‖D − UN‖1. Furthermore, by
Fact D.4, Lemma 2.9 and the definition of In,c, we get that ‖Bn − B̃n = p ·
‖(Bn)In,c − UIn,c ≤ p · φ. Putting it all together,

• If ‖D − UN‖1 ≤ φ, then by the triangle inequality ‖D′ − Bn‖1 ≤ p(φ + φ) =
2pφ;

• If ‖D − UN‖1 ≥ 1
2 −φ, then similarly ‖D′ − Bn‖1 ≥ p( 12 −φ−φ) = p

4 −2pφ.
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Recalling that p = �
(√

φ
)
and setting ε

def= 2pφ concludes the reduction.
From Theorem D.3, we conclude that

φ

32

N

logN
= �

(
φ

√
φn

log(φn)

)
= �

(
ε

√
n

log(εn)

)

samples are necessary.

Proof of Corollary D.2 The corollary follows from the proof of Theorem D.1, by

choosing ε0 > 0 sufficiently small so that
λε

1/3
0 −ε0
ε0

≥ 100.
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