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—— Abstract

We revisit one of the classic problems in the data stream literature, namely, that of estimating
the frequency moments F), for 0 < p < 2 of an underlying n-dimensional vector presented as a
sequence of additive updates in a stream. It is well-known that using p-stable distributions one
can approximate any of these moments up to a multiplicative (1 + ¢)-factor using O(e=2logn)
bits of space, and this space bound is optimal up to a constant factor in the turnstile streaming
model. We show that surprisingly, if one instead considers the popular random-order model of
insertion-only streams, in which the updates to the underlying vector arrive in a random order,
then one can beat this space bound and achieve 0(672 + logn) bits of space, where the O hides
poly(log(1/€) +1loglogn) factors. If =2 a log n, this represents a roughly quadratic improvement
in the space achievable in turnstile streams. Our algorithm is in fact deterministic, and we show
our space bound is optimal up to poly(log(1/e€) + loglogn) factors for deterministic algorithms
in the random order model. We also obtain a similar improvement in space for p = 2 whenever
F 2 Z logn - F; 1-
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1 Introduction

Analyzing massive datasets has become an increasingly challenging problem. Data sets, such
as sensor networks, stock data, web/network traffic, and database transactions, are collected
at a tremendous pace. Traditional algorithms that store an entire dataset in memory are
impractical. The streaming model has emerged as an important model for coping with
massive datasets. Streaming algorithms are typically randomized and approximate, making
a single pass over the data and using only a small amount of memory.

A well-studied problem in the streaming model is that of estimating the frequency
moments of an underlying vector. Formally, in an insertion-only stream, the algorithm is
presented with a sequence of integers (aj,as, ..., a,,) from a universe [n]. A turnstile stream
is defined similarly except integers may also be removed from the stream. The p-th frequency
moment of the stream is defined to be Fj, = Zie[n] /7, where f; is number of times integer
i occurs in the stream, i.e., its frequency. The quantity F}, is a basic, yet very important
statistic of a dataset (e.g. [1]). For example, interpreting 0° as 0, Fy is equal to the number of
distinct items in the stream. F5 measures the variance and can be used to estimate the size
of a self-join in database applications. It also coincides with the (squared) Euclidean norm
of a vector and has applications in geometric and linear algebraic problems on streams. For
other non-integer p > 0, F}, can serve as a measure of the entropy or skewness of a dataset,
which can be useful for query optimization.

In their seminal paper, Alon, Matias & Szegedy [2] introduced the study of frequency
moments in the streaming model. Nearly two decades of research have been devoted to
the space and time complexity of this problem. An incomplete list of papers on frequency
moments includes [3,8,11,18-20,23], and [7]; please also see the references therein. In the
turnstile model, ©(e~2 log(mn)) bits of space is necessary and sufficient for a randomized
one-pass streaming algorithm to obtain a (1 + €)-approximation to F, for 0 < p < 2 [21].
Here, by (1 + €)-approximation, we mean that the algorithm outputs a number Fp for which
(1—-¢)F, < Fp < (14 €)F,. For larger values of p, i.e., p > 2, the memory required becomes
polynomial in n rather than logarithmic [5,11,19].

In this paper, we study the frequency moment estimation problem in the random-order
model, which is a special case of insertion streams in which the elements in the stream occur
in a uniformly random order and the algorithm sees the items in one pass over this random
order. This model was initially studied by Munro and Paterson [22], which was one of the
initial papers on data streams in the theory community. Random-order streams occur in
many real-world applications and are studied in, e.g., [10,13,15] and the references therein.
It has been shown that there is a considerable difference between random order streams and
general arbitrary order insertion streams for problems such as quantile estimation [10, 16].
Notice that [12] studies the frequency moment problem for stochastic streams, in which data
points are generated from some distribution. That model is different from ours, but when
conditioning on the realizations of the values of each point, the stream is exactly in random
order. Therefore, our upper bounds are applicable to that model as well.

However, there is a gap in our understanding for the important problem of Fj-estimation,
0 < p < 2, in the random order model. On the one hand there is an Q(e~2) bits of space
lower bound [9]. On the other hand, the best upper bound we have is the same as the
best upper bound in the turnstile model, namely O(e~2logn) bits [2,20,21]. In practice
it would be desirable to obtain O(¢~2 + logn) bits rather than O(e~2logn) bits, since if €
is very small this can lead to considerable savings. For example, if €2 = logn, it would
represent a roughly quadratic improvement. The goal of this work is to close this gap in our
understanding of the memory required for F-estimation, 0 < p < 2, in the random order
model. Note that in all our bounds, we apply the convention that m = poly(n).
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1.1 OQOur Contribution

In this paper, we make considerable progress on understanding the space complexity of F},

estimation with 0 < p < 2, in random order streams. Specifically,
for Fy, we show that there exists a simple, and in fact deterministic, one-pass algorithm
using O(e~2+log n) bits of space to output a (14-€) approximation, provided Fy > m-logn,
for F, with p € (0,2)\{1}, we obtain a one-pass deterministic algorithm to obtain a
(1 + €) approximation using O(e~2 + logn) bits of space®. We also show that this space
complexity is optimal for deterministic algorithms in the random order model, up to
poly(log(1/€)) + poly(loglogn) factors. Note that for the case p = 1, F), is the length of
the stream, which can be computed using O(logn) bits of memory.

1.2  Our Techniques

For F5, we partition the stream updates into a sequence of small blocks for which each block
can be stored using O(e~?2) bits. We then construct an unbiased estimator by counting the
number of “pairs” of updates that belong to the same universe item. The counting can be
done exactly and with only O(logn) bits of space in each small block. We further show that
if F5 > logn - F1, we can obtain the desired concentration by averaging the counts over all
blocks. The analysis of the concentration is by constructing a Doob martingale over the pairs
and applying Bernstein’s inequality.

For F,, with 0 < p < 2 our algorithm is considerably more involved. We first develop a
new reduction from estimating F, to finding ¢, heavy hitters (an ¢, heavy hitter is an item
with frequency comparable to FI} /P of the stream) and then we establish the heavy hitter
algorithm. Both our new reduction and the heavy hitter-finding algorithm are redesigned
over the existing ones to allow us to obtain better space complexity. Our heavy hitter finding
algorithm is similar to that of [6]. However, we need to be more careful so that the final
space bound of the heavy hitter algorithm can be controlled (e.g., we cannot afford to store
Q(1/€?) many coordinate IDs, which would cost ((logn)/e?) bits of space. We have to store
only O(1/€%) many approximate values). The major contribution of our algorithm is the
careful reduction from F}, estimation to ¢, heavy hitter-finding. Many reductions are known
in the literature but are suffering from a poly(logn) space blow up. Our careful reduction
allows us to pay only a poly(loglogn) space blow up.

In what follows, we illustrate the high level ideas of the heavy hitter reduction. Let
v = (f1, fo, ..., fn) be the frequency vector of the items. We first apply a random scaling
X, to each f;, where each X; is pairwise independently drawn from some distribution. We
argue that finding the leading ¢, heavy hitter of the scaled frequency vector (denoted as
X+ fi) gives a good estimation of the F,} /P of the original stream. The distribution of X is
a so-called p-inverse distribution (see Definition 2 for details). This distribution has a similar
tail as that of the max-stable distributions used in [3] or the precision sampling distribution
in [4]. However, it has different properties better suited to our setting, e.g., we can use
pairwise independent variables to do the scaling. In contrast, for max-stable distributions,
we have to use fully random hash functions and apply pseudo-random generators, which
is problematic in our very low space regime (a related technique called tabulation-based
hashing has similar problems). Note that [4] does not require pseudo-random generators, but
their precision sampling technique aims to solve a more general family of problems and their

3 We use O to hide poly(loglogn + loge™!) factors.
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distribution has a slightly different form, e.g., the random variable is drawn from a continuous

distribution. The p-inverse distribution is particularly suited for p-norm estimation, and

allows for a concise algorithm and improved space complexity in our setting.

After choosing the random scalings, we group the coordinates of v into ©(logn) levels by
their scalings, i.e., if 27 F, < X? <27 “FT1F, then i is in level w for some integer w. Since
we do not know Fj, before the stream arrives, the exact level ID is not known to the algorithm.
But since each X; is obtained pseudo-randomly, the algorithm is able to know whether two
coordinates are in a same level or not (i.e., the relative level ID) before looking at the stream.
Let Z,, C [n] be the set of universe items in level w. We observe that if for some coordinate
i* € Zy, it satisfies X?, ff. ~ F),, then ff. = Q(2%). Fortunately, we can also show that in
expectation, ¢* is an £,-heavy hitter of the substream induced by Z,, (i.e., in expectation the
F,, of the stream restricted to Z,, is approximately 2*). Our algorithm simply looks for i*
from Z,, for every w € [logn]. One may notice that if we run the search instance in parallel,
then there will be a (log n)-factor blowup in the space of a heavy hitter algorithm. However,
we can show that for random order streams, one can choose a wg = O(loglogn) such that
1. for all w > wy: the search for the heavy hitter i* can be done in one pass and in sequence

for each w. This is because f;« is large (i.e., Q(2%*)) and a small portion of the random

order stream contains sufficient information about ¢*.

2. 2. for all w < wq: with high probability, |Z,| = poly(logn). We thus do a brute force
search for each level w below wq in parallel. Each search instance uses a small amount of
memory because of the small universe size.

The final space overhead becomes a poly(wg) factor rather than a ©(logn) factor. This

observation is critical to reduce space usage for approximating frequency moments in random

order streams and is, to the best of our knowledge, new. For p > 2, the above claim is no
longer true. We leave the exact space complexity for p > 2 as an open problem.

1.3 Roadmap

In Section 2, we introduce some definitions and the p-inverse distribution. In Section 3,
we present our algorithm for F,. In Section 4, we present our generic framework for
approximating Fj, as well as our main result. In Section A of the full version of this paper,
we present the detailed construction of each subroutine used in Section 4, and the details of
the main algorithm. In Section 6, we introduce our deterministic algorithm, which uses our
randomized algorithm as a subroutine. We also show its optimality in the same section.

2 Preliminaries

» Definition 1 (Aggregate Streaming). An insertion-only stream (or simply stream) S =
(a1, ag,..., am) is a sequence of integers, where each a; € [n]. A weighted stream S’ =
((a1,w1), (g, wa), ..., (m,wn)) is a sequence of pairs, where each a; € [n] and each w,, € R.
The insertion-only stream S is a special case of a weighted stream with all the weights being
1. The frequency f;(S’) of a weighted stream is defined as the sum of all weights of the item
1. Formally,

1(8") = e Tay = ijw;.

The frequency vector V(S’) € R™ is the vector with i-th coordinate equal to f;(S’), for each
i € [n]. The p-th frequency moment, for p > 0, is defined as

Fyp(S") = [V(SIE = i f(ST).
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For time 0 < t; <ty < m, we let

Sl:tl p— <(a1,wl),(02,102),-~~7(at13wt1)> and

Stz = <(at1’wt1)> (at1+17 wt1+1)’ R (atz’ wtz))

be sub-streams of S’ from 1 to ¢; or from ¢; to ts.

We introduce a discretized version of the a-Fréchet distribution: the a-Inverse distribution.

» Definition 2. Fixing an o > 0, we say a random variable X on N is drawn from an
a-Inverse distribution if
PIX <a2]=1--% for zeNy.

» Definition 3 («a-Scaling Transformation). Given an a > 0, an a-scaling transformation
(ST) Tia = [n]™ — ([k] x [n] x R)™ is a function acting on a stream of length m on the
universe [n]. On input stream S, it outputs a weighted stream S’ of length km on universe
[k] x [n] via the following operation: let X; ; be identically distributed and independent (or,
actually, limited independence suffices) a-Inverse random variables, where ¢ = 1,2,...,k and
j7=1,2,...,n. For each a € S, the transformation outputs

776@(@) — ((CL, 1)7 Xl,a), ((a7 2)7 X2,a); ey ((av k)a Xk,a)'

The next lemma shows that the %-th largest element of the transformed frequency vector
gives a good approximation to the a-norm of the vector.

» Lemma 4. Let S be a stream of items from the universe [n]. Let Ty be a pairwise
independent a-ST with k > 2% being an even integer and o > 0, where € € (0, = ). Let

aZe ) 2a

S' = Ty.a(S). Define the two sets,

Us = {(a,7) € 0] X (K] far)(S') = 2/2(1 = I V(S) .}
and

U_ 1= {(a,r) € [n] X [K] : Fam(S") < 221+ V() la}-
Then with probability at least 0.9,

UL > % [U-|<% and |UNU_|>0,
where U is the complement of the set U.

The proof of this lemma is provided in Section B of the full version.

3 A Simple F; Algorithm For Long Streams

We start with a very simple algorithm for approximating F5 in a random order stream. We
denote the algorithm by RANDF2. The algorithm has a parameter b > 0. It treats the stream
updates as a series of length b blocks, i.e.,

S = (B1,Ba,...,Byp)-

25:5
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Initialize a register K = 0. At any time, suppose the current block is B;. The algorithm
simply stores everything it sees until the end of B;. After storing B; entirely, the algorithm
computes

k-3 (fj(fﬁ)

This can be done using blogn bits of space. Then, the counter K is updated as

At the end of the stream, the algorithm computes

_ 2K(m? —m)

y=2‘\" "7
CEDT

where T is the ID of the last complete block, and m is the length of the stream. The
algorithm uses O(blogn) bits. By setting

b = O[max((e?logn)~1,2) - log 1],
we obtain the following theorem.

» Theorem 5. Let S be a random order stream satisfying F5(S) > m -logn. After one pass
over the stream S, Y is a (1 &+ €) approzimation to F»(S) with probability at least 1 — 4.
Moreover, to compute Y, RANDF2 uses O(e~2log §~! + logn) bits of memory.

Proof. For each j € [n], we let its stream updates be ugj),ugj), e ,u(]g)(s). Then K; is
the number of pairs of the form (ug), ug)) appearing in B;. We denote F» = F5(S) and
Fy = Fi(S) for simplicity. Thus,

. > () —m (B°=b
Vi e [T]: EB(K;) = =4 () = B=m (-0

(1“;1) m2—m 2
Thus, by linearity of expectation,
E[Y] = F>.

We now prove that Y is concentrated around its mean. Notice that the algorithm can be
viewed as sampling a number of “pairs”. A pair is formed by two updates to the same
universe element. There are ¢ = (F» — F1)/2 many pairs. Let P = [g] denote the set of pairs.
For each pair z € P, we let X, denote the indicator that X, is sampled by some bucket.
Let K =3 .p X.. Note that this K is the same as the one denoted in the algorithm. Let
Q. = E[K|X1, Xo,...,X,]. The Q, for z =1,2,... form a Doob martingale. Also notice
that |Q, — Q.—1] < 1. Next, we proceed to bound the variance of

Qz - Qz—l = Xz|X17X27 .. -Xz—l-

For a pair z € P, let a,b be the two nodes. Consider a fixed assignment of X7, Xo,... X, 1.
Also note that, knowing X;, the two nodes of the i-th pair are assigned to some block.
Now, if from the X7, Xo,...,X,_1, a,b are both assigned and to the same block, then
X, = 1 and otherwise X, = 0. For both cases Var(Q, — Q.—1) = 0. If a,b are assigned,
but it cannot be determined if they are in the same block, then P[X, = 1] < b/m and
thus Var(X,) < b/m. If only one of a,b is assigned, then P[X, = 1] < b/m, and thus
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Var(X,) < b/m. Lastly, if both a,b are not assigned, then P[X, = 1] < b/m. Thus
Var(X,) < b/m. Overall, we have that v? := Var(Q, — Q._1) < b/m for all possible
Xl, X27 N ,Xzfl. Let

V=3 02 < tm)

2m

Next, by Bernstein’s inequality [14], we have that,

2
P[|K —E(K)| > 1] < 2exp (—m) '

Since we need to have a (1 + €) approximation to Fy, we can set

2t(m? — m)b Fyb
— < eF d t=e—.
2 —=bym — 2 oAl “om

Since Fy > m -logn - log %, and e is sufficiently small, we can bound the error probability by:

.2
P|K —E(K)| > ] < 2exp (2V(1+t/3v)>
22

for b= Q(A%5 ). Finally, since K € E(K) % eF3b/(2m), we have

e2-logn

YeF+et 2nomt o (14 R

as desired. <

4 A Generic Framework for F), Estimation

In this section, we first construct a generic framework for F}, estimation, and then we
construct all the components in subsequent sections. For a random order stream S, we will
need the following three components to construct an Fj, estimation algorithm.

A counter that stores the time for the current update;

An algorithm that gives a constant approximation to the current F,(S*);

An algorithm that computes an accurate (1 & €) approximation to F,(S) given

poly(logn, e~!) approximations to m and F,(S).

To begin, we denote by C2Fp a data structure that, once initialized with a poly(logn,e1)-
approximation of both the length and p-th frequency moments, F,(S), supports two opera-
tions: update and query. At the end of the stream, C2Fp.query() returns either Fail or a
(1 £ e)-approximation to F), of the input stream S. Component (1) will be used to guess the
length of the stream, and component (2) will be used to guess an approximation to F,(S).
We denote component (2) by ConstFp, which is a data structure that supports both update
and query operations. ConstFp.query() returns a 2-approximation to F,(S*) at some fixed ¢.
The full framework is described in Algorithm 1.

Our full algorithm is denoted by RndF,, which uses C2Fp as a subroutine. From a high
level, the algorithm constantly guesses the length of the stream. If at some point in time the
algorithm finds that the current guess of the length is at least a factor C' = poly(e~ !, logn)
smaller than the true value of the stream, then the algorithm initializes a new instance of
C2Fp to estimate the F), value of the stream. At the end, it is guaranteed that a stored
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Algorithm 1: Full algorithm for F}, in random order: RndF,,.

Data:
S = (a1,az2,...,an) is a random order stream of length m from a universe [n] (known in
advance);

€ (0,2] is a real number, which is a constant;

1 Initialize (p,n,¢€,0):

2 mo < 1, m1 <~ 1 Go < 1. Here my is the approximate length, Gy is a guess of I}, € is
the target precision, and § is the failure probability;

3 A: <—new C2Fp(p, €/3,n, mo, Go,0/3), A2 <new C2Fp(p, ¢/3,n, mo, Go,/3);
a Asz <—new ConstFp(p,n,d/3);

5 C’epoly(%,log%);

¢ Update a:

7 Aj.update(a), A2.update(a), As.update(a);
8 my1 < mi + 1;

9 if m1 > Cmo then

10 Al < AQ;

11 Go < As.query();

12 mo <= Mma;

13 Ag <—new C2Fp(p, €/3,n, mo, Go,d/3);
14 Query():
15 return A;.query();

instance of C2Fp uses at least a (1 — poly(e, 1/logn)) portion of the stream to approximate
the frequency moments. It can be verified that an accurate estimation of F}, of this portion
of the stream will serve as a good estimator for the overall stream. Therefore, if C2Fp is able
to output the correct answer with high probability, then the algorithm RndF is guaranteed to
be correct with high probability.

» Theorem 6 (Main Theorem). For fized p € [0,2), € € (0,1),0 € (poly(n), 3), and n € N,
algorithm RndF,, makes a single pass over a random order stream S on universe [n], and
outputs a number F such that, with probability at least 1 — 4,

(1—€)F,(S) < F < (14 €)F,(S),

where the probability is over both the randomness of the algorithm and the randomness of the
data stream. The algorithm uses
1 1 1
O[(= (loglogn + log =)* +logn)log <]
€ € )
bits of memory in the worst case.

Proof. Without loss of generality, we assume F,(S) = Q(poly poly log %), since otherwise
we can use a turnstile F), algorithm with memory O( loglog % + }2 log %) bits to solve the
F,, estimation problem. Initialize mo = 1. Let &' = §™°"™. By definition of the algorithm,
A is an instance of C2Fp that runs on &’. Let 8" = So’m0 and C = polye’lpolylog%. By
definition of the algorithm, we always update mg so that

=< mo <z

C? c’
at the end of the stream. By Lemma 24 and Lemma 25 of the full version of this paper, we
have, with probability at least 1 — §/3,

F, (S) 20n

_ 20n 181og 20
L S Fp(S”) < (1Tlog =) (CTUE,(S) + 4log (181og *5)"

<
5)* C

FP(S)v
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where the last inequality holds for sufficiently large F,(S). Conditioned on this event, we
obtain that

(181log 292)

1/
IVl < g

VSl = 5 IVIS)llp,

for sufficiently large C'. By the triangle inequality, we obtain
1 =¢/GIIVS)lp < IVS)lp = VISl < VS lp < IV(S)llp-

Thus F,(S’) is a (1 +¢/3) approximation to F,(S).

In the algorithm, A3 is an instance of ConstFp, i.e., by Theorem 7. Let G be the output
of As.query(). Since with probability at least 1 — §/3, Az outputs a ¢y approximation to
F,(8") for some constant co, we obtain that Gy is a 57coC?P (log 23%)P~! approximation to
Fo(S").

In the algorithm, A; is an instance of C2Fp, which runs on the stream S’ at any time
t with the required parameters, i.e., Go. By Theorem 8, with probability at least 1 — §/3,

Aq.query() outputs a (1 +€/3) approximation to Fj,(S’), and thus a (1 £ €) approximation

to F,(S). By a union bound, the overall algorithm is correct with probability at least 1 — 6.

By Theorem 16 and Theorem 17, of the full version, the space needed for A; and As is

1 1 1
O[(e—z(log logn + log =)* + logn) log 5]

€
The space needed for Az is O(lognlog %) (Theorem 7). Thus the total space is dominated
by the total space used by A; and A, as desired. <

The following is a theorem required in the above proof.

» Theorem 7 (Const. F), approx., [21]).

For a fized n, there exists a turnstile streaming algorithm, which on input a stream S of
length m, outputs a number F € (1% €)F,(S) with probability at least 1 — 6. The algorithm
uses O(e~2logm + loglog(n))log6—1) bits of space in the worst case.

In subsequent sections, we will construct the C2Fp Algorithm.

5 A (1 % €) Approximation to F,, With a Prior

In this section, we construct the algorithm C2Fp. We assume that the input is a random order
stream and that the algorithm is given two parameters, 7 and G, which are poly(e~!, logn)

approximations to the length and the p-th frequency moments of the stream S, respectively.

5.1 High Level Idea

Although the high level idea is introduced in the introduction, we repeat it here with more
details for better understanding of the algorithm. To illustrate the intuition of the algorithm,
we first consider a constant factor approximation algorithm. Estimating the frequency

moments can be reduced to finding the heavy hitters of a scaled vector, as shown in Lemma 4.

Suppose the frequency vector in a stream is v = (f1(S), f2(S), ..., fu(S)), and the scaling
applied to it is X = (X1, Xs, ..., X,,), where the X; are pairwise independent p-Inverse (see
Definition 2) random variables. Let ¢* be the maximum of the scaled vector. By Lemma 4, we
expect X?. ff.(8) = F,. We group the coordinates of v into ©(logn) levels by their scalings,
ie., if 27%F, < XP <27“t1F  then i is in level w. Let Z,, C [n] be the universe items in

25:9

ICALP 2018



25:10

Revisiting Frequency Moment Estimation in Random Order Streams

level w. We observe that if i* € Z,, then f£(S) = Q(2"). Luckily, we can also show that,

in expectation, ¢* is an Fj,-heavy hitter of the substream induced by Z,,. Our algorithm

is simply looking for i* from Z,, for every w € [logn|. One may notice that if we run the

search instances in parallel, then there will be a logn factor blowup in the space. However,

we can show that in a random order stream, one can choose a wy = O(loglogn) such that

1. for all w > wy: the search for ¢* can be done in one pass and in series for each w.

2. for all w < wg: with high probability, |Z,,| = poly logn. We thus do a brute force search
for each level w below wq in parallel.

The final space overhead is a poly(wp) factor rather than ©(logn).

To reduce the error from constant to (1 + €), we repeat the above process @(6%) times
conceptually. Namely, we apply a p-ST 7, transformation to the stream, where k = @(6%)
Forr=1,2,...,[k],4i=1,2,...,n, we denote the scaling p-Inverse random variable by Xi(T).
We wish to find the heavy hitter for each r using the same procedure described above. By
Lemma 4, the k/2-th largest of all the outputs serves as a good approximation to F,(S).

5.2 The Algorithm

The algorithm needs three components, SmallApprox, SmallCont and LargeCont. All
these algorithms support “update” and “query”
F,(S) is much larger than poly(e~!,logn), otherwise returns an approximation to F,(S).
SmallApprox is a turnstile streaming F), algorithm [21] but with restricted memory. Once the

operations. SmallApprox returns fail if

memory exceeds the memory quota, the algorithm simply returns Fail. SmallCont estimates
the contribution from the small-valued frequencies and LargeCont estimates the contribution
from the large-valued frequencies. The correctness of these algorithms is presented in
Theorem 16 and 17 of the full version of this paper. The full algorithm is presented in
Algorithm 2. The following theorem guarantees its correctness.

» Theorem 8. Fiz p € [0,2], ¢ € (0,1/2) and 6 = Q(1/poly(n)). Let S be a random
order stream on universe [n] and with length m. Given that Cy 'Fy(S) < Gy < F,(S) and
C’O_lm < mg < m for some Cy = poly(e~1,logn), there exists an algorithm A, which makes
a single pass over S and outputs a number F such that F € (1 £ €)F,(S) with probability
at least 1 — &, where the probability is over both the randomness of the algorithm and of the
order of the stream. The algorithm uses

Ol[(% (loglogn + log 1)* +log n) log $]

€

bits of memory in the worst case.

We postpone the full proof and detailed algorithmic constructions to the appendix.

6 Deterministic Algorithm for F,, Approximation

In this section we introduce our deterministic algorithm for F}, approximation, which follows
from our randomized algorithm with an initial space-efficient randomness extraction procedure
applied to a prefix of the stream.

6.1 Upper Bound

» Theorem 9. Fiz p > 0,e¢ € (0,1). There exists a deterministic algorithm that makes
a single pass over a random order stream S on the universe [n], and outputs a number
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Algorithm 2: F,-Algorithm with Approximation: C2Fp(p, €, n, mg, Go).
Data:

p € [0,2], a real number;
Le [ch(;s) , F,(8)] for some Cy = O[poly(e~!,logn)];

mo € [%7m]7

S ={ay,as9,...,a,) is random order stream of length m;
Result: F' € (1+¢€)F,(S);

1 Initialize(p, n, ¢, d):

2 k @(6%);
3 Xi(r) ~ p-Inverse distribution for ¢ € [n] and r € [k], pairwise independent;
4 wgy — do(log logn + log %) for some large constant dy;
5 Let K € R™ ¥ have entries K; , = XZ-(T)vi (only for notational purposes);
6 B; < new SmallApprox(p,n,e€);

7 By + new SmallCont(p,n, k, €, wo, L, {X]});

8 Bs < new LargeCont(p,n, k, €, wo, L, { X[ });

9 Update(a):
10 Bj.update(a); By.update(a); Bs.update(a);
11 Query:
12 if By.query() #Fail then

13 L return Bj.query()

14 else if Bs.query() =Fail or Bs.query() =Fail then
15 L return Fail;

16 else
17 L R <+ the (k/2)-th largest element of Bs.query() o Bs.query();

18 return (R)?/2

F € (1+¢€)F,(S) with probability at least 1 — 6, where the randomness is over the order of
the stream updates. The algorithm uses

1 NN 1 1\ 1 1
O|—= | loglogn +log— | log— +logn- | loglogn +log= | - = + lognlog —
€2 € 0 0) o €

bits of memory, provided § > 1/poly(n).

Proof. W.l.o.g., we assume € > 1/4/n, since otherwise we can simply store an approximate
counter for each item in the stream. It is sufficient to show that we are able to derandomize
the randomized algorithm using the random updates from the stream using a near-logarithmic
number of bits of space. First we pick s = O(loglogn + log §~1) and store all the universe
items, their frequencies and their first arrival times until we obtain s distinct items in the
stream. Let z; denote when the this happens. We assume the stream is long enough that
this step can be done, since otherwise we obtain an exact estimate of F},. We show in Section
6.1.1 how to obtain a nearly uniformly random seed of s bits.

We thus obtain a nearly uniform sample from all the prime numbers with O(loglogn +
log ) bits (note that there are poly(logn/§) many such prime numbers). Let this sampled
prime number be g. For the next O(logn/§) distinct universe items, denoted by R, we argue
that with probability at least 1 — ¢, all of them are distinct modulo ¢. Indeed, consider any
r1,72 € R with 1 # ry. Then 7 — ro can have at most log n prime factors ( [17], p.355). For
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all (\12%\) pairs, their differences can have at most O(log® n/§%) distinct prime factors in total.
Thus with probability at least 1 — ¢, ¢ does not divide any of the differences. Therefore
the set R is mapped to distinct numbers modulo q. The value ¢ can be stored using at
O(loglogn + log 3) bits.

Next we approximately store the frequencies of each item in R using the random order
stream. To do this, we first fix the following numbers g; = 1,90 = 2,95 = 4,...,g; = 2°~ L.
For each r € R, we store the largest number i such that f,.(S*1'%) = poly(logn,e~!) and
fr(8#1:9) as well. Therefore, such an operation only costs (’)(k’%(log logn+log 5 +loge™1))
bits. By Lemma 22 of the full version, the frequency of each item is preserved up to a (1 +¢)
factor with probability at least 1 —1/poly(n). Note that if the stream ends before we observe
all of R, we obtain a good approximation to F,(S) immediately. We also store the first
occurrence in the stream of each item in R. We also store the parity of the first appearance
of each item.

Repeating the extraction argument in Section 6.1.1 for the set R, we can now extract
O(logn) bits that is (1 £ ¢) close to uniform. Given these bits, it now suffices to run our
earlier randomized algorithm on the remaining part of the stream.

There is one last problem remaining, however. Namely, it may be the case that the stream
used for extracting random bits contributes too much to F,(S), causing the estimation of the
randomized algorithm to have too much error (since the prefix and the suffix of the stream
share the same items, we need to take the p-th power of the sum of their frequencies). This
problem can be solved as follows — we can continue the frequency estimation in parallel with
the randomized algorithm until the F), value becomes at least a 1/e factor larger than the
time when we initialized our randomized algorithm. Therefore, if the stream ends before this
happens, then we use the frequency estimates for calculating F,(S) from our deterministic
algorithm. Otherwise we use the value of the randomized algorithm (which is seeded with
the seed found by our deterministic algorithm). In either case, the overall error is at most
ek, |

6.1.1 Derandomization

Let s > 0 be a parameter. Suppose we store ¢ = O(s/J) distinct universe items with their
approximate frequencies as well as the IDs and the parities of their first appearances in the
stream. Denote the set of these items by H and the overall length of the stream as m/. First,
we sort the items by their approximate counts and take the smallest §¢/100 items as set
L. We additionally sort the items in L by their IDs, and obtain a bit string b of length |L|,
where each bit b; is the parity of the first appearance of the i-th item in L. Since L contains
the smallest 0t/100 items of H, we have for each w € L, f,,(S®™) < m’/t/(1—6/100). Thus
for each bit b;,

2
Plbo; =0 Plo: = 1] € 5 + —.
and
12 1 5L 1 b
IL] . — 4 2L -
vz € {0,1} .P[b_m]e(zim/) C2|L‘(1:|: m/)CQ\L|(1i20)'

As such, we obtain a bit stream of length €(s), that is close to uniform bits up to a (1 £ 9)
factor.
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