
Nearly Optimal Distinct Elements and Heavy1

Hitters on Sliding Windows2

Vladimir Braverman1
3

Department of Computer Science, Johns Hopkins University, Baltimore, Maryland, USA4

vova@cs.jhu.edu5

Elena Grigorescu2
6

Department of Computer Science, Purdue University, West Lafayette, Indiana, USA7

elena-g@purdue.edu8

Harry Lang3
9

Department of Mathematics, Johns Hopkins University, Baltimore, MD.10

hlang8@jhu.edu11

David P. Woodruff 4
12

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA.13

dwoodruf@cs.cmu.edu14

Samson Zhou2
15

Department of Computer Science, Purdue University, West Lafayette, Indiana, USA16

samsonzhou@gmail.com17

Abstract18

We study the distinct elements and `p-heavy hitters problems in the sliding window model, where19

only the most recent n elements in the data stream form the underlying set. We first introduce the20

composable histogram, a simple twist on the exponential (Datar et al., SODA 2002) and smooth21

histograms (Braverman and Ostrovsky, FOCS 2007) that may be of independent interest. We22

then show that the composable histogram along with a careful combination of existing techniques23

to track either the identity or frequency of a few specific items suffices to obtain algorithms for24

both distinct elements and `p-heavy hitters that are nearly optimal in both n and ε.25

Applying our new composable histogram framework, we provide an algorithm that out-26

puts a (1 + ε)-approximation to the number of distinct elements in the sliding window model27

and uses O
(1
ε2 logn log 1

ε log logn+ 1
ε log2 n

)
bits of space. For `p-heavy hitters, we provide28

an algorithm using space O
(1
εp log2 n

(
log2 logn+ log 1

ε

))
for 0 < p ≤ 2, improving upon29

the best-known algorithm for `2-heavy hitters (Braverman et al., COCOON 2014), which has30

space complexity O
(1
ε4 log3 n

)
. We also show complementing nearly optimal lower bounds of31

Ω
(1
ε log2 n+ 1

ε2 logn
)
for distinct elements and Ω

(1
εp log2 n

)
for `p-heavy hitters, both tight up32

to O (log logn) and O
(
log 1

ε

)
factors.33

2012 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems34

Keywords and phrases Streaming algorithms, sliding windows, heavy hitters, distinct elements35

1This material is based upon work supported in part by the National Science Foundation under Grants
No. 1447639, 1650041, and 1652257, Cisco faculty award, and by the ONR Award N00014-18-1-2364.

2Research supported in part by NSF CCF-1649515.
3This material is based upon work supported by the Franco-American Fulbright Commission. The

author thanks INRIA (l’Institut national de recherche en informatique et en automatique) for hosting
him during the writing of this paper.

4D. Woodruff would like to acknowledge the support by the National Science Foundation under Grant
No. CCF-1815840.

© Vladimir Braverman, Elena Grigorescu, Harry Lang, David P. Woodruff, and Samson Zhou;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2018).
Editors: Eric Blais, Klaus Jansen, José D. P. Rolim, and David Steurer; Article No. 7; pp. 7:1–7:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:vova@cs.jhu.edu
mailto:elena-g@purdue.edu
mailto:hlang8@jhu.edu
mailto:dwoodruf@cs.cmu.edu
mailto:samsonzhou@gmail.com
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

7:2 Nearly Optimal Distinct Elements and Heavy Hitters on Sliding Windows

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2018.736

1 Introduction37

The streaming model has emerged as a popular computational model to describe large data38

sets that arrive sequentially. In the streaming model, each element of the input arrives one-39

by-one and algorithms can only access each element once. This implies that any element40

that is not explicitly stored by the algorithm is lost forever. While the streaming model is41

broadly useful, it does not fully capture the situation in domains where data is time-sensitive42

such as network monitoring [29, 30, 33] and event detection in social media [61]. In these43

domains, elements of the stream appearing more recently are considered more relevant than44

older elements. The sliding window model was developed to capture this situation [35]. In45

this model, the goal is to maintain computation on only the most recent n elements of the46

stream, rather than on the stream in its entirety. We call the most recent n elements active47

and the remaining elements expired. Any query is performed over the set of active items48

(referred to as the current window) while ignoring all expired elements.49

The problem of identifying the number of distinct elements, is one of the foundational50

problems in the streaming model.51

I Problem 1 (Distinct elements). Given an input S of elements in [m], output the number52

of items i whose frequency fi satisfies fi > 0.53

The objective of identifying heavy hitters, also known as frequent items, is also one of the54

most well-studied and fundamental problems.55

I Problem 2 (`p-heavy hitters). Given parameters 0 < φ < ε < 1 and an input S of elements56

in [m], output all items i whose frequency fi satisfies fi ≥ ε(Fp)1/p and no item i for which57

fi ≤ (ε− φ)(Fp)1/p, where Fp =
∑
i∈[m] f

p
i . (The parameter φ is typically assumed to be at58

least cε for some fixed constant 0 < c < 1.)59

In this paper, we study the distinct elements and heavy hitters problems in the sliding60

window model. We show almost tight results for both problems, using several clean tweaks61

to existing algorithms. In particular, we introduce the composable histogram, a modification62

to the exponential histogram [35] and smooth histogram [19], that may be of independent63

interest. We detail our results and techniques in the following section, but defer complete64

proofs to the full version of the paper [16].65

1.1 Our Contributions66

Distinct elements.67

An algorithm storing O
(1
ε2 logn log 1

δ (log 1
ε + log logn)

)
bits in the insertion-only model68

was previously provided [53]. Plugging the algorithm into the smooth histogram framework69

of [19] yields a space complexity of O
(1
ε3 log3 n(log 1

ε + log logn)
)
bits. We improve this70

significantly as detailed in the following theorem.71

I Theorem 1. Given ε > 0, there exists an algorithm that, with probability at least 2
3 ,72

provides a (1 + ε)-approximation to the number of distinct elements in the sliding window73

model, using O
(1
ε2 logn log 1

ε log logn+ 1
ε log2 n

)
bits of space.74

A known lower bound is Ω
(1
ε2 + logn

)
bits [1, 50] for insertion-only streams, which is also75

applicable to sliding windows since the model is strictly more difficult. We give a lower76

bound for distinct elements in the sliding window model, showing that our algorithm is77

nearly optimal, up to log 1
ε and log logn factors, in both n and ε.78

http://dx.doi.org/10.4230/LIPIcs.APPROX/RANDOM.2018.7

Braverman et. al. 7:3

I Theorem 2. Let 0 < ε ≤ 1√
n
. Any one-pass streaming algorithm that returns a (1 + ε)-79

approximation to the number of distinct elements in the sliding window model with probability80

2
3 requires Ω

(1
ε log2 n+ 1

ε2 logn
)
bits of space.81

`p-heavy hitters.82

We first recall in Lemma 16 a condition that allows the reduction from the problem of83

finding the `p-heavy hitters for 0 < p ≤ 2 to the problem of finding the `2-heavy hitters. An84

algorithm of [12] allows us to maintain an estimate of F2. However, observe in Problem 285

that an estimate for F2 is only part of the problem. We must also identify which elements are86

heavy. First, we show how to use tools from [13] to find a superset of the heavy hitters. This87

alone is not enough since we may return false-positives (elements such that fi < (ε−φ)
√
F2).88

By keeping a careful count of the elements (shown in Section 4), we are able to remove these89

false-positives and obtain the following result, where we have set φ = 11
12ε:90

I Theorem 3. Given ε > 0 and 0 < p ≤ 2, there exists an algorithm in the sliding window91

model that, with probability at least 2
3 , outputs all indices i ∈ [m] for which fi ≥ εF 1/p

p , and92

reports no indices i ∈ [m] for which fi ≤ ε
12F

1/p
p . The algorithm has space complexity (in93

bits) O
(1
εp log2 n

(
log2 logn+ log 1

ε

))
.94

Finally, we obtain a lower bound for `p-heavy hitters in the sliding window model, showing95

that our algorithm is nearly optimal (up to log 1
ε and log logn factors) in both n and ε.96

I Theorem 4. Let p > 0 and ε, δ ∈ (0, 1). Any one-pass streaming algorithm that returns the97

`p-heavy hitters in the sliding window model with probability 1−δ requires Ω((1−δ)ε−p log2 n)98

bits of space.99

More details are provided in Section 4 and Section 5.100

By standard amplification techniques any result that succeeds with probability 2
3 can be101

made to succeed with probability 1−δ while multiplying the space and time complexities by102

O
(
log 1

δ

)
. Therefore Theorem 1 and Theorem 15 can be taken with regard to any positive103

probability of failure.104

See Table 1 for a comparison between our results and previous work.105

Problem Previous Bound New Bound
`2-heavy hitters O

(
1
ε4 log3 n

)
[15] O

(
1
ε2 log2 n

(
log2 logn+ log2 1

ε

))
Distinct elements O

(
1
ε3 log2 n+ 1

ε
log3 n

)
[53, 19] O

(
1
ε2 log 1

ε
logn log logn+ 1

ε
log2 n

)
Table 1 Our improvements for `2-heavy hitters and distinct elements in the sliding window

model.

1.2 Our Techniques106

We introduce a simple extension of the exponential and smooth histogram frameworks, which107

use several instances of an underlying streaming algorithm. In contrast with the existing108

frameworks where O (logn) different sketches are maintained, we observe in Section 2 when109

the underlying algorithm has certain guarantees, then we can store these sketches more110

efficiently.111

APPROX/RANDOM 2018

7:4 Nearly Optimal Distinct Elements and Heavy Hitters on Sliding Windows

pi−n−2 pi−n−1

pi−n−1

pi−n

pi−n

. . .

. . .

pi−n−2 ppii−n−1 ppii−nn . . .

Sliding window begins

pi−n . . .

. . . pi

. . . pi

. . . pi

. . . pi

. . . pi

. . . pi

. . . pi

. . . pi

Figure 1 Each horizontal bar represents an instance of the insertion-only algorithm. The red
instance represents the sliding window. Storing an instance beginning at each possible start point
would ensure that the exact window is always available, but this requires linear space. To achieve
polylogarithmic space, the histogram stores a strategically chosen set of O (logn) instances (shaded
grey) so that the value of f on any window can be (1+ ε)-approximated by its value on an adjacent
window.

Sketching Algorithms112

Consider the sliding window model, where elements eventually expire. A very simple (but113

wasteful) algorithm is to simply begin a new instance of the insertion-only algorithm upon114

the arrival of each new element (Figure 1). The smooth histogram of [19], summarized in115

Algorithm 1, shows that storing only O (log n) instances suffices.116

Algorithm 1 Input: a stream of elements p1, p2, . . . from [m], a window length n ≥ 1, error
ε ∈ (0, 1)
1: T ← 0
2: i ← 1
3: loop
4: Get pi from stream
5: T ← T + 1; tT ← i; Compute D(tT), where f̂(D) is a

(
1 ± ε

4

)
-approximation of f .

6: for all 1 < j < T do
7: if f̂(D(tj−1 : tT)) <

(
1 − ε

4

)
f̂(D(tj+1 : tT)) then

8: Delete tj ; update indices; T ← T − 1
9: if t2 < i − n then
10: Delete t1; update indices; T ← T − 1
11: i ← i + 1

Algorithm 1 may delete indices for either of two reasons. The first (Lines 9-10) is that117

the index simply expires from the sliding window. The second (Lines 7-8) is that the indices118

immediately before (tj−1) and after (tj+1) are so close that they can be used to approximate119

tj .120

For the distinct elements problem (Section 3), we first claim that a well-known streaming121

algorithm [6] provides a (1+ε)-approximation to the number of distinct elements at all points122

in the stream. Although this algorithm is suboptimal for insertion-only streams, we show123

that it is amenable to the conditions of a composable histogram (Theorem 6). Namely, we124

show there is a sketch of this algorithm that is monotonic over suffixes of the stream, and125

thus there exists an efficient encoding that efficiently stores D(ti : ti+1) for each 1 ≤ i < T ,126

which allows us to reduce the space overhead for the distinct elements problem.127

For �2-heavy hitters (Section 4), we show that the �2 norm algorithm of [12] also satisfies128

Braverman et. al. 7:5

the sketching requirement. Thus, plugging this into Algorithm 1 yields a method to maintain129

an estimate of `2. Algorithm 2 uses this subroutine to return the identities of the heavy130

hitters. However, we would still require that all n instances succeed since evenO (1) instances131

that fail adversarially could render the entire structure invalid by tricking the histogram into132

deleting the wrong information (see [19] for details). We show that the `2 norm algorithm133

of [12] actually contains additional structure that only requires the correctness of polylog(n)134

instances, thus improving our space usage.135

1.3 Lower Bounds136

Distinct elements.137

To show a lower bound of Ω
(1
ε log2 n+ 1

ε2 logn
)
for the distinct elements problems, we138

show in Theorem 19 a lower bound of Ω
(1
ε log2 n

)
and we show in Theorem 22 a lower139

bound of Ω
(1
ε2 logn

)
. We first obtain a lower bound of Ω

(1
ε log2 n

)
by a reduction from140

the IndexGreater problem, where Alice is given a string S = x1x2 · · ·xm and each xi has n141

bits so that S has mn bits in total. Bob is given integers i ∈ [m] and j ∈ [2n] and must142

determine whether xi > j or xi ≤ j.143

Given an instance of the IndexGreater problem, Alice splits the data stream into blocks144

of size O
(

εn
logn

)
and further splits each block into

√
n pieces of length (1 + 2ε)k, padding145

the remainder of each block with zeros if necessary. For each i ∈ [m], Alice encodes xi146

by inserting the elements {0, 1, . . . , (1 + 2ε)k − 1} into piece xi of block (` − i + 1). Thus,147

the number of distinct elements in each block is much larger than the sum of the number148

of distinct elements in the subsequent blocks. Furthermore, the location of the distinct149

elements in block (`− i+ 1) encodes xi, so that Bob can recover xi and compare it with j.150

We then obtain a lower bound of Ω
(1
ε2 logn

)
by a reduction from the GapHamming151

problem. In this problem, Alice and Bob receive length-n bitstrings x and y, which have152

Hamming distance either at least n
2 +
√
n or at most n

2 −
√
n, and must decide whether153

the Hamming distance between x and y is at least n
2 . Recall that for ε ≤ 2√

n
, a (1 + ε)-154

approximation can differentiate between at least n
2 +
√
n and at most n

2 −
√
n. We use this155

idea to show a lower bound of Ω
(1
ε2 logn

)
by embedding Ω(logn) instances of GapHamming156

into the stream. As in the previous case, the number of distinct elements corresponding157

to each instance is much larger than the sum of the number of distinct elements for the158

remaining instances, so that a (1 + ε)-approximation to the number of distinct elements in159

the sliding window solves the GapHamming problem for each instance.160

Heavy hitters.161

To show a lower bound on the problem of finding `p-heavy hitters in the sliding window162

model, we give a reduction from the AugmentedIndex problem. Recall that in the Augmente-163

dIndex problem, Alice is given a length-n string S ∈ {1, 2 . . . , k}n (which we write as [k]n)164

while Bob is given an index i ∈ [n], as well as S[1, i− 1], and must output the ith symbol of165

the string, S[i]. To encode S[i] for S ∈ [k]n, Alice creates a data stream a1 ◦a2 ◦ . . .◦ab with166

the invariant that the heavy hitters in the suffix ai ◦ ai+1 ◦ . . . ◦ ab encode S[i]. Specifically,167

the heavy hitters in the suffix will be concentrated in the substream ai and the identities168

of each heavy hitter in ai gives a bit of information about the value of S[i]. To determine169

S[i], Bob expires the elements a1, a2, . . . , ai−1 so all that remains in the sliding window is170

ai ◦ ai+1 ◦ . . . ◦ ab, whose heavy hitters encode S[i].171

APPROX/RANDOM 2018

7:6 Nearly Optimal Distinct Elements and Heavy Hitters on Sliding Windows

1.4 Related Work172

The study of the distinct elements problem in the streaming model was initiated by Flajolet173

and Martin [44] and developed by a long line of work [1, 45, 6, 38, 43]. Kane, Nelson, and174

Woodruff [53] give an optimal algorithm, using O
(1
ε2 + logn

)
bits of space, for providing a175

(1 + ε)-approximation to the number of distinct elements in a data stream, with constant176

probability. Blasiok [9] shows that to boost this probability up to 1−δ for a given 0 < δ < 1,177

the standard approach of running O
(
log 1

δ

)
independent instances is actually sub-optimal178

and gives an optimal algorithm that uses O
(

log δ−1

ε2 + logn
)
bits of space.179

The `1-heavy hitters problem was first solved by Misra and Gries, who give a determinis-180

tic streaming algorithm using O
(1
ε logn

)
space [59]. Other techniques include the CountMin181

sketch [32], sticky sampling [57], lossy counting [57], sample and hold [40], multi-stage bloom182

filters [21], sketch-guided sampling [54], and CountSketch [26]. Among the numerous appli-183

cations of the `p-heavy hitters problem are network monitoring [37, 62], denial of service184

prevention [40, 4, 31], moment estimation [51], `p-sampling [60], finding duplicates [47],185

iceberg queries [41], and entropy estimation [22, 48].186

A stronger notion of “heavy hitters” is the `2-heavy hitters. This is stronger than the187

`1-guarantee since if fi ≥ εF1 then f2
i ≥ ε2F 2

1 ≥ ε2F2 (and so fi ≥ ε
√
F2). Thus any188

algorithm that finds the `2-heavy hitters will also find all items satisfying the `1-guarantee.189

In contrast, consider a stream that has fi =
√
m for some i and fj = 1 for all other elements190

j in the universe. Then the `2-heavy hitters algorithm will successfully identify i for some191

constant ε, whereas an algorithm that only provides the `1-guarantee requires ε = 1√
n
, and192

therefore Ω(
√
n logn) space for identifying i. Moreover, the `2-gaurantee is the best we can193

do in polylogarithmic space, since for p > 2 it has been shown that identifying `p-heavy194

hitters requires Ω(n1−2/p) bits of space [23, 5].195

The most fundamental data stream setting is the insertion-only model where elements196

arrive one-by-one. In the insertion-deletion model, a previously inserted element can be197

deleted (each stream element is assigned +1 or −1, generalizing the insertion-only model198

where only +1 is used). Finally, in the sliding window model, a length n is given and the199

stream consists only of insertions; points expire after n insertions, meaning that (unlike the200

insertion-deletion model) the deletions are implicit. Letting S = s1, s2, . . . be the stream, at201

time t the frequency vector is built from the window W = {st−(n−1), . . . , st} as the active202

elements, whereas items {s1, . . . , st−n} are expired. The objective is to identify and report203

the “heavy hitters”, namely, the items i for which fi is large with respect to W .204

Table 2 shows prior work for `2-heavy hitters in the various streaming models. A retuning205

of CountSketch in [63] solves the problem of `2-heavy hitters in O
(
log2 n

)
bits of space.206

More recently, [13] presents an `2-heavy hitters algorithm using O (logn log logn) space.207

This algorithm is further improved to an O (logn) space algorithm in [12], which is optimal.208

In the insertion-deletion model, CountSketch is space optimal [26, 52], but the update209

time per arriving element is improved by [55]. Thus in some sense, the `2-heavy hitters210

problem is completely understood in all regimes except the sliding window model. We211

provide a nearly optimal algorithm for this setting, as shown in Table 2.212

We now turn our attention to the sliding window model. The pioneering work by Datar213

et al. [35] introduced the exponential histogram as a framework for estimating statistics214

in the sliding window model. Among the applications of the exponential histogram are215

quantities such as count, sum of positive integers, average, and `p norms. Numerous other216

significant works include improvements to count and sum [46], frequent itemsets [28], fre-217

quency counts and quantiles [2, 56], rarity and similarity [36], variance and k-medians [3] and218

Braverman et. al. 7:7

Model Upper Bound Lower Bound
Insertion-Only O

(
ε−2 logn

)
[12] Ω(ε−2 logn) [Folklore]

Insertion-Deletion O
(
ε−2 log2 n

)
[26] Ω(ε−2 log2 n) [52]

Sliding Windows O
(
ε−2 log2 n(log ε−1 + log logn)

)
[Theorem 15] Ω(ε−2 log2 n) [Theorem 4]

Table 2 Space complexity in bits of computing `2-heavy hitters in various streaming models.
We write n = |S| and to simplify bounds we assume logn = O (logm).

other geometric problems [42, 25]. Braverman and Ostrovsky [19] introduced the smooth219

histogram as a framework that extends to smooth functions. [19] also provides sliding win-220

dow algorithms for frequency moments, geometric mean and longest increasing subsequence.221

The ideas presented by [19] also led to a number of other results in the sliding window model222

[34, 17, 20, 18, 27, 39, 14]. In particular, Braverman et al. [15] provide an algorithm that223

finds the `2-heavy hitters in the sliding window model with φ = cε for some constant c > 0,224

using O
(1
ε4 log3 n

)
bits of space, improving on results by [49]. [7] also implements and pro-225

vides empirical analysis of algorithms finding heavy hitters in the sliding window model.226

Significantly, these data structures consider insertion-only data streams for the sliding win-227

dow model; once an element arrives in the data stream, it remains until it expires. It remains228

a challenge to provide a general framework for data streams that might contain elements229

“negative” in magnitude, or even strict turnstile models. For a survey on sliding window230

algorithms, we refer the reader to [11].231

2 Composable Histogram Data Structure Framework232

We first describe a data structure which improves upon smooth histograms for the estimation233

of functions with a certain class of algorithms. This data structure provides the intuition for234

the space bounds in Theorem 1. Before describing the data structure, we need the definition235

a smooth function.236

I Definition 5. [19] A function f ≥ 1 is (α, β)-smooth if it has the following properties:237

Monotonicity f(A) ≥ f(B) for B ⊆ A (B is a suffix of A)238

Polynomial boundedness There exists c > 0 such that f(A) ≤ nc.239

Smoothness For any ε ∈ (0, 1), there exists α ∈ (0, 1), β ∈ (0, α] so that if B ⊆ A and240

(1− β)f(A) ≤ f(B), then (1− α)f(A ∪ C) ≤ f(B ∪ C) for any adjacent C.241

We emphasize a crucial observation made in [19]. Namely, for p > 1, `p is a
(
ε, ε

p

p

)
-smooth242

function while for p ≤ 1, `p is a (ε, ε)-smooth function.243

Given a data stream S = p1, p2, . . . , pn and a function f , let f(t1, t2) represent f applied244

to the substream pt1 , pt1+1, . . . , pt2 . Furthermore, let D(t1 : t2) represent the data structure245

used to approximate f(t1, t2).246

I Theorem 6. Let f be an (α, β)-smooth function so that f = O (nc) for some constant c.247

Suppose that for all ε, δ > 0:248

(1) There exists an algorithm A that maintains at each time t a data structure D(1 : t)249

which allows it to output a value f̂(1, t) so that250

Pr
[
|f̂(1, t)− f(1, t)| ≤ ε

2f(1, t), for all 0 ≤ t ≤ n
]
≥ 1− δ.251

(2) There exists an algorithm B which, given D(t1 : ti) and D(ti + 1 : ti+1), can compute252

D(ti : ti+1). Moreover, suppose storing D(ti : ti+1) uses O (gi(ε, δ)) bits of space.253

APPROX/RANDOM 2018

7:8 Nearly Optimal Distinct Elements and Heavy Hitters on Sliding Windows

Then there exists an algorithm that provides a (1 + ε)-approximation to f on the sliding254

window, using O

 1
β

log2 n+

4
β logn∑
i=1

gi

(
ε,
δ

n

) bits of space.255

We remark that the first condition of Theorem 6 is called “strong tracking” and well-256

motivated by [10].257

3 Distinct Elements258

We first show that a well-known streaming algorithm that provides a (1 + ε)-approximation259

to the number of distinct elements actually also provides strong tracking. Although this al-260

gorithm uses O
(1
ε2 logn

)
bits of space and is suboptimal for insertion-only streams, we show261

that it is amenable to the conditions of Theorem 6. Thus, we describe a few modifications262

to this algorithm to provide a (1 + ε)-approximation to the number of distinct elements in263

the sliding window model.264

Define lsb(x) to be the 0-based index of least significant bit of a non-negative integer x265

in binary representation. For example, lsb(10) = 1 and lsb(0) := log(m) where we assume266

log(m) = O (logn). Let S ⊂ [m] and h : [m] → {0, 1}logm be a random hash function. Let267

Sk := {s ∈ S : lsb(h(s)) ≥ k} so that 2k|Sk| is an unbiased estimator for |S|. Moreover, for268

k such that E[Sk] = Θ
(1
ε2

)
, the standard deviation of 2k|Sk| is O (ε|S|). Let h2 : [m] →269

[B] be a pairwise independent random hash function with B = 100
ε2 . Let ΦB(m) be the270

expected number of non-empty bins after m balls are thrown at random into B bins so that271

E[|h2(Sk)|] = ΦB(|Sk|).272

I Fact 7. Φm(t) = t
(
1−

(
1− 1

t

)m)
273

Blasiok provides an optimal algorithm for a constant factor approximation to the number274

of distinct elements with strong tracking.275

I Theorem 8. [9] There is a streaming algorithm that, with probability 1 − δ, reports a276

(1 + ε)-approximation to the number of distinct elements in the stream after every update277

and uses O
(

log logn+log δ−1

ε2 + logn
)
bits of space.278

Thus we define an algorithm Oracle that provides a 2-approximation to the number of distinct279

elements in the stream after every update, using O (logn) bits of space.280

Since we can specifically track up to O
(1
ε2

)
distinct elements, let us consider the case281

where the number of distinct elements is ω
(1
ε2

)
. Given access to Oracle to output an estimate282

K, which is a 2-approximation to the number of distinct elements, we can determine an283

integer k > 0 for which K
2k = O

(1
ε2

)
. Then the quantity 2kΦ−1

B (|h2(Sk)|) provides both284

strong tracking as well as a (1 + ε)-approximation to the number of distinct elements:285

I Lemma 9. [9] The median of O (log logn) estimators 2kΦ−1
B (|h2(Sk)|) is a (1 + ε)-286

approximation at all times for which the number of distinct elements is Θ
(

2k
ε2

)
, with constant287

probability.288

Hence, it suffices to maintain h2(Si) for each 1 ≤ i ≤ logm, provided access to Oracle to289

find k, and O (log logn) parallel repetitions are sufficient to decrease the variance.290

Indeed, a well-known algorithm for maintaining h2(Si) simply keeps a logm × O
(1
ε2

)
291

table T of bits. For 0 ≤ i ≤ logn, row i of the table corresponds to h2(Si). Specifically, the292

bit in entry (i, j) of T corresponds to 0 if h2(s) 6= j for all s ∈ Si and corresponds to 1 if293

there exists some s ∈ Si such that h2(s) = j. Therefore, the table maintains h2(Si), so then294

Braverman et. al. 7:9

Lemma 9 implies that the table also gives a (1 + ε)-approximation to the number of distinct295

elements at all times, using O
(1
ε2 logn

)
bits of space and access to Oracle. Then the total296

space is O
(1
ε2 logn log logn

)
after again using O (log logn) parallel repetitions to decrease297

the variance.298

Naïvely using this algorithm in the sliding window model would give a space usage de-299

pendency of O
(1
ε3 log2 n log logn

)
. To improve upon this space usage, consider maintaining300

tables for substreams (t1, t), (t2, t), (t3, t), . . . where t1 < t2 < t3 < . . . < t. Let Ti represent301

the table corresponding to substream (ti, t). Since (ti+1, t) is a suffix of (ti, t), then the302

support of the table representing (ti+1, t) is a subset of the support of the table representing303

(ti, t). That is, if the entry (a, b) of Ti+1 is one, then the entry (a, b) of Ti is one, and304

similarly for each j < i. Thus, instead of maintaining 1
ε logn tables of bits corresponding305

to each of the (ti, t), it suffices to maintain a single table T where each entry represents the306

ID of the last table containing a bit of one in the entry. For example, if the entry (a, b) of307

T9 is zero but the entry (a, b) of T8 is one, then the entry (a, b) for T is 8. Hence, T is a308

table of size logm×O
(1
ε2

)
, with each entry having size O

(
log 1

ε + log logn
)
bits, for a total309

space of O
(1
ε2 logn

(
log 1

ε + log logn
))

bits. Finally, we need O
(1
ε log2 n

)
bits to maintain310

the starting index ti for each of the 1
ε logn tables represented by T . Again using a number311

of repetitions, the space usage is O
(1
ε2 logn

(
log 1

ε + log logn
)

log logn+ 1
ε log2 n

)
.312

Since this table is simply a clever encoding of the O
(1
ε logn

)
tables used in the smooth313

histogram data structure, correctness immediately follows. We emphasize that the improve-314

ment in space follows from the idea of Theorem 6. That is, instead of storing a separate315

table for each instance of the algorithm in the smooth histogram, we instead simply keep316

the difference between each instance.317

Finally, observe that each column in T is monotonically decreasing. This is because318

Sk := {s ∈ S : lsb(h(s)) ≥ k} is a subset of Sk−1. Alternatively, if an item has been sampled319

to level k, it must have also been sampled to level k−1. Instead of using O
(
log 1

ε + log logn
)

320

bits per entry, we can efficiently encode the entries for each column in T with the observation321

that each column is monotonically decreasing.322

Proof of Theorem 1: Since the largest index of Ti is i = 1
ε logn and T has logm323

rows, the number of possible columns is
(1
ε logn+logm−1

logm
)
, which can be encoded using324

O
(
logn log 1

ε

)
bits. Correctness follows immediately from Lemma 9 and the fact that the325

estimator is monotonic. Again we use O
(1
ε log2 n

)
bits to maintain the starting index ti326

for each of the 1
ε logn tables represented by T . As T has O

(1
ε2

)
columns and account-327

ing again for the O (log logn) repetitions to decrease the variance, the total space usage is328

O
(1
ε2 logn log 1

ε log logn+ 1
ε log2 n

)
bits. 2329

4 `p Heavy Hitters330

Subsequent analysis by Berinde et al. [8] proved that many of the classic `2-heavy hitter331

algorithms not only revealed the identity of the heavy hitters, but also provided estimates332

of their frequencies. Let ftail(k) be the vector f whose largest k entries are instead set333

to zero. Then an algorithm that, for each heavy hitter i, outputs a quantity f̂i such that334

|f̂i− fi| ≤ ε||ftail(k)||1 ≤ ε||f ||1 is said to satisfy the (ε, k)-tail guarantee. Jowhari et al. [52]335

show an algorithm that finds the `2-heavy hitters and satisfies the tail guarantee can also336

find the `p-heavy hitters. Thus, we first show results for `2-heavy hitters and then use this337

property to prove results for `p-heavy hitters.338

To meet the space guarantees of Theorem 15, we describe an algorithm, Algorithm 2,339

APPROX/RANDOM 2018

7:10 Nearly Optimal Distinct Elements and Heavy Hitters on Sliding Windows

that only uses the framework of Algorithm 1 to provide a 2-approximation of the `2 norm340

of the sliding window. We detail the other aspects of Algorithm 2 in the remainder of the341

section.342

Recall that Algorithm 1 partitions the stream into a series of “jump-points” where f343

increases by a constant multiplicative factor. The oldest jump point is before the sliding344

window and initiates the active window, while the remaining jump points are within the345

sliding window. Therefore, it is possible for some items to be reported as heavy hitters346

after the first jump point, even though they do not appear in the sliding window at all! For347

example, if the active window has `2 norm 2λ, and the sliding window has `2 norm (1 + ε)λ,348

all 2ελ instances of a heavy hitter in the active window can appear before the sliding window349

even begins. Thus, we must prune the list containing all heavy hitters to avoid the elements350

with low frequency in the sliding window.351

To account for this, we begin a counter for each element immediately after the element352

is reported as a potential heavy hitter. However, the counter must be sensitive to the353

sliding window, and so we attempt to use a smooth-histogram to count the frequency of354

each element reported as a potential heavy hitter. Even though the count function is (ε, ε)355

smooth, the necessity to track up to O
(1
ε2

)
heavy hitters prevents us from being able to356

(1 + ε)-approximate the count of each element. Fortunately, a constant approximation of357

the frequency of each element suffices to reject the elements whose frequency is less than358

ε
8`2. This additional data structure improves the space dependency to O

(1
ε2

)
.359

4.1 Background for Heavy Hitters360

We now introduce concepts from [13, 12] to show the conditions of Theorem 6 apply, first361

describing an algorithm from [12] that provides a good approximation of F2 at all times.362

I Theorem 10 (Remark 8 in [12]). For any ε ∈ (0, 1) and δ ∈ [0, 1), there exists a one-pass363

streaming algorithm Estimator that outputs at each time t a value F̂ (t)
2 so that364

Pr
[
|F̂ (t)

2 − F (t)
2 | ≤ εF

(t)
2 , for all 0 ≤ t ≤ n

]
≥ 1− δ,365

and uses O
(1
ε2 logm

(
log logm+ log 1

ε

)
log 1

δ

)
bits of space and O

((
log logm+ log 1

ε

)
log 1

δ

)
366

update time.367

The algorithm of Theorem 10 is a modified version of the AMS estimator [1] as follows.368

Given vectors Zj of 6-wise independent Rademacher (i.e. uniform ±1) random variables,369

let Xj(t) =
〈
Zj , f

(t)〉, where f (t) is the frequency vector at time t. Then [12] shows that370

Yt = 1
N

∑N
j=1 X

2
j,t is a reasonably good estimator for F2. By keeping Xj(1, t1), Xj(t1 +371

1, t2), . . . , Xj(ti + 1, t), we can compute Xj,t from these sketches. Hence, the conditions of372

Theorem 6 are satisfied for Estimator, so Algorithm 1 can be applied to estimate the `2373

norm. One caveat is that naïvely, we still require the probability of failure for each instance374

of Estimator to be at most δ
logn for the data structure to succeed with probability at least375

1− δ. We show in Appendix A that it suffices to only require the probability of failure for376

each instance of Estimator to be at most δ
polylogn , thus incurring only O (log logn) additional377

space rather than O (logn). We now refer to a heavy hitter algorithm from [12] that is space378

optimal up to log 1
ε factors.379

I Theorem 11 (Theorem 11 in [12]). For any ε > 0 and δ ∈ [0, 1), there exists a one-380

pass streaming algorithm, denoted (ε, δ) − BPTree, that with probability at least (1 − δ),381

returns a set of ε
2 -heavy hitters containing every ε-heavy hitter and an approximate fre-382

quency for every item returned satisfying the (ε, 1/ε2)-tail guarantee. The algorithm uses383

Braverman et. al. 7:11

O
(1
ε2

(
log 1

δε

)
(logn+ logm)

)
bits of space and has O

(
log 1

δε

)
update time and O

(1
ε2 log 1

δε

)
384

retrieval time.385

Observe that Theorem 10 combined with Theorem 6 already yields a prohibitively expen-386

sive 1
ε3 dependency on ε. Thus, we can only afford to set ε to some constant in Theorem 10387

and have a constant approximation to F2 in the sliding window.388

At the conclusion of the stream, the data structure of Theorem 6 has another dilemma:389

either it reports the heavy hitters for a set of elements S1 that is a superset of the sliding390

window or it reports the heavy hitters for a set of elements S2 that is a subset of the sliding391

window. In the former case, we can report a number of unacceptable false positives, elements392

that are heavy hitters for S1 but may not appear at all in the sliding window. In the latter393

case, we may entirely miss a number of heavy hitters, elements that are heavy hitters for394

the sliding window but arrive before S2 begins. Therefore, we require a separate smooth395

histogram to track the counter of specific elements.396

I Theorem 12. For any ε > 0, there exists an algorithm, denoted (1 + ε)− SmoothCounter,397

that outputs a (1+ε)-approximation to the frequency of a given element in the sliding window398

model, using O
(1
ε (logn+ logm) logn

)
bits of space.399

The algorithm follows directly from Theorem 6 and the observation that `1 is (ε, ε)-smooth.400

4.2 `2-Heavy Hitters Algorithm401

We now prove Theorem 15 using Algorithm 2. We detail our `2-heavy hitters algorithm402

in full, using `2 =
√
F2 and ε-heavy hitters to refer to the `2-heavy hitters problem with403

parameter ε.

Algorithm 2 ε-approximation to the `2-heavy hitters in a sliding window
Input: A stream S of updates pi for an underlying vector v and a window size n.
Output: A list including all elements i with fi ≥ ε`2 and no elements j with fj < ε

12`2.
1: Maintain sketches D(pt1 : pt2), D(pt2 + 1 : pt3), . . . , D(ptk−1 + 1 : ptk) to estimate the
`2 norm.
B Use Estimator and Algorithm 1 with parameters

(1
2 ,

δ
2
)
here.

2: Let Ai be the merged sketch D(pti + 1 : ptk).
3: For each merged sketch Ai, find a superset Hi of the ε

16 -heavy hitters.
B Use

(
ε

16 ,
δ
2
)
− BPTree here. (Theorem 11)

4: For each element in H1, create a counter.
B Instantiate a 2− SmoothCounter for each of the O

(1
ε2

)
elements reported in H1.

5: Let ˆ̀2 be the estimated `2 norm of A1.
B Output of Estimator on A1. (Theorem 10)

6: For element i ∈ H1, let f̂i be the estimated frequency of i.
B Output by 2− SmoothCounter. (Theorem 12)

7: Output any element i with f̂i ≥ 1
4ε

ˆ̀2.

404

I Lemma 13. Any element i with frequency fi > ε`2 is output by Algorithm 2.405

I Lemma 14. No element i with frequency fi < ε
12`2(W) is output by Algorithm 2.406

I Theorem 15. Given ε, δ > 0, there exists an algorithm in the sliding window model407

(Algorithm 2) that with probability at least 1 − δ outputs all indices i ∈ [m] for which408

fi ≥ ε
√
F2, and reports no indices i ∈ [m] for which fi ≤ ε

12
√
F2. The algorithm has space409

complexity (in bits) O
(1
ε2 log2 n

(
log2 logn+ log 1

ε

))
.410

APPROX/RANDOM 2018

7:12 Nearly Optimal Distinct Elements and Heavy Hitters on Sliding Windows

4.3 Extension to `p norms for 0 < p < 2411

To output a superset of the `p-heavy hitters rather than the `2-heavy hitters, recall that an412

algorithm provides the (ε, k)-tail guarantee if the frequency estimate f̂i for each heavy hitter413

i ∈ [m] satisfies |f̂i − fi| ≤ ε · ||ftail(k)||1, where ftail(k) is the frequency vector f in which414

the k most frequent entries have been replaced by zero. Jowhari et al. [52] show the impact415

of `2-heavy hitter algorithms that satisfy the tail guarantee.416

I Lemma 16. [52] For any p ∈ (0, 2], any algorithm that returns the εp/2-heavy hitters for417

`2 satisfying the tail guarantee also finds the ε-heavy hitters for `p.418

The correctness of Theorem 3 immediately follows from Lemma 16 and Theorem 15.419

5 Lower Bounds420

5.1 Distinct Elements421

To show a lower bound of Ω
(1
ε log2 n+ 1

ε2 logn
)
for the distinct elements problem, we show422

in Theorem 19 a lower bound of Ω
(1
ε log2 n

)
and we show in Theorem 22 a lower bound423

of Ω
(1
ε2 logn

)
. We first obtain a lower bound of Ω

(1
ε log2 n

)
by a reduction from the424

IndexGreater problem.

Sliding window string S of length n

Block length: 6εn
logn

6εn
logn

6εn
logn

6εn
logn

Elements {0, 1, . . . , (1 + 2ε)i − 1} inserted into piece xi of block i.
Alice: x1 . . . xm, where m = 1

6ε logn.

Each xk is 1
2 logn bits.

Figure 2 Construction of distinct elements instance by Alice. Pieces of block i have length
(1 + 2ε)i − 1.

425

I Definition 17. In the IndexGreater problem, Alice is given a string S = x1x2 · · ·xm of426

length mn, and thus each xi has n bits. Bob is given integers i ∈ [m] and j ∈ [2n]. Alice is427

allowed to send a message to Bob, who must then determine whether xi > j or xi ≤ j.428

Given an instance of the IndexGreater problem, Alice first splits the data stream into blocks429

of size O
(

εn
logn

)
. She further splits each block into

√
n pieces of length (1 + 2ε)k, before430

padding the remainder of block (` − k + 1) with zeros. To encode xi for each i ∈ [m],431

Alice inserts the elements {0, 1, . . . , (1 + 2ε)k − 1} into piece xi of block (` − i + 1), before432

padding the remainder of block (`−k+1) with zeros. In this manner, the number of distinct433

elements in each block dominates the number of distinct elements in the subsequent blocks.434

Moreover, the location of the distinct elements in block (`− i+ 1) encodes xi, so that Bob435

can compare xi to j. We formalize this argument in Appendix B.436

I Lemma 18. The one-way communication complexity of IndexGreater is Ω(nm) bits.437

Braverman et. al. 7:13

I Theorem 19. Let p > 0 and ε, δ ∈ (0, 1). Any one-pass streaming algorithm that returns438

a (1 + ε)-approximation to the number of distinct elements in the sliding window model with439

probability 2
3 requires Ω

(1
ε log2 n

)
space.440

To obtain a lower bound of Ω
(1
ε2 logn

)
, we give a reduction from the GapHamming problem.441

I Definition 20. [50] In the GapHamming problem, Alice and Bob receive n bit strings x442

and y, which have Hamming distance either at least n
2 +
√
n or at most n

2 −
√
n. Then Alice443

and Bob must decide which of these instances is true.444

Chakrabarti and Regev show an optimal lower bound on the communication complexity of445

GapHamming.446

I Lemma 21. [24] The communication complexity of GapHamming is Ω(n).447

Observe that a (1 + ε)n2 ≤
n
2 +
√
n for ε ≤ 2√

n
and thus a (1 + ε)-approximation can448

differentiate between at least n
2 +
√
n and at most n

2 −
√
n. We use this idea to show a lower449

bound of Ω
(1
ε2 logn

)
by embedding Ω(logn) instances of GapHamming into the stream.450

I Theorem 22. Let p > 0 and ε, δ ∈ (0, 1). Any one-pass streaming algorithm that returns451

a (1 + ε)-approximation to the number of distinct elements in the sliding window model with452

probability 2
3 requires Ω

(1
ε2 logn

)
space for ε ≤ 1√

n
.453

Hence, Theorem 2 follows from Theorem 19 and Theorem 22.454

5.2 `p-Heavy Hitters455

To show a lower bound for the `p-heavy hitters problem in the sliding window model, we456

consider the following variant of the AugmentedIndex problem. Let k and n be positive457

integers and δ ∈ [0, 1). Suppose the first player Alice is given a string S ∈ [k]n, while the458

second player Bob is given an index i ∈ [n], as well as S[1, i− 1]. Alice sends a message to459

Bob, and Bob must output S[i] with probability at least 1− δ.460

I Lemma 23. [58] Even if Alice and Bob have access to a source of shared randomness,461

Alice must send a message of size Ω((1 − δ)n log k) in a one-way communication protocol462

for the AugmentedIndex problem.463

We reduce the AugmentedIndex problem to finding the `p-heavy hitters in the sliding window464

model. To encode S[i] for S ∈ [k]n, Alice creates a data stream a1 ◦ a2 ◦ . . . ◦ ab with the465

invariant that the heavy hitters in the suffix ai ◦ ai+1 ◦ . . . ◦ ab encodes S[i]. Thus to466

determine S[i], Bob just needs to run the algorithm for finding heavy hitters on sliding467

windows and expire the elements a1, a2, . . . , ai−1 so all that remains in the sliding window468

is ai ◦ ai+1 ◦ . . . ◦ ab. We formally prove Theorem 4 in Appendix B.469

References470

1 Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating471

the frequency moments. J. Comput. Syst. Sci., 58(1):137–147, 1999. A preliminary version472

appeared in the Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory473

of Computing (STOC), 1996.474

2 Arvind Arasu and Gurmeet Singh Manku. Approximate counts and quantiles over sliding475

windows. In Proceedings of the Twenty-third ACM SIGACT-SIGMOD-SIGART Symposium476

on Principles of Database Systems, pages 286–296, 2004.477

APPROX/RANDOM 2018

7:14 Nearly Optimal Distinct Elements and Heavy Hitters on Sliding Windows

3 Brian Babcock, Mayur Datar, Rajeev Motwani, and Liadan O’Callaghan. Maintaining478

variance and k-medians over data stream windows. In Proceedings of the Twenty-Second479

ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS),480

pages 234–243, 2003.481

4 Nagender Bandi, Divyakant Agrawal, and Amr El Abbadi. Fast algorithms for heavy482

distinct hitters using associative memories. In 27th IEEE International Conference on483

Distributed Computing Systems (ICDCS), page 6, 2007.484

5 Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. An information statistics485

approach to data stream and communication complexity. J. Comput. Syst. Sci., 68(4):702–486

732, 2004. A preliminary version appeared in the Proceedings of the 43rd Symposium on487

Foundations of Computer Science (FOCS), 2002.488

6 Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, D. Sivakumar, and Luca Trevisan. Counting489

distinct elements in a data stream. In Randomization and Approximation Techniques, 6th490

International Workshop, RANDOM, Proceedings, pages 1–10, 2002.491

7 Ran Ben-Basat, Gil Einziger, Roy Friedman, and Yaron Kassner. Heavy hitters in streams492

and sliding windows. In 35th Annual IEEE International Conference on Computer Com-493

munications, INFOCOM, pages 1–9, 2016.494

8 Radu Berinde, Piotr Indyk, Graham Cormode, and Martin J. Strauss. Space-optimal heavy495

hitters with strong error bounds. ACM Trans. Database Syst., 35(4):26:1–26:28, 2010. A496

preliminary version appeared in the Proceedings of the Twenty-Eigth ACM SIGMOD-497

SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2009.498

9 Jaroslaw Blasiok. Optimal streaming and tracking distinct elements with high proba-499

bility. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete500

Algorithms, SODA, pages 2432–2448, 2018.501

10 Jaroslaw Blasiok, Jian Ding, and Jelani Nelson. Continuous monitoring of `p norms in data502

streams. In Approximation, Randomization, and Combinatorial Optimization. Algorithms503

and Techniques, APPROX/RANDOM, pages 32:1–32:13, 2017.504

11 Vladimir Braverman. Sliding window algorithms, 2016.505

12 Vladimir Braverman, Stephen R. Chestnut, Nikita Ivkin, Jelani Nelson, Zhengyu Wang,506

and David P. Woodruff. Bptree: An `2 heavy hitters algorithm using constant memory.507

In Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of508

Database Systems, PODS, pages 361–376, 2017.509

13 Vladimir Braverman, Stephen R. Chestnut, Nikita Ivkin, and David P. Woodruff. Beating510

countsketch for heavy hitters in insertion streams. In Proceedings of the 48th Annual ACM511

SIGACT Symposium on Theory of Computing, STOC, pages 740–753, 2016.512

14 Vladimir Braverman, Petros Drineas, Jalaj Upadhyay, and Samson Zhou. Numerical linear513

algebra in the sliding window model. CoRR, abs/1805.03765, 2018. URL: http://arxiv.514

org/abs/1805.03765, arXiv:1805.03765.515

15 Vladimir Braverman, Ran Gelles, and Rafail Ostrovsky. How to catch `2-heavy-hitters on516

sliding windows. Theor. Comput. Sci., 554:82–94, 2014. A preliminary version appeared517

in the Proceedings of Computing and Combinatorics, 19th International Conference (CO-518

COON), 2013.519

16 Vladimir Braverman, Elena Grigorescu, Harry Lang, David P. Woodruff, and Samson520

Zhou. Nearly optimal distinct elements and heavy hitters on sliding windows. CoRR,521

abs/1805.00212, 2018. URL: http://arxiv.org/abs/1805.00212, arXiv:1805.00212.522

17 Vladimir Braverman, Harry Lang, Keith Levin, and Morteza Monemizadeh. Clustering on523

sliding windows in polylogarithmic space. In 35th IARCS Annual Conference on Foundation524

of Software Technology and Theoretical Computer Science, FSTTCS, pages 350–364, 2015.525

http://arxiv.org/abs/1805.03765
http://arxiv.org/abs/1805.03765
http://arxiv.org/abs/1805.03765
http://arxiv.org/abs/1805.03765
http://arxiv.org/abs/1805.00212
http://arxiv.org/abs/1805.00212

Braverman et. al. 7:15

18 Vladimir Braverman, Harry Lang, Keith Levin, and Morteza Monemizadeh. Clustering526

problems on sliding windows. In Proceedings of the Twenty-Seventh Annual ACM-SIAM527

Symposium on Discrete Algorithms, SODA, pages 1374–1390, 2016.528

19 Vladimir Braverman and Rafail Ostrovsky. Smooth histograms for sliding windows. In529

48th Annual IEEE Symposium on Foundations of Computer Science (FOCS) Proceedings,530

pages 283–293, 2007.531

20 Vladimir Braverman, Rafail Ostrovsky, and Alan Roytman. Zero-one laws for sliding win-532

dows and universal sketches. In Approximation, Randomization, and Combinatorial Opti-533

mization. Algorithms and Techniques, APPROX/RANDOM, pages 573–590, 2015.534

21 Yousra Chabchoub, Christine Fricker, and Hanene Mohamed. Analysis of a bloom filter535

algorithm via the supermarket model. In 21st International Teletraffic Congress, ITC,536

pages 1–8, 2009.537

22 Amit Chakrabarti, Graham Cormode, and Andrew McGregor. A near-optimal algorithm538

for estimating the entropy of a stream. ACM Trans. Algorithms, 6(3):51:1–51:21, 2010.539

23 Amit Chakrabarti, Subhash Khot, and Xiaodong Sun. Near-optimal lower bounds on the540

multi-party communication complexity of set disjointness. In 18th Annual IEEE Conference541

on Computational Complexity, pages 107–117, 2003.542

24 Amit Chakrabarti and Oded Regev. An optimal lower bound on the communication com-543

plexity of gap-hamming-distance. SIAM J. Comput., 41(5):1299–1317, 2012. A preliminary544

version appeared in the Proceedings of the 43rd ACM Symposium on Theory of Computing,545

STOC 2011.546

25 Timothy M. Chan and Bashir S. Sadjad. Geometric optimization problems over sliding547

windows. Int. J. Comput. Geometry Appl., 16(2-3):145–158, 2006. A preliminary version548

appeared in the Proceedings of Algorithms and Computation, 15th International Sympo-549

sium (ISAAC), 2004.550

26 Moses Charikar, Kevin C. Chen, and Martin Farach-Colton. Finding frequent items in data551

streams. Theor. Comput. Sci., 312(1):3–15, 2004. A preliminary version appeared in the552

Proceedings of the Automata, Languages and Programming, 29th International Colloquium553

(ICALP), 2002.554

27 Jiecao Chen, Huy L. Nguyen, and Qin Zhang. Submodular maximization over sliding555

windows. CoRR, abs/1611.00129, 2016.556

28 Yun Chi, Haixun Wang, Philip S. Yu, and Richard R. Muntz. Catch the moment: main-557

taining closed frequent itemsets over a data stream sliding window. Knowl. Inf. Syst.,558

10(3):265–294, 2006. A preliminary version appeared in the Proceedings of the 4th IEEE559

International Conference on Data Mining (ICDM), 2004.560

29 Graham Cormode. The continuous distributed monitoring model. SIGMOD Record,561

42(1):5–14, 2013.562

30 Graham Cormode and Minos N. Garofalakis. Streaming in a connected world: querying563

and tracking distributed data streams. In EDBT, page 745, 2008.564

31 Graham Cormode, Flip Korn, S. Muthukrishnan, and Divesh Srivastava. Finding hierar-565

chical heavy hitters in streaming data. TKDD, 1(4):2:1–2:48, 2008.566

32 Graham Cormode and S. Muthukrishnan. An improved data stream summary: the count-567

min sketch and its applications. J. Algorithms, 55(1):58–75, 2005. A preliminary version568

appeared in the Proceedings of the 6th Latin American Symposium (LATIN), 2004.569

33 Graham Cormode and S. Muthukrishnan. What’s new: finding significant differences in570

network data streams. IEEE/ACM Transactions on Networking, 13(6):1219–1232, 2005.571

34 Michael S. Crouch, Andrew McGregor, and Daniel Stubbs. Dynamic graphs in the sliding-572

window model. In Algorithms - ESA 2013 - 21st Annual European Symposium, Proceedings,573

pages 337–348, 2013.574

APPROX/RANDOM 2018

7:16 Nearly Optimal Distinct Elements and Heavy Hitters on Sliding Windows

35 Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Maintaining stream575

statistics over sliding windows. SIAM J. Comput., 31(6):1794–1813, 2002. A preliminary576

version appeared in the Proceedings of the Thirteenth Annual ACM-SIAM Symposium on577

Discrete Algorithms (SODA), 2002.578

36 Mayur Datar and S. Muthukrishnan. Estimating rarity and similarity over data stream579

windows. In Algorithms - ESA 2002, 10th Annual European Symposium, Proceedings,580

pages 323–334, 2002.581

37 Erik D. Demaine, Alejandro López-Ortiz, and J. Ian Munro. Frequency estimation of582

internet packet streams with limited space. In Algorithms - ESA, 10th Annual European583

Symposium, Proceedings, pages 348–360, 2002.584

38 Marianne Durand and Philippe Flajolet. Loglog counting of large cardinalities (extended585

abstract). In Algorithms - ESA, 11th Annual European Symposium, Proceedings, pages586

605–617, 2003.587

39 Alessandro Epasto, Silvio Lattanzi, Sergei Vassilvitskii, and Morteza Zadimoghaddam.588

Submodular optimization over sliding windows. In Proceedings of the 26th International589

Conference on World Wide Web, WWW, pages 421–430, 2017.590

40 Cristian Estan and George Varghese. New directions in traffic measurement and accounting:591

Focusing on the elephants, ignoring the mice. ACM Trans. Comput. Syst., 21(3):270–313,592

2003.593

41 Min Fang, Narayanan Shivakumar, Hector Garcia-Molina, Rajeev Motwani, and Jeffrey D.594

Ullman. Computing iceberg queries efficiently. In VLDB’98, Proceedings of 24rd Interna-595

tional Conference on Very Large Data Bases, pages 299–310, 1998.596

42 Joan Feigenbaum, Sampath Kannan, and Jian Zhang. Computing diameter in the stream-597

ing and sliding-window models. Algorithmica, 41(1):25–41, 2005.598

43 Philippe Flajolet, Eric Fusy, Olivier Gandouet, and Frederic Meunier. Hyperloglog: the599

analysis of a near-optimal cardinality estimation algorithm. In AofA: Analysis of Algo-600

rithms, page 137–156, 2007.601

44 Philippe Flajolet and G. Nigel Martin. Probabilistic counting. In 24th Annual Symposium602

on Foundations of Computer Science, pages 76–82, 1983.603

45 Phillip B. Gibbons and Srikanta Tirthapura. Estimating simple functions on the union of604

data streams. In SPAA, pages 281–291, 2001.605

46 Phillip B. Gibbons and Srikanta Tirthapura. Distributed streams algorithms for sliding606

windows. In SPAA, pages 63–72, 2002.607

47 Parikshit Gopalan and Jaikumar Radhakrishnan. Finding duplicates in a data stream.608

In Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms,609

SODA, pages 402–411, 2009.610

48 Nicholas J. A. Harvey, Jelani Nelson, and Krzysztof Onak. Sketching and streaming entropy611

via approximation theory. In 49th Annual IEEE Symposium on Foundations of Computer612

Science, FOCS, pages 489–498, 2008.613

49 Regant Y. S. Hung and Hing-Fung Ting. Finding heavy hitters over the sliding window of a614

weighted data stream. In LATIN: Theoretical Informatics, 8th Latin American Symposium,615

Proceedings, pages 699–710, 2008.616

50 Piotr Indyk and David P. Woodruff. Tight lower bounds for the distinct elements problem.617

In 44th Symposium on Foundations of Computer Science (FOCS), pages 283–288, 2003.618

51 Piotr Indyk and David P. Woodruff. Optimal approximations of the frequency moments of619

data streams. In Proceedings of the 37th Annual ACM Symposium on Theory of Computing620

(STOC), pages 202–208, 2005.621

52 Hossein Jowhari, Mert Saglam, and Gábor Tardos. Tight bounds for lp samplers, finding622

duplicates in streams, and related problems. In Proceedings of the 30th ACM SIGMOD-623

SIGACT-SIGART Symposium on Principles of Database Systems, pages 49–58, 2011.624

Braverman et. al. 7:17

53 Daniel M. Kane, Jelani Nelson, and David P. Woodruff. An optimal algorithm for the625

distinct elements problem. In Proceedings of the Twenty-Ninth ACM SIGMOD-SIGACT-626

SIGART Symposium on Principles of Database Systems, PODS, pages 41–52, 2010.627

54 Abhishek Kumar and Jun (Jim) Xu. Sketch guided sampling - using on-line estimates628

of flow size for adaptive data collection. In INFOCOM 2006. 25th IEEE International629

Conference on Computer Communications, Joint Conference of the IEEE Computer and630

Communications Societies, 2006.631

55 Kasper Green Larsen, Jelani Nelson, Huy L. Nguyen, and Mikkel Thorup. Heavy hitters632

via cluster-preserving clustering. In IEEE 57th Annual Symposium on Foundations of633

Computer Science, FOCS, pages 61–70, 2016.634

56 Lap-Kei Lee and H. F. Ting. A simpler and more efficient deterministic scheme for finding635

frequent items over sliding windows. In Proceedings of the Twenty-Fifth ACM SIGACT-636

SIGMOD-SIGART Symposium on Principles of Database Systems, pages 290–297, 2006.637

57 Gurmeet Singh Manku and Rajeev Motwani. Approximate frequency counts over data638

streams. PVLDB, 5(12):1699, 2012. A preliminary version appeared in the Proceedings of639

the 28th International Conference on Very Large Data Bases (VLDB), 2002.640

58 Peter Bro Miltersen, Noam Nisan, Shmuel Safra, and Avi Wigderson. On data structures641

and asymmetric communication complexity. In Proceedings of the Twenty-Seventh Annual642

ACM Symposium on Theory of Computing, pages 103–111, 1995.643

59 Jayadev Misra and David Gries. Finding repeated elements. Sci. Comput. Program.,644

2(2):143–152, 1982.645

60 Morteza Monemizadeh and David P. Woodruff. 1-pass relative-error `p-sampling with ap-646

plications. In Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete647

Algorithms, SODA, pages 1143–1160, 2010.648

61 Miles Osborne, Sean Moran, Richard McCreadie, Alexander Von Lunen, Martin Sykora,649

Elizabeth Cano, Neil Ireson, Craig MacDonald, Iadh Ounis, Yulan He, Tom Jackson, Fabio650

Ciravegna, and Ann O’Brien. Real-time detection, tracking and monitoring of automati-651

cally discovered events in social media. In Proceedings of the 52nd Annual Meeting of the652

Association for Computational Linguistics, 2014.653

62 Subhabrata Sen and Jia Wang. Analyzing peer-to-peer traffic across large networks.654

IEEE/ACM Trans. Netw., 12(2):219–232, 2004.655

63 Mikkel Thorup and Yin Zhang. Tabulation-based 5-independent hashing with applications656

to linear probing and second moment estimation. SIAM J. Comput., 41(2):293–331, 2012.657

A Full Version658

We show that the structure of the F2 algorithm only requires the correctness of a specific659

O (polylogn) algorithms in the data structure. Given a vector v ∈ Rm, let F2(v) = v2
1 +660

v2
2 + . . .+ v2

m. Recall that the histogram creates a new algorithm each time a new element661

arrives in the data stream. Instead of requiring all n algorithms perform correctly, we show662

that it suffices to only require the correctness of a specific O (polylogn) of these algorithms.663

Let F be the value of F2 on the most recent n elements. For the purpose of analysis,664

we say that an algorithm is important if it is still maintained within the histogram when its665

output is at least F
2 logn and the algorithm never outputs anything greater than 8F log3 n.666

We first show that with high probability, all algorithms correctly maintain a logn-667

approximation of the value of F2 for the corresponding frequency vector. Conditioned on668

each algorithm correctly maintaining a logn-approximation, we then show that O
(
log6 n

)
669

algorithms are important. Observe that an algorithm that reports a 2-approximation to670

F is important. Furthermore, we show that any algorithm that is not important cannot671

influence the output of the histogram, conditioned on each algorithm correctly maintaining672

APPROX/RANDOM 2018

7:18 Nearly Optimal Distinct Elements and Heavy Hitters on Sliding Windows

a logn-approximation. Thus, it suffices to require correctness of strong tracking on these673

O
(
log6 n

)
important algorithms and we apply a union bound over the O

(
log6 n

)
important674

algorithms to ensure correctness. Hence for each algorithm, we require the probability of675

failure to be at most O
(

δ
log6 n

)
for the histogram to succeed with probability at least 1− δ.676

I Fact 24. Given m-dimensional vectors x, y, z with non-negative entries, then F2(x + y +677

z)− F2(x+ y) ≥ F2(x+ z)− F2(x).678

Although the number of algorithms in the histogram at any given moment is at most679

O (logn), it may be possible that many algorithms have output at least F
2 logn only to be680

deleted at some point in time. We now show that in a window of size 2n, there are only681

O
(
log6 n

)
important algorithms.682

I Lemma 25. Conditioned on all algorithms in the stream correctly providing a logn-683

approximation, then there are at most O
(
log6 n

)
important algorithms that begin in the684

most recent 2n elements.685

Proof. Let s1 < s2 < . . . < si be the starting points of important algorithms A1, A2, . . . , Ai,686

respectively, that begin within the most recent 2n elements. For each 1 < j < i, let tj be687

the first time that algorithm Aj outputs a value that is at least F
2 logn . The idea is to show688

at the end of the stream, the elements between sj and sj+1 are responsible for an increase in689

F2 by at least cF
2 log2 n

for all j. Since an algorithm is important if it never outputs anything690

greater than 8F log3 n, then the F2 value of the substream represented by the algorithm is691

at most 8F log4 n, and it follows that i = O
(
log6 n

)
.692

Recall that to maintain the histogram, there exists a constant c such that whenever two693

adjacent algorithms have output within a factor of c, then we delete one of these algorithms.694

Hence, Aj−1 must output a value that is at least cF
2 logn at time tj . Otherwise, the histogram695

would have deleted algorithm Aj before tj , preventing Aj from being important. Condi-696

tioning on correctness of a logn-approximation of all algorithms, the value of F2 on the697

frequency vector from sj−1 to tj is at least cF
2 log2 n

.698

In other words, the elements from time sj−1 to sj are responsible for a difference of at699

least cF
2 log2 n

between the F2 values of the substreams represented by Aj−1 and Aj at time700

tj . Thus by Fact 24, the difference between the F2 values of the substreams represented by701

Aj−1 and Aj at any time t ≥ tj is at least cF
2 log2 n

. By induction, the value of F2 on the702

substream from s1 to tj is at least (j−1)cF
2 log2 n

. Recall that the F2 of the substream represented703

by any important algorithm is at most 8F log4 n. Therefore, i = O
(
log6 n

)
and so at most704

O
(
log6 n

)
algorithms are important. J705

I Fact 26. For x > 0 and a, b ≥ 0, (x+a)2

x2 ≥ (x+a+b)2

(x+b)2 .706

I Corollary 27. For ai, bi, xi ≥ 0 where
∑
x2
i > 0,

∑
(xi+ai)2∑

x2
i

≥
∑

(xi+ai+bi)2

(xi+bi)2 .707

I Lemma 28. Conditioned on all algorithms in the stream correctly providing a logn-708

approximation, then any algorithm that outputs a value that is at least 8F log3 n cannot709

delete an important algorithm that provides a 2-approximation to F .710

Proof. Note that any algorithm A that outputs a value that is at least 8F log3 n must711

represent a substream whose F2 value is at least 8F log2 n at the end of the stream, assuming712

a logn-approximation of all algorithms. Observe that the substream represented by an713

important algorithm B that provides a 2-approximation has F2 value at most 2F at the714

end of the stream. By Corollary 27, the ratio between the F2 values of the substreams715

Braverman et. al. 7:19

represented by A and B must be at least 4 log2 n at every previous point in time. Thus, if716

A and B always correctly maintain a logn-approximation of the corresponding substreams,717

the ratio of the outputs between A and B is at least 4, so A will never cause the histogram718

data structure to delete B. J719

Hence, it remains to show that with high probability, all algorithms correctly maintain a720

logn-approximation of the value of F2 for the corresponding frequency vector. Recall that721

Estimator from Theorem 10 uses an AMS sketch so that the resulting frequency of each722

element fi is multiplied by a Rademacher random variable Ri.723

I Theorem 29 (Khintchine’s inequality). Let R ∈ {−1, 1}m be chosen uniformly at random724

and f ∈ Rm be a given vector. Then for any even integer p, E
[
(
∑m
i=1 Rifi)

p] ≤ √pp||f ||p2.725

Although we would like to apply Khintchine’s inequality directly, the Rademacher random726

variables Ri used in Estimator are logn-wise independent. Nevertheless, we can use inde-727

pendence to consider the logn-th moment of the resulting expression.728

I Corollary 30. Let z1, z2, . . . , zm ∈ {−1, 1} be a set of logn-wise independent random vari-729

ables and f ∈ Rm be a given vector. Then for any even integer p ≤ logn, E
[
(
∑m
i=1 zifi)

p] ≤730 √
pp||f ||p2.731

We now show that each algorithm fails to maintain a logn-approximation of the value of F2732

for the corresponding frequency vector only with negligible probability.733

I Lemma 31. Let z1, z2, . . . , zm ∈ {−1, 1} be a set of logn-wise independent random vari-734

ables and f ∈ Rm be a given vector. Then Pr [|
∑m
i=1 zifi| ≥ (logn)||f ||2] ≤ 1

logn
√

logn
.735

Proof. For the ease of notation, let p = logn be an even integer. Observe that736

Pr
[∣∣∣∣∣

m∑
i=1

zifi

∣∣∣∣∣ ≥ (logn)||f ||2

]
= Pr

[∣∣∣∣∣
m∑
i=1

zifi

∣∣∣∣∣
p

≥ (logn)p||f ||p2

]
.737

By Markov’s inequality, Pr
[
|
∑m
i=1 zifi|

p ≥ (logn)p||f ||p2
]
≤

E[(
∑m

i=1
zifi)p]

(logn)p||f ||p2
. By Corol-738

lary 30, it follows that E[(
∑m

i=1
zifi)p]

(logn)p||f ||p2
≤

√
pp||f ||p2

(logn)p||f ||p2
= 1

logn
√

logn
. J739

Therefore, with high probability, all algorithms correctly maintain a logn-approximation of740

the value of F2 for the corresponding frequency vector.741

B Supplementary Proofs742

Proof of Lemma 13: Since the `2 norm is a smooth function, and so there exists a743

smooth-histogram which is an
(1

2 ,
δ
2
)
-estimation of the `2 norm of the sliding window by744

Theorem 6. Thus, 1
2

ˆ̀2(A1) ≤ `2(W) ≤ 3
2

ˆ̀2(A1). With probability 1 − δ
2 , any element i745

whose frequency satisfies fi(W) ≥ ε`2(W) must have fi(W) ≥ ε`2(W) ≥ 1
2ε

ˆ̀2(A1) and is746

reported by
(
ε

16 ,
δ
2
)
− BPTree in Step 3.747

Since BPTree is instantiated along with A1, the sliding window may begin either before748

or after BPTree reports each heavy hitter. If the sliding window begins after the heavy hitter749

is reported, then all fi(W) instances are counted by SmoothCounter. Thus, the count of fi750

estimated by SmoothCounter is at least fi(W) ≥ ε`2(W) ≥ 1
2ε

ˆ̀2(A1), and so Step 7 will751

output i.752

APPROX/RANDOM 2018

7:20 Nearly Optimal Distinct Elements and Heavy Hitters on Sliding Windows

On the other hand, the sliding window may begin before the heavy hitter is reported.753

Recall that the BPTree algorithm identifies and reports an element when it becomes an754

ε
16 -heavy hitter with respect to the estimate of `2. Hence, there are at most 2 · ε16

ˆ̀2(A1) ≤755

1
8ε

ˆ̀2(A1) instances of an element appearing in the active window before it is reported by756

BPTree. Since fi(W) ≥ ε`2(W) ≥ 1
2ε

ˆ̀2(A1), any element i whose frequency satisfies fi(W) ≥757

ε`2(W) must have fi(W) ≥ ε
2

ˆ̀2(A1) and therefore must have at least
(1

2 −
1
8
)
εˆ̀2(A1) ≥758

1
4ε

ˆ̀2(A1) instances appearing in the stream after it is reported by BPTree. Thus, the count759

of fi estimated by SmoothCounter is at least 1
4ε

ˆ̀2(A1), and so Step 7 will output i. 2760

Proof of Lemma 14: If i is output by Step 7, then f̂i ≥ 1
4ε

ˆ̀2(A1). By the properties of761

SmoothCounter and Estimator, fi(W) ≥ f̂i
2 ≥

1
8ε

ˆ̀2(A1) ≥ 1
12`2(W), where the last inequality762

comes from the fact that `2(W) ≤ 3
2

ˆ̀2(A1). 2763

Proof of Theorem 15: By Lemma 13 and Lemma 14, Algorithm 2 outputs all elements764

with frequency at least ε`2(W) and no elements with frequency less than ε
12`2(W). We765

now proceed to analyze the space complexity of the algorithm. Step 1 uses Algorithm 1766

in conjunction with the Estimator routine to maintain a 1
2 -approximation to the `2-norm767

of the sliding window. By requiring the probability of failure to be O
(

δ
polylogn

)
in Theo-768

rem 10 and observing that β = O (1) in Theorem 6 suffices for a 1
2 -approximation, it follows769

that Step 1 uses O
(
logn(logn+ logm log2 logm)

)
bits of space. Since Step 3 runs an in-770

stance of BPTree for each of the at most O (logn) buckets, then by Theorem 11, it uses771

O
(1
ε2

(
log 1

δε

)
logn(logn+ logm)

)
bits of space.772

Notice that BPTree returns a list of O
(1
ε2

)
elements, by Theorem 11. By running773

SmoothCounter for each of these, Step 7 provides a 2-approximation to the frequency of774

each element after being returned by BPTree. By Theorem 12, Step 7 has space complex-775

ity (in bits) O
(1
ε2 (logn+ logm) logn

)
. Assuming logm = O (logn), the algorithm uses776

O
(1
ε2 log2 n

(
log2 logn+ log 1

ε

))
bits of space. 2777

Proof of Theorem 3: By Theorem 11, BPTree satisfies the tail guarantee. Therefore778

by Lemma 16, it suffices to analyze the space complexity of finding the εp/2-heavy hitters779

for `2. By Theorem 15, there exists an algorithm that uses O
(1
ε2 log2 n

(
log2 logn+ log 1

ε

))
780

bits of space to find the ε-heavy hitters for `2. Hence, there exists an algorithm that uses781

O
(1
εp log2 n

(
log2 logn+ log 1

ε

))
bits of space to find the ε-heavy hitters for `p, where 0 <782

p ≤ 2. 2783

Proof of Lemma 18: We show the communication complexity of IndexGreater through784

a reduction from the AugmentedIndex problem. Suppose Alice is given a string S ∈ {0, 1}nm785

and Bob is given an index i along with the bits S[1], S[2], . . . , S[i− 1]. Then Bob’s task in786

the AugmentedIndex problem is to determine S[i].787

Observe that Alice can form the string T = x1x2 · · ·xm of length mn, where each xk788

has n bits of S. Alice can then use the IndexGreater protocol and communicate to Bob a789

message that will solve the IndexGreater problem. Let j =
⌊
i
n

⌋
so that the symbol S[i]790

is a bit inside xj+1. Then Bob constructs the string w by first concatenating the bits791

S[jn+ 1], S[jn+ 2], . . . , S[i− 1], which he is given from the AugmentedIndex problem. Bob792

then appends a zero to w, and pads w with ones at the end, until w reaches n bits:793

w = S[jn+ 1] ◦ S[jn+ 2] ◦ · · · ◦ S[i− 1] ◦ 0 ◦ 1 ◦ 1 ◦ · · · ◦ 1︸ ︷︷ ︸
until w has n bits

.794

Braverman et. al. 7:21

Bob takes the message from Alice and runs the IndexGreater protocol to determine whether795

xj > w. Observe that by construction xj > w if and only if S[i] = 1. Thus, if the Index-796

Greater protocol succeeds, then Bob will have solved the AugmentedIndex problem, which797

requires communication complexity Ω(nm) bits. Hence, the communication complexity of798

IndexGreater follows. 2799

Proof of Theorem 19: We reduce a one-way communication protocol for IndexGreater800

to finding a (1 + ε)-approximation to the number of distinct elements in the sliding window801

model.802

Let n be the length of the sliding window and suppose Alice receives a string S =803

x1x2 . . . x` ∈ {0, 1}`, where ` = 1
6ε logn and each xk has 1

2 logn bits. Bob receives an index804

i ∈ [`] and an integer j ∈ [
√
n]. Suppose Alice partitions the sliding window into ` blocks,805

each of length n
` = 6εn

logn . For each 1 ≤ k ≤ 1
6ε logn, she further splits block (`− k + 1) into806

√
n pieces of length (1 + 2ε)k, before padding the remainder of block (`− k+ 1) with zeros.807

Moreover, for piece xk of block (`−k+1), Alice inserts the elements {0, 1, . . . , (1+2ε)k−1},808

before padding the remainder of block (` − k + 1) with zeros. Hence, the sliding window809

contains all zeros, with the exception of the elements {0, 1, . . . , (1 + 2ε)k − 1} appearing in810

piece xk of block (` − k + 1) for all 1 ≤ k ≤ ` = 1
6ε logn. Note that (1 + 2ε)k ≤ 3

√
n and811

xk ≤
√
n for all k, so all the elements fit within each block, which has length 6εn

logn . Finally,812

Alice runs the (1 + ε)-approximation distinct elements sliding window algorithm and passes813

the state to Bob. See Figure 2 for an example of Alice’s construction.814

Given integers i ∈ [`] and j ∈ [
√
n], Bob must determine if xi > j. Thus, Bob is interested815

in xi, so he takes the state of the sliding window algorithm, and inserts a number of zeros to816

expire each block before block i. Note that since Alice reversed the stream in her final step,817

Bob can do this by inserting (`−i)
(1

2 logn
)
number of zeros. Bob then inserts (j−1)(1+2ε)i818

additional zeros, to arrive at piece j in block i. Since piece xi contains (1 + 2ε)i distinct819

elements and the remainder of the stream contains (1 + 2ε)i−1 distinct elements, then the820

output of the algorithm will decrease below (1+2ε)i
1+ε during piece xi. Hence, if the output is821

less than (1+2ε)i
1+ε after Bob arrives at piece j, then xi ≤ j. Otherwise, if the output is at822

least (1+2ε)i
1+ε , then xi > j. By the communication complexity of IndexGreater (Lemma 18),823

this requires space Ω
(1
ε log2 n

)
. 2824

Proof of Theorem 22: We reduce a one-way communication protocol for the GapHam-825

ming problem to finding a (1 + ε)-approximation to the number of distinct elements in826

the sliding window model. For each log 1
ε

2 ≤ i ≤ logn−1
2 , let j = 2i and xj and yj each827

have length 2j and (xj , yj) be drawn from a distribution such that with probability 1
2 ,828

HAM (xj , yj) = (1+4ε)2j−1 and otherwise (with probability 1
2), HAM (xj , yj) = (1−4ε)2j−1.829

Then Alice is given {xj} while Bob is given {yj} and needs to output HAM (xj , yj). For830

ε ≤ 1√
n
, this is precisely the hard distribution in the communication complexity of GapHam-831

ming given by [24].832

Let a = log 1
ε

2 and b = logn−1
2 . Let w2k = x2k and let w2k−1 be a string of length 22k−1,833

all consisting of zeros. Suppose Alice forms the concatenated string S = w2b ◦ w2b−1 ◦ · · · ◦834

w2a+1 ◦w2a. Note that
∑2b
k=2a 2k ≤ n, so S has length less than n. Alice then forms a data835

stream by the following process. She initializes k = 1 and continuously increments k until836

k = n. At each step, if S[k] = 0 or k is longer than the length of S, Alice inserts a 0 into the837

data stream. Otherwise, if S[k] = 1, then Alice inserts k into the data stream. Meanwhile,838

Alice runs the (1 + ε)-approximation distinct elements sliding window algorithm and passes839

the state of the algorithm to Bob.840

APPROX/RANDOM 2018

7:22 Nearly Optimal Distinct Elements and Heavy Hitters on Sliding Windows

To find HAM (x2i, y2i), Bob first expires
(∑2b

k=2i+1 2k
)
− 22i elements by inserting zeros841

into the data stream. Similar to Alice, Bob initializes k = 1 and continuously increments k842

until k = 22i. At each step, if y2i[k] = 0 (that is, the kth bit of y2i is zero), then Bob inserts a 0843

into the data stream. Otherwise, if y2i[k] = 1, then Bob inserts k into the data stream. At the844

end of this procedure, the sliding window contains all zeros, nonzero values corresponding to845

the nonzero indices of the string x2i◦w2i−1◦x2i−2◦· · ·◦x2a+2◦w2a+1◦x2a, and nonzero values846

corresponding to the nonzero indices of y2i. Observe that each wj solely consists of zeros847

and
∑i−1
k=a 22k < 22i−1. Therefore, HAM (x2i, y2i) is at least (1− 4ε)22i−1 while the number848

of distinct elements in the sliding window is at most (1 + 4ε)22i while the number of distinct849

elements in the suffix x2i−2 ◦x2i−3 · · · is at most (1+ ε)22i−2. Thus, a (1+ ε)-approximation850

to the number of distinct elements differentiates between HAM (x2i, y2i) = (1 + 4ε)22i−1 and851

HAM (x2i, y2i) = (1− 4ε)22i−1.852

Since the sliding window algorithm succeeds with probability 2
3 , then the GapHamming853

distance problem succeeds with probability 2
3 across the Ω(logn) values of i. Therefore, any854

(1 + ε)-approximation sliding window algorithm for the number of distinct elements that855

succeeds with probability 2
3 requires Ω

(1
ε2 logn

)
space for ε ≤ 1√

n
. 2856

Proof of Theorem 4: We reduce a one-way communication protocol for the AugmentedIn-857

dex problem to finding the `p heavy hitters in the sliding window model. Let a = 1
2pεp log

√
n858

and b = logn. Suppose Alice receives S = [2a]b and Bob receives i ∈ [b] and S[1, i− 1]. Ob-859

serve that each S[i] is 1
2pεp log

√
n bits and so S[i] can be rewritten as S[i] = w1 ◦w2 ◦ . . .◦wt,860

where each t = 1
2pεp and so each wi is log

√
n bits.861

To recover S[i], Alice and Bob run the following algorithm. First, Alice constructs data862

stream A = a1 ◦ a2 ◦ . . . ◦ ab, which can be viewed as updates to an underlying frequency863

vector in Rn. Each ak consists of t updates, adding 2p(b−k) to coordinates v1, v2 . . . , vt of864

the frequency vector, where the binary representation of each vj ∈ [n] is the concatenation865

of the binary representation of j with the log
√
n bit string wj . She then runs the sliding866

window heavy hitters algorithm and passes the state of the algorithm to Bob.867

Bob expires all elements of the stream before ai, runs the sliding window heavy hitters868

algorithm on the resulting vector, and then computes the heavy hitters. We claim that869

the algorithm will output t heavy hitters and by concatenating the last log
√
n bits of the870

binary representation of each of these heavy hitters, Bob will recover exactly S[i]. Ob-871

serve that the `p norm of the underlying vector represented by ai ◦ ai+1 ◦ . . . ◦ ab is exactly872 (1
2pεp (1p + 2p + 4p + . . .+ 2p(b−i))

)1/p ≤ 1
2ε2

b−i+1 = 1
ε 2b−i. Let u1, u2 . . . , ut be the coordi-873

nates of the frequency vector incremented by Alice as part of ai. Each coordinate uj has874

frequency 2b−i ≥ ε
(1
ε 2b−i

)
, so that uj is an `p-heavy hitter.875

Moreover, the first log t bits of uj encode j ∈ [t] while the next log
√
n bits encode wj .876

Thus, Bob identifies each heavy hitter and finds the corresponding j ∈ [t] so that he can877

concatenate S[i] = w1 ◦ w2 ◦ . . . ◦ wt. 2878

	Introduction
	Our Contributions
	Our Techniques
	Lower Bounds
	Related Work

	Composable Histogram Data Structure Framework
	Distinct Elements
	p Heavy Hitters
	Background for Heavy Hitters
	2-Heavy Hitters Algorithm
	Extension to p norms for 0<p<2

	Lower Bounds
	Distinct Elements
	p-Heavy Hitters

	Full Version
	Supplementary Proofs

