1712.04564v2 [cs.CG] 14 Dec 2017

arxiv

Approximate Convex Hull of Data Streams

Avrim Blum*!, Vladimir Braverman?, Ananya Kumar!?, Harry
Lang’4, and Lin F. Yang¥®

1  TTI-Chicago, Chicago, United States
avrim@ttic.edu

2  Johns Hopkins University, Baltimore, United States
vova@cs. jhu.edu

3  Carnegie Mellon University, Pittsburgh, United States
skywalker94@gmail.com

4  Johns Hopkins University, Baltimore, United States
hlang8@math. jhu.edu

5 Princeton University, Princeton, United States
lin.yang@princeton.edu

—— Abstract

Given a finite set of points P C R?, we would like to find a small subset S C P such that the
convex hull of S approximately contains P. More formally, every point in P is within distance e
from the convex hull of S. Such a subset S is called an e-hull. Computing an e-hull is an important

problem in computational geometry, machine learning, and approximation algorithms.

In many real world applications, the set P is too large to fit in memory. We consider the
streaming model where the algorithm receives the points of P sequentially and strives to use
a minimal amount of memory. Existing streaming algorithms for computing an e-hull require
O(e'=9/2) space, which is optimal for a worst-case input. However, this ignores the structure
of the data. The minimal size of an e-hull of P, which we denote by OPT, can be much smaller.
A natural question is whether a streaming algorithm can compute an e-hull using only O(OPT)
space.

We begin with lower bounds that show that it is not possible to have a single-pass streaming
algorithm that computes an e-hull with O(OPT) space. We instead propose three relaxations of
the problem for which we can compute e-hulls using space near-linear to the optimal size. Our first
algorithm for points in R? that arrive in random-order uses O(logn - OPT) space. Our second
algorithm for points in R? makes O(log(1)) passes before outputting the e-hull and requires
O(OPT) space. Our third algorithm for points in R? for any fixed dimension d outputs an e-hull
for all but d-fraction of directions and requires O(OPT - log OPT) space.
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Approximate Convex Hull of Data Streams

1 Introduction

The question addressed by this paper is: Can we compute approximate convex hulls of data
streams using near-optimal space? Approximate convex hulls are fundamental in computa-
tional geometry, computer vision, data mining, and many more (see e.g. [2]), and computing
them in a streaming manner is important in the big data regime.

Our notion of approximate convex hulls is the commonly used e-hull. Let P be a set of
n points in R%. Let C(P) denote the convex hull of P. We want a small subset S of P such
that all points in P are inside C'(S) or within distance € from C(S). Such a set S is also
called an e-coreset or e-kernel for P [1, 2]. Since every point in P can be approximated by
a sparse convex combination of points in S, S is also called a generating set [7].

e-hulls and their variants have been studied extensively in the literature. In the mul-
tiplicative error variant, one requires that any directional width (the diameter of S in a
particular direction) of S is a (1 £ €) approximation to that of P. There are subtle dif-
ferences between these variants, but one can usually change from one variant to another
without much effort. For more details, we refer the reader to [2].

Existing work primarily focuses on worst case bounds, which scale poorly with the di-
mension d. The worst case lower bound for the size of an e-hull is Q( ¢~ (4=1)/2). Recently,
it has been shown in [7] that one can in fact do much better than the worst case bound if
the size of the smallest e-hull for P (which we denote as OPT) is small. In their paper, they
show that one can efficiently obtain S of size nearly linear in OPT and at most linear in the
dimension d.

One concern of the algorithms in [7] is that they require storing all points of P in
memory. The huge size of real-world datasets limits the applicability of these algorithms. A
natural question to ask is whether it is possible to efficiently maintain an e-hull of P when
P is presented as a data stream while using a small amount of memory. We provide both
negative and positive results, summarized below.

1.1 Qur Contributions

In Section 3, we show that no streaming algorithm can achieve space bounds comparable to
OPT, the optimal size of an e-hull. In particular, under a reasonable streaming model, no
streaming algorithm can have space complexity competitive with f(OPT,d) in 3 dimensions
or higher for any f : Nx N — N. This strong lower bound directs us to consider variants on
this problem. Note that the lower bound applies to space and not time; for the batch setting,
[7] gives a polynomial-time algorithm that computes an e-hull with space O(dOPT log OPT).

We devise and prove the correctness of streaming algorithms for three relaxations of the
problem. In Section 4, we show the first relaxation, in which the points are from R? and
come in a random order. In Section 5, we relax the problem (again in R?) by allowing
the algorithm to make multiple passes over the stream. In Section 6, we show the third
relaxation, in which the points come in an arbitrary order and from d-dimensional space,
but we only require to approximate the convex hull in a large fraction of all directions.

In the first relaxation, our algorithm maintains an initially empty point set S. When
our algorithm sees a new point p, it adds p to S if p is at least distance ¢ away from the
convex hull of S. Additionally, our algorithm keeps removing points p’ € S when some p’ is
contained inside the convex hull of S\ {p'}, that is, removing p’ does not change the convex
hull of S. Surprisingly, for any point stream P, with high probability this algorithm keeps
an e-hull of size O(OPT - logn), where n is the size of P.
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In the second relaxation, we permit the algorithm to make a small number of passes over
the stream. Our algorithm begins the first pass by taking O(1) directions and storing the
point with maximal dot product with each direction. In each of O(log(%)) subsequent passes,
we refine the solution by adding a new direction in sectors that incurred too much error while
potentially deleting old directions that become no longer necessary. The algorithm computes
an e-hull of size O(OPT).

In the third relaxation, we only need to be correct in “most” directions (all but a &
fraction of directions). Our algorithm picks Od(% log %) random unit vectors. For
each of these vectors v, we keep the point in the stream that has maximal dot product with
v. We give a proof based on VC-dimension uniform bounds to show that this algorithm
achieves the desired bound.

Although our algorithms are simple, it is surprising that input-dependent bounds are
achievable in these settings. To the best of our knowledge, this is the first work that
gives streaming algorithms for e-hulls with space complexity comparable to the optimal
approximation.

1.2 Related Work

Batch Algorithms for e-kernels We use the term batch algorithm for an algorithm that
stores the entire set of points in memory. In the batch setting, Bentley, Preparata, and
Faust [5] give a O4(1/¢(?~1)) space algorithm for computing an e-hull of a set of points
(assuming constant dimension d). Agarwal, Har-Peled, and Varadarajan [1] improve the
result to give a Oy(1/e(4~1)/2) space algorithm for computing a multiplicative approximation
of convex hulls. The running time bounds were further improved in [8, 10, 13]. Recently,
Blum, Har-Peled, and Raichel [7] give the only known batch algorithms for an e-hull that
are competitive with the optimal e-hull size of the given point set.

Streaming Algorithms for ¢-kernels with Worst Case Guarantees Hershberger and Suri
[11] give a 2-D one-pass streaming algorithm for e-hulls that uses O(1/+/€) space. Agarwal,
Har-Peled, and Varadarajan [1] give a one-pass streaming algorithm for e-kernels (which
is a multiplicative error version of the e-hull) that uses Og4((1/ 6%)logd n) space. Chan
[8] removes the dependency on n and gives a streaming algorithm for e-kernels that uses
O04((1/€%=3/2)1og? 1/€) space. This was then improved to Od((l/e%)log%) [15] and the
time complexity was further improved by Arya and Chan [4]. Chan [9] also gives a dynamic
streaming (allowing deletions in the stream) algorithm based on polynomial methods. All
of these space bounds assume a constant dimension d.

2  Preliminaries

» Definition 2.1. For any bounded set C C R%, we say a point q is e-close to C' if inf . || —
x| <e.

» Definition 2.2. Given a set of points P C R", S C P is an e-hull of P if for every p € P,

p is e-close to the convex hull of S.

» Definition 2.3. Let OPT(P, ¢) denote the size of a (not necessarily unique) smallest e-hull
of P. We omit P and e if it is clear from the context.
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Figure 1 e-hull of a set of points.

2.1 Streaming Model

Our streaming model, while simple, captures most streaming algorithms for e-hulls in the
literature. In our model, a streaming algorithm A4 is given € € (0,1) in advance but not the
size of the input point stream P € R?. P is presented to an algorithm A sequentially:

P= (p17p27' "apt7"')a

where p; € R? is the point coming at time t. Note that P may have duplicate points.
For the convex hull problem, we require Algorithm A to maintain a subset S C P. For
each point p € P, A can choose to add p to S (remembering p) or ignore p (therefore
permanently forgetting p). A can also choose to delete points in S, in which case these
points are permanently lost. After one-pass of the stream, we require S to be an e-hull
of the points set P. A trivial streaming algorithm could just keep all points it has seen.
However, such an algorithm would not be feasible in the big data regime. Ideally, A should
use space competitive with OPT(P, ¢).

3 Lower Bounds

An always-(f, r)-optimal algorithm uses space competitive with f(OPT(P,¢)) at all times t
and allows the algorithm to maintain an (re)-hull where r > 1. Note that this definition is
rather permissive, since it allows an arbitrary function of OPT and allows slack in € as well.

» Definition 3.1. For »r > 1, f : Nx N — N, we say a streaming algorithm A is always-
(f,r)-optimal if given arbitrary ¢ > 0 and point stream P C R? A keeps an (re)-hull of P
of size at most f(OPT(P,€),d).

» Theorem 3.2. Forallr >1,d >3, f: NxN — N, there does not exist an always-(f,r)-
optimal streaming algorithm in R®.

Proof. See Theorem A.5, Theorem A.6, and Corollary A.8 in the Appendix. <

We can also ask a slightly different question: what if an algorithm is given k& in advance,
and only needs to maintain an e-hull at time ¢ when OPT of the substream at time ¢ falls
below k? The algorithm we give for (¢, d)-hulls in Section 6 is of this form. In the appendix
(Definition A.9 and Theorem A.10), we formulate a lower bound for this case.

Our lower bounds guide future research by showing that we need to think beyond the
current streaming models, add reasonable assumptions to the problem, or the space bounds
of our algorithms must include some functions of € or |P| (besides just OPT and d).
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s = {}
When p € P is received do:
if dist(p, C(S)) < e:
// Discard p
else:
S =S U {p}
For each p’ € S:
If p’ is an interior point of S then let S = S \ {p’}

Figure 2 Algorithm ROA: pseudocode for 2D random order algorithm.

4 2D Random Order Algorithm (ROA)

In many cases, data points are generated i.i.d., for example mixture models or topic models
(e.g., [6]). In this section we assume a more general setup: that the points come in a
random order. More precisely, for all sets of points P, every permutation of P must have
equal probability density. The case where the data points are generated i.i.d. (making no
assumptions about the distribution) is a special case. We assume the points are in 2D. To
begin, we introduce the following definition.

» Definition 4.1. A point p is interior to P if p is in the convex hull of P\ {p}.

4.1 1D Algorithm

We begin with a classic result in 1-dimension. Consider the algorithm ROA-insertion:
Begin by keeping a set S = {}. For each point p € P that the algorithm sees, if the distance
from p to the convex hull of S is at most €, we discard p. Otherwise, we add p to S.

» Lemma 4.2. There exists a constant ¢ > 0 such that for any random order input stream
P containing at most n points, ROA-insertion maintains a subset S C P which is an e-hull
of P at all times. Moreover, if P C R then with probability at least 1 — 1/n3,

|S] <c-2-logn = 2c- OPT(P,¢€) - logn,
note that for any ¢ > 0, 1 < OPT(P,¢) < 2.

Proof. Follows from the classic fact that if n numbers are inserted into a binary search tree
in a random order, with high probability the leftmost and rightmost branches have length
O(logn) (e.g., [12]). <

A natural question is whether this algorithm generalizes to higher dimensions. Our
experiments suggest that the algorithm does not even generalize to 2D. In our experiments,
we set € = 0 and gave ROA-insertion n equally spaced points inside a square. OPT is 4, since
all the points are contained inside a square. However, experimentally, the number of points
kept by ROA-insertion increases much faster than logn.

4.2 2D Algorithm

We extend algorithm ROA-Insertion to get algorithm ROA. Let the points kept by ROA
at the i*® step of the algorithm be S;. At each step i, we iteratively delete interior points
from S; until S; has no interior points. We summarize algorithm ROA in Figure 2.
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Convek Hull of A

Figure 3 Figure for Lemma 4.3. Line [ separates halfspace H from C(A). bo, b1 are on C(B).

» Lemma 4.3. (Similar Boundaries) Suppose A and B are e-hulls of P. Then H(IC(A),0C(B)) <
€, where H is the (two-way) Hausdorff distance.

Proof. By symmetry, it suffices to show the claim for the one way Hausdorff distance.
Consider arbitrary s € 9C(A). We want to show that dist(s,dC(B)) < e.

Case 1 (s € C(B)): Then dist(s,dC(B)) = dist(s,C(B)). Since B is an e-hull of P,
dist(s,C(B)) <.

Case 2 (s € C(B)): Refer to Figure 3. Since s € 9C(A), there exists some line [ passing
through s such that all points in C(A) lie to one side of {. Consider the closed half space H on
the other side of I. Consider the line ls perpendicular to I, passing through s. Since s € C(B),
ly intersects OC(B) at some point p that is in H. Since A is an e-hull, dist(p,C(A)) < e.
However, note that all points in C(A) are on the other side of line I, not containing H. So
the distance from p to C(A) is at least the distance from p to [, which is the distance from
p to s. So dist(p, s) <. <

» Theorem 4.4. There exists a constant ¢ > 0 such that for any random order input stream
P containing at most n points, ROA maintains a subset S C P which is an e-hull of P at
all times. Moreover, if P C R? then with probability at least 1 — 1/n?,

|S| < c¢- OPT(Pe) - logn.
Since the algorithm is deterministic, the probability is over the arrival order of P.

Proof. An inductive argument shows that at each iteration ¢, S is an e-hull of P. We focus
on the proof of the space bound.

Step 1: We show that all points in S are near the boundary of some optimal e-hull T'.
Note that S does not contain any interior points, so for all s € S, s € 9C(S). Then by
Lemma 4.3, for every point s € S, dist(s,dC(T)) < e.

Step 2: We split the boundary of T into OPT sections, and show that with high proba-
bility our algorithm keeps O(logn) points for each section. Since T is optimal, it does not
contain any interior points. Label the points in T t1, ..., tx, clockwise along the boundary
of the convex hull of T'. For every s € S, since dist(s, dC(T)) < ¢, s is within distance ¢ from
the line segment connecting some t; and t;;1. Now, referring to Figure X, consider the line
segment [ connecting arbitrary ¢; and ¢;4;, and consider all points within distance e from
l. We group the points based on which side of the line segment they are on - consider the
points @ on one side of the line segment. The points @) are contained in some narrow strip R
with width e. Now, we can apply the proof from Lemma 4.2, by considering the projection
of the points in ¢ onto the line connecting ¢; and ¢;,1, to get that with high probability we
keep O(logn) points for each segment.

Step 3: We take a union bound over the OPT sections to get the desired result, where
we note that OPT < n. <
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Figure 4 Figure for Theorem 4.4. Consider
all points near segment | = ¢;t;11. Consider
points q1, g2, g3 € Q on one side of [. They are
contained in a thin strip R of width e.

Figure 5 A diagram of Farp(qi1,q2).
The dotted line is ¢, and the length of
the dashed line is Errorp (g1, ¢2).

5 2D Multipass Algorithm

In this section, we relax the problem by letting the algorithm pass over the stream P multiple

times. Let diam(P) refer to the diameter of the point-set P which is max, yep d(z,y). Our
(dlarrel(P) )

diam(P) = 1 and prove a bound of log(1) passes.

algorithm requires log passes and O(OPT) memory. For convenience, we assume

By convention, we define the distance between a point p and a set A to be d(p, A) =
minge 4 d(p, a). We define OP to be the subset of P that lies on the boundary of the convex
hull of P. Formally:

» Definition 5.1. For a set P C R?, we define 9P = P N dC(P). Here OC(P) means the
boundary of the convex hull of P.

Given any two points ¢q1,q2 € 9P, define £ = C({q1,¢2}) to be the line segment with
endpoints ¢; and ¢y. Observe that the set C(P) \ ¢ has at most two connected components.
Define Earp(q1,q2) to be the component that lies to the left of the vector from ¢; to g2. We
define Errorp(q1, ¢2) = MaXyecBarp (q1,40) A(2, £) to be the maximum distance of a point in this
component from ¢. See Figure 5 for an example. Note that we can compute Errorp (g1, ¢2) in
a single pass (see Algorithm 2 and Lemma B.1 in the Appendix).

Let ¢ be a unit vector. Define GetMaxp(t) to be arg max,cp p-t. It is clear that GetMaxp(t)
can be computed in a single pass. Algorithm 1 is the main multipass algorithm, using Error
and GetMax as blackboxes. We always maintain a set of directions 7. On Lines 5-9 we run
3|T| single-pass algorithms completely in parallel, therefore requiring only a single pass. By
the phrase “associating a point with a direction”, we mean to keep this point as piece of
satellite data.

Our main result for this section is the behavior of Algorithm 1. We define a word as the
space required to store a single point in R2.

We begin with some preliminary statements. We defer the proofs of these lemmas to
the Appendix (see Lemmas B.2, B.3, B.4, and B.6). Throughout this section, we use the
convention of incrementing subscripts modulo n (for example ¢,11 = q1).

» Lemma 5.2. [f Algorithm 1 terminates, it outputs an e-hull to P.
» Lemma 5.3. Algorithm 1 terminates in 3 + [log,(1/€)] passes.

» Lemma 5.4. Let p,p’,q',q € OP be in clockwise order along OC(P). Then Errorp(p’,q’) <
Errorp(p, q).

XX:7
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Algorithm 1 Input: a stream of points P C R? and a value € € (0,1]. Output: an
e-approximate hull of P
t1 < (1,0)7 tg < (—1,0)
T <« an ordered list (t1,t2)
For i = {1, 2}, associate q; + GetMax(t;) with ¢;
Initialize Flag to down position
for all 1 <i < |T (in parallel) do
Compute Errorp(g;, gi+1)
Compute Errorp(g;—1,i+1)
t! «+ direction bisecting! ¢; and ;41
q} < GetMax(t})
for all 1 < i <|T| (in parallel) do
if Errorp(gi—1,¢i+1) < € and neither ¢; ;1 or t;_1 have been deleted then
Remove t; from T

= =
w22

if Errorp(gi, giy1) > € then
Add ¢t/ to M and associate ¢} with ¢
Raise Flag

_ =

—
=Y

Recompute indices of T' to preserve clockwise-order
Delete any points/vectors except t; € T and their associated g;
if Flag is up then
Go to Line 4
else

Output {q1,...,q7}

N N = = e
= e 9 2

» Lemma 5.5. There exists an e-hull of P using only points from OP of cardinality at most
20PT(P,¢€).

» Theorem 5.6. Given a stream of points P C R? and a value ¢ € (0,1], Algorithm 1
terminates within 3 + [logy(1/€)] passes, stores at most 240PT(P,€) + O(1) words, and
returns an e-hull of P of cardinality 60PT(P,¢).

Proof. Algorithm 1 outputs an e-hull to P. By Lemma 5.3, Algorithm 1 terminates after
3+ [log,(1/€)] passes. It only remains to bound the space usage and cardinality of the set
returned

Let W C OP be an e-approximation of P such that n = |WW| < 20PT(P,¢). Lemma 5.5
guarantees that such a W exists. Let W = {wi,...,w,} be an ordering of W that is
clockwise in OC(P).

By definition, ep(w;, w;+1) < € for every i € Z (recall the convention of using addition
modulo n). Consider the state of the algorithm at the beginning of a pass; for notation let
T contain the directions {ti}gll associated respectively with {qi}g‘l.

For s € {1,2}, suppose that w;,q;, gj+s, witr1 are in clockwise order of OC(P). By
Lemma 5.4, ep(q;,gj+s) < ep(w;, wiy1) < e. We draw two conclusions. The first conclusion
(s = 1) is that on Line 13, ¢} will not be added to T'. The second conclusion (s = 2) is that
on Line 11, ¢;41 is a candidate for deletion (i.e. ¢;41 will be deleted unless t; or ¢;1o have
already been deleted).

Using the clockwise ordering of C(P), we say that a point ¢ € P is on edge (w;, w;41)
if it lies between w; and w;41 in the ordering. Suppose that {qj}ljill contains m points on
edge (w;,w;+1). By the reasoning in the preceding paragraph, it is easy to verify that all
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but [2-17] + 1 will be deleted on Line 11. As for points added on Line 13, this can only
occur at the boundary (between ¢; and ¢;4+1 where g; is the last point on some edge) and
therefore adds at most 1 point per edge.

Combining these facts, we see that an edge which enters a pass with m points finishes
that pass with at most [mT’lw + 2 points. Inductively we begin with m = {0,1,2} for each
edge. This implies that m < 3 after each pass. Therefore |T'| < 3n < 60PT(P,€) at all times.

Finally, observe that the storage of 4|T'| + O(1) points are used in a pass. To compute
€ without precision issues, storing a single point suffices. Therefore for each ¢ we store one
point for each of the two € computations, one point for GetMax, and the original point g; and
vector t;. The O(1) is just a workspace to carry out the calculations. |

6 (. 5)-Hull

In this section we give an algorithm for a relaxation of e-hulls, which we call (e, §)-hulls. Our
results hold for arbitrary point sets P C R?. Intuitively, an (e, d)-hull of P is within distance
€ from the boundary of the convex hull of P in at least a 1 — § fraction of directions.

» Definition 6.1. Given a vector v € R? and a finite point set P C R?, we define the
directional extent as

wy(P) = maxp - v.

If p € R? is a point we define w,(p) = p-v = w,({p}). We say that S maximizes P in v if
wy(P) = wy(S). Note that S can be either a single vector or a set of vectors.

Figure 7 All vectors between u and v with

Figure 6 Point p maximizes the set of points  Eyclidean norm at most 1 are in EF. See texts
in direction u because its projection onto u is  for details.

the highest.

» Definition 6.2. Given P C RY an (¢,§)-hull is a subset S C P such that if we pick a
vector v uniformly at random from the surface of the unit sphere, S¥~1, S e-maximizes P
in direction v with probability at least 1 — ¢, that is,

Prygi—1(|Jwy (P) — wy(S)] > €) <6

We start by describing a deterministic 2D algorithm. We pick O(%) uniformly spaced
directions, where k is the batch optimal for the e-hull of P. For each chosen direction v we
store a single point p that maximizes P in direction v. It can be verified that these O(%)
points give us an (e, §)-hull of the input set P C R?. Here we focus on higher dimensions.
Suppose we fix the dimension d. We give a randomized algorithm that uses m points and
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with probability at least 1 —+ gives us an (¢, d)-hull of a point set P, where k is the batch
optimal for the e-hull of P, and m satisfies:

k k
mGOd(dleg’yé>,

Note that m does not explicitly depend on e. Our algorithm for d-dimensional space is as
follows: Choose m uniformly random vectors in the unit ball B? (or equivalently on the
surface of the unit ball S?~!). For each chosen vector v we store a single point p € P that
maximizes P in direction v, that is, p - v = w,(P). This can easily be done in streaming.
Note that the given complexity is for a fixed dimension d, the actual space complexity will
be multiplied by some (exponential) function of d, but independent of e.

6.1 Proof of (¢, d)-hull Algorithm

We begin with some definitions and lemmas.

» Definition 6.3. Let B¢ denote the unit ball in d dimensions. Let S%! denote the unit
sphere in d dimensions, which is B¢ (the boundary of B?).

» Definition 6.4. Let V%(S) denote the d-dimensional volume (Lebesgue measure) of a
measurable set S in d-dimensional space.

» Definition 6.5. Let P € R? be a set of points and S C P. We say S e-maximizes P in
v if v = 0 or, letting v’ = v/|v|2, we have

| (P) = wyr (S)] < e
Note that as per definition 6.1, S can be either a single vector or a set of vectors.

» Definition 6.6. Given 7 C R? and t € R%, we define EI to be the set of all vectors v € B¢
such that ¢ maximizes T in v, that is,

EF ={v]v-t=w,(T)A]|v|s <1}

Figure 7 shows a set of points 7. All vectors between u and v with Euclidean norm at
most 1, in the range indicated by the angle, are in Eg. Note that u is perpendicular to line
segment C'D and v is perpendicular to line segment DE. Only points ¢t € T that lie on the
boundary of the convex closure of T' have non-empty Ef .

» Definition 6.7. Given a point stream P, and a set S, we say the set of bad vectors R
(with respect to P, S) is the set of vectors v in B¢ such that S does not e-maximize P in v.
An equivalent definition of (e, §)-hulls is that V¢(R)/V¢(B9) < 6.

We are now ready to present the following lemmas about the properties of Ef.

» Lemma 6.8 (e-Maximization Lemma). Suppose P C R? is a finite set of points and T C P
is an e-hull of P, andt € T. Then t e-mazimizes P for all vectors v € E} (see Defini-
tion 6.6).

» Lemma 6.9 (Covering Lemma). For all finite point sets T C R?, |, Ef = B™.

» Lemma 6.10 (Convex Lemma). For any point t € R? and finite set T C RY, ET' is convex
and has finite volume.
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Next, we provide a crucial lemma that is an analogue to the finite e-net in computational
geometry. Our lemma works in continuous measurable space. Before we proceed, For a
family of sets H, we denote the simplified version of VC-dimension d' = VNC(H) as the
smallest positive integer d’ such that for every finite set A C R, [{hNA: h e H}| < |A|¥
(that is, such that Sauer’s Lemma holds). We then have the following lemma.

» Lemma 6.11. Let 7,7 € (0,1) be two parameters. Let H be a set of measurable sets in
R? such that 170(7-[) < d' for some integer d’'. Given a measuable convex set C C RY, let
He = {c € H :c C C} be the sets of subsets of H contained in C. Suppose we choose
m = G(f—; log %) points uniformly random in C'. Then, except with probability -y, all sets
u € He with V4(u)/V4(C) > T contains some selected point, where V(u) denotes the
volume of u.

Proof. Suppose we choose m points pi, ..., p,, uniformly random in C. Consider a set
u € Hc. Let P(u) denote the probability that a selected point lies in w. We have that P(u) =
Ve(u)/V4(C). Let Py, (u) denote the empirical estimate of P(u): Py (u) = £ 57" 1(p; € ).

m

The VC-dimension of H¢ is bounded by d’. By the VC-dimension uniform bound (e.g., [14]),

P(sup [Pp(u) —P(u)| > 7/2) < 8m® e=m7 /128,
uEHc

Choosing m = @(f—; log %) gives us (see Lemma C.1 in the Appendix),

P(uilirlf Py (u) — P(u)] > 7/2) <y

So now suppose that sup,cq. [Pm(u) —P(u)| < 7/2. Consider arbitrary u € Hco with
Va(u)/V4(C) > 7. This means that P(u) > 7. But then P, (u) > 7/2 > 0. Since
P, (u) > 0, we must have selected at least one point in u. By the uniform bound above,

except with probability -y, this is true for all u € H¢. <

We want to show that the set of points S our algorithm chooses is e-maximal in most
directions. One way is to show that for each point our algorithm picks, the set of bad vectors
(vectors that our stored points do not e-maximize) shrinks. The next lemma formalizes this
notion under some assumptions.

» Lemma 6.12. Given a finite point set P C R? and a finite-volume convex set C C R?.
Assume that there exists some p € P s.t. for all unit vectors v € C, p e-mazimizes P in v.
Suppose that we pick arbitrary vectors vy, ...,vp € C and corresponding points p,...,px € P
s.t. for all i, p; mazimizes P in v;. Then there exists a finite-volume convex subset C' C C
s.t.

1. Forallielk],v;¢C".

2. For all unit vectors v € C\ C', S = {p1,...,pr} e-maximizes P in v.

Proof. Consider a vector v; that we picked, and corresponding point p;. If p; = p, then
C'" = {} satisfies the required conditions. Otherwise, let H = {v | p;,-v > p-v}. His a
half-space that contains the vector v;. Furthermore for all vectors v € HNC, S e-maximizes
P in v. So the set of vectors in C that p; does not maximize are contained in H¢ N C,
where H¢ does not contain p;. Applying this argument for each vector v; and corresponding
point p;, we can construct C’ to be the intersection of C' with the k (open) half-spaces
corresponding to each of the points p; we selected. Our constructed C’ is convex, because
it is the intersection of convex sets, and it is bounded and measurable. |
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Before we present the main theorem, we show that the set of unions of k ellipsoids is of small
VC-dimension. The proof of the following lemma is a simple application of the definition of
the VC-dimension with a result bounding VC-dimensions of the set of ellipsoids (e.g. [3]).
The formal proof is presented in the Appendix.

» Lemma 6.13;/Let E be the sets of all ellipsoids in RY. Let £ = {e; UeaUes... Uey :
e; € E}. Then VO(H) < 4kd?.

Now we are ready to present the main theorem in this section.

» Theorem 6.14. Let 7,6 € (0,1),k > 1 be parameters. Given a point stream P in R?
and € > 0. Suppose OPT(P,€) < k. Then there exists a one-pass streaming algorithm, given
P,v,d,k, stores a set S C P of m = @d(é% log %) points, such that, except with probability
v, S is an (e,0)-hull of P.

Proof. To begin the proof, we recall the algorithm. We first pick uniformly at random
m = @(dm;zk log %) directions from B?, the d-dimensional unit ball. When the stream is
coming, we maintain the extreme point from P in each direction. The output S is the set
of extreme points in each direction.

Intuitively, S is an (e, §)-hull iff B? only contains a small region of bad vectors (with
respect to P, S). Let T be an optimal e-hull of P, with |T'| = k. Fix t € T. Consider the
set EY. In our proof we will show that with high probability each set E} only contains a
small subset of bad vectors, C}, such that, for all vectors v € EI \ C}, S e-maximizes P in
v. Then we show that Y, . V(C}) < §, which completes the proof.

Suppose the selected random set of vectors is A C B?. Fixt € T. By Lemma 6.8, € T e-
maximizes P for all vectors v € EJ . Then by Lemma 6.12, there exists a finite-volume convex
subset Cf C E] such that C;N A = () and for all v € E} \ C}, S e-maximizes v. Next, for
each t € T, we select a large ellipsoid u; contained in C} such that V(C}) < V4(u;)d?. Note
that U;crC} is a member of the family £I71 = {h; UhyU. . Uhyp| : Vi, h; is an ellipsoid}. By
Lemma 6.13, %(ElTl) < 4kd?. By Lemma 6.11, since all u; do not contain any point from A,
with probability at least 1—, it must be the case that V¢(Uieruys)/V4(B?) < §/(d?). Since
the u; are disjoint, this means that V¢ (UserCy)/V 4 (B4) < 6. Furthermore, by Lemma 6.9,
UtGT El = B?. Therefore, with probability at least 1 — v, S e-maximizes all vectors in B?

except for those in UserC}. Thus, S is an (e, §)-hull except with probability ~.
<

7 Concluding Remarks

In this paper we presented useful lower bounds, and streaming algorithms for relaxations of
the e-hull problem that were competitive with OPT. Our work naturally leads to interesting
and important open questions. We do not have a lower bound for e-hulls in R2, so there
might exist one-pass streaming algorithm competitive with OPT in R2. In R, for d > 3, it
might still be possible to devise space-efficient algorithms that include some small function of
€ and OPT. Finding an algorithm that scales well with d is an important open problem. Our
random order algorithm currently only works in R?, however our technique could possibly
be extended to higher dimensions. Our (e, d)-hull algorithm achieves near optimal space
bounds for arbitrary constant dimension d, where d is small. Note that most of the work on
e-kernels also assumes that the dimension d is a constant. We leave it as an open question
to remove exponential dependencies on d.
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A Lower Bounds

A.1 Proof of Always-opT Lower Bound
» Definition A.1. We say a point p is interior to P if p is in the convex hull of P\ {p}.
» Definition A.2. We say a set of points P is meaningful if P has no interior points.

» Definition A.3. For € > 0, we say a set of points P is e-meaningful if the optimal e-hull of
P is P. This means the distance from point p € P to the convex hull of P\ {p} is at least e.

» Lemma A.4. If P is e-meaningful then P is meaningful. In the other direction, if P is
meaningful then there exists € > 0 such that P is e-meaningful.

» Theorem A.5. For all f : N x N — N, there does not exist an always-(f,1)-optimal
streaming algorithm in R3.

Proof. Assume for the sake of contradiction that there exists some function f: N — N and
corresponding always-(f, 1)-optimal streaming algorithm A. Without loss of generality, we
can assume that f is increasing.

The high level idea is that we will construct 3 sequences of points Py, P, P3. Let Py o Py
denote sequence P; followed by sequence P, (P appended to P;). We will show that if A
keeps an e-hull of size at most f(OPT(P; o P, €)) after receiving P; o Py, then it cannot keep
an e-hull of size at most f(OPT(P; o Py o Ps,¢€)) after receiving P; o Py o Ps.

All points in P; will have z-coordinate 0, all points in P, will have z-coordinate ¢, all
points in Ps will have z-coordinate 2¢, where € will be specified later. Geometrically, one
can visualize three planes perpendicular to the z axis with points in Py, P>, P3 on their
respective planes. We now treat Pi, P, Ps as point sets in 2D and specify the = and y
coordinates of points in the sets.

° °

°

(@) PLat z=0 (b) P at z=¢ (c) P, P projected

Figure 8 2D depiction of points in P, and P», ignoring z coordinates

Py contains 4 points that form a square, with coordinates, (0,0), (0,1), (1,0), (1,1), as
shown in figure 8a. P, has n = 10f(4) points, forming a regular polygon that is centered
around (0.5,0.5) with z,y coordinates between 0 and 1, as shown in figure 8b. So if we
ignore the z coordinates, P, is contained inside P;, as shown in figure 8c. Order the points
in P, anti-clockwise, a, ...,
So the first group will have the points ay, ..., a5, the second group has the points ag, ..., a19,
etc. For each group of 5 points in P, we will construct m = 10f(n +4) = 10f(10f(4) + 4)
points in Ps.

WLOG consider ay, ..., a5 in P,. For each such group, we will add points b1, ..., b, to Ps.
Ignoring z coordinates, we set by = aso, b,, = a4. All the points by, ..., b,, will be contained

an. Group the points into disjoint sets of 5 consecutive points.
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Figure 9 Red points are in Ps, blue in P»

in the triangle defined by a2, az, as. The points by, ..., b, are equally spaced, and form equal
angles that are less than 180 degrees. We illustrate this construction in figure 9. We note
that by our construction P;, P», P3 are meaningful. We choose the smallest € such that
Py, P>, P; are e-meaningful. Now, we will prove the theorem.

Suppose we run A on Pj o P5. Ignoring z coordinates, P, is contained inside P;. Since
the z coordinates of points in P; and P; are 0 and € respectively, P; is an e-hull for P; o P5.
So OPT(P; o Py, ¢) < 4. Since A is always-1-OPT, it can keep at most f(4) points in Py o Ps.
P, has a total of 10f(4) points, which we divided into 2f(4) groups of 5 points. So A did
not store any points in at least f(4) of these groups, call these the unselected groups in Ps.

Now suppose we run A on P; o Py o P3. For each of the f(4) unselected groups in P,
we selected m = 10f(n + 4) points in P;. A has to select all the corresponding m points
in P3. To prove this, suppose for the sake of contradiction we don’t have to select some
corresponding point p in P3. p cannot be written as an e-approximate convex combination
of selected points in P,, because the z coordinate of p and points in P, differ by € and if we
ignore z coordinates (projecting to the plane z = 0) p corresponds to an unselected group
and so does not lie inside the convex hull of selected points in P,. Furthermore, since we
selected P to be e-meaningful, p cannot be written as an e-approximate convex combination
of other points in Ps.

Summing over unselected groups, this means that A must keep f(4)m = 10f(4)f(n+4)
points in P3. The optimal e-hull of P; o P, o P53 is much smaller: we can simply store all the
points in P; and P, giving us a total of n + 4 points. So OPT(P; o Py o P3,¢) < n+ 4, which
means A is allowed to keep at most f(n + 4) points. 10f(4)f(n+4) > f(n+4) so we have
a contradiction.

<4

» Theorem A.6. Forallr € Z7", f : NxN — N, there does not exist an always-(f, r)-optimal
streaming algorithm in R3.

Proof. The construction is similar to theorem A.5, with a few differences. Instead of con-
structing 3 sets of points Py, P», P53, we construct r+ 1 sets of points P, ..., P.y1. All points
in P; will have z coordinate (i — 1)e. For the x,y coordinates, the construction of P;1; for
i > 2 is similar to the construction of Ps in theorem A.5. We group P; into disjoint groups
of 5 points. Let n; be the total number of points in P4y, ..., P;. For each group in P; we add
10f(n;) points in P; ;. We then choose € so that P; is re meaningful for all i.

The proof of the construction is also similar to theorem A.5, except we apply the argu-
ment inductively. We can show that for each ¢, there exists an unselected group of 5 points
in P;, and further if we project onto z = 0 the unselected group would be at least distance
re outside the convex hull of points we select in P, ..., P;_1. At P,.;1, this will give us an
unselected point that is not an re-approximate convex combination of selected points. <«
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» Corollary A.7. The above proof holds for both deterministic and randomized algorithms
since it first presents a construction, and then cases on a particular run of the algorithm. It
does not assume the algorithm runs the same way each time.

» Corollary A.8. Forallr >1,d>3, f: NxN — N, there does not exist an always-(f,r)-
optimal streaming algorithm in R®.

Proof. If d > 3, R¢ contains a 3D subspace so we can use the construction in Theorem A.6.
<4

A.2 Sometimes-orT Lower Bound

» Definition A.9. Given f: N x N — N, a streaming algorithm A is sometimes-f-optimal
if the following holds. Suppose A is given k € ZT in advance, and is run on an arbitrary
point stream P with OPT(P,¢) < k. At all times, A is allowed to keep at most f(k) points.
After processing all points in P, A keeps an e-hull of P.

» Theorem A.10. Forall f : NxN — N, d > 3, there does not exist a sometimes-f-optimal
streaming algorithm in R?.

Proof. We first prove this for a deterministic algorithm and then sketch out how to extend
the proof to a randomized algorithm. Assume for the sake of contradiction that there exists
a deterministic sometimes-OPT streaming algorithm in R3.

We modify the construction in theorem A.5. We construct 3 points sets Py, Py, P3. Points
in Py, P, P3 have z-coordinates 0, €, 2¢ respectively, so we describe their =,y coordinates.
Py contains 4 points (0,0),(0,1),(1,0),(1,1) like in theorem A.5. P» is a regular polygon
centered around (0.5,0.5) with x, y coordinates between 0 and 1. However, P, contains n =
10£(7) points. We group the points in P, into consecutive groups of 5 like in theorem A.5.

We will set k=7 and run A on P o P,. A is allowed to keep at most f(7) points, so it
can keep at most f(7) points in P,. However, P, had 2f(7) groups of 5 points. So at least
one of the groups is unselected, suppose the points in one of these groups are aq, ..., as. For
this group of 5 points, we use the construction we used in theorem A.5 shown in figure 9,
except we add 2f(7) (instead of 10f(10f(4) +4)) points to Ps. If we project all points onto
the plane at z = 0 then P3 will be contained inside the triangle defined by as, a3, a4.

We define € to be the smallest value such that Py, P», P; are e-meaningful. Note that the
choice of € is independent of which group was unselected, since P, is a regular polygon and
is therefore symmetric. Now, suppose we run A on the stream P o Pyo P3. Py U{asg, a3, a4}
forms an e-hull of P; o Py o P3 so OPT(P; o Py o P3,¢) < 7. Since A is sometimes-OPT, it
must find a way to keep an e-hull of P; o P; o P3 of size < f(7). However, A must choose
all points in Ps, because their distance from selected points in P, and P, is greater than e,
and Ps is e-meaningful. So A must store 2f(7) points, a contradiction.

This proof can be extended to show that there does not exist a randomized sometimes-
f-optimal streaming algorithm in R3. <

B Proofs deferred from Multipass Section

Algorithm 2 shows how to compute Errorp(q1,g2) in a single pass. We will use Errorp(q1, g2)
to verify whether an e-hull requires another point in between ¢; and gz. In the algorithm,
note that Farp(qi,ge) is the set of all points p € P such that (g1, p, ¢2) is clockwise.

» Lemma B.1. Algorithm 2 returns Errorp(q1,q2).



A. Blum, V. Braverman, A. Kumar, H. Lang, L. F. Yang

Algorithm 2 Input: a stream of points P C R? and two points q1,q2 € P. Output:
Errorp (ql, q2)
1: Error <— 0

2 H « C({q1,42})

3: for all p € P do

4: if (q1,p, ¢2) is clockwise then
5

6

Error <— max(Error, dist(p, H))

: Return Error

Figure 10 The two blue points are GetMaxp(t;) and GetMaxp(t;+1). The error is at most the
height (dotted line) of the shaded triangle. The bass of the triangle (blue line) is at most diam(P) =
2. When there are R equally-spaced directions, the angle at the apex of the triangle is exactly
™ — %’. Basic trigonometry shows that height of this triangle (an upper bound on the error) is at

most tan(f).

Proof. Define ¢ to be the line segment with endpoints of ¢; and go. Let A = Farp(qi, g2).
We must show that Algorithm 2 returns max,e d(a,?).

Observe that A can be written as C(P) N X where X is the closed half-space containing
A such that ¢ C OA. Therefore A is also convex. This implies that max,c4 d(a,l) =
max,e(pna) d(a, £) since the maximum must occur at a vertex of A and every vertex of
A belongs to P. Line 4 filters the stream so that we only consider P N A, and the result
follows. <

» Lemma B.2. [f Algorithm 1 terminates, it outputs an e-hull to P.

Proof. Let q1,...,q, € OP be the output of Algorithm 1. By Line 13, Errorp(g;, qiv1) < €
for every 1 <14 <n. We must show that {q1,...,qn} is an e-hull to P.

Define H = C({¢q1,...,¢n}). Consider any p € P. Observe that either p € H (in which
case we are done) or there is some ¢ € [n] such that p € Farp(q;,qi+1). In the latter
case, define ¢ to be the line segment with endpoints ¢; to ¢;+1. Then d(p, H) < d(p,¢) <
Errorp(qi,qi+1) S €. <

» Lemma B.3. Algorithm 1 terminates in 3 + [logy(1/€)] passes.

Proof. Let 11,...,7r be R equally-spaced directions for some R > 4. Recall that under our
(trivially removable) assumption, diam(P) = 2. See Figure 10 for a diagram of why

Error(GetMax(t;), GetMax(t;+1)) < tan(m/R)
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Observe that after the y*" pass, the set of directions 7" is a subset of {71,...,7os}. The
directions that have been removed are precisely those between directions that have error at
most € (see Line 11). This ensures an error bounded by the above expression when R = 2Y.
The algorithm terminates when all errors are at most €. Therefore the number of passes
is at most y + 1 where y is the minimum non-negative integer such that tan(w/2¥) < e.

Re-arranging shows that
[1 ( - )—‘
= O
y 82 tan"le

and the result follows since tan~!(e) > we/4 for all € € (0, 1]. <

» Lemma B.4. Let p,p', ¢, q € OP be in clockwise order along OC(P). Then Errorp(p’,q') <
Errorp (p, q) .

Proof. First observe that Earp(p',q') C Earp(p,q). Let ¢ be C({p,q}) and let ¢ be
C({p',q'}). It remains to show that for every x € Earp(p',q'), d(z, ') < d(x,¥).

Let A be the closure of Earp(p,q). This is also a convex shape. Now observe that
Ears(p',q') = Earp(p',q’'). Let y € £ be the point such that d(x,y) is minimized. This
exists since £ is compact. £ and y lie in different connected components of A\ ¢'. By convexity
of A, the line segment from z to y must pass through ¢'. Therefore d(x, ¢') < d(z,y) = d(x,¢)
as desired. <

» Lemma B.5. Let P be a set in R?. Then OPT(P, ) < 60PT(P,¢).

Proof. Let S C OP be a set of 20PT(P, €) points that forms an e-hull of P (such a set exists
by Lemma 5.5). We will construct an (¢/2)-hull of P consisting of 3|S| points. Let s; and
s2 be two adjacent points after orienting S clockwise. Define ¢ to be the line through s; and
so, and let H be the open half-space with boundary ¢ and containing the left-hand side of
the directed segment (s, s2) (therefore containing no points of S). In the case that |S| =1,
we continue the proof by letting ¢ be any line such that £NCp = S.

Let @ = HN P, and observe that all points of @ are within distance € of £. Every point in
@ within distance § of £ is also within distance § of Cy,, 3. Therefore to form an §-hull of
P, we only need to add points to take care of those remaining points in @) that have distance
between £ and ¢ to ¢, which we denote by Q’. Define Q; to be the max(2,|Q’|) points of

2
" that are extremal when projected onto £. Now every point of @) is within distance £ of
Q proj v P ;
C{sl,SQ}qu Repeat this process on each edge to construct the sets Q1,. .., Q|5 whose union
we denote by Q. The set S U Q forms an §-hull of size at most 3|S|. <

» Lemma B.6. There exists an e-hull of P using only points from OP of cardinality at most
20PT(P, ).

Proof. Let @ be an e-hull of P such that |Q| = OPT(P, €). Choose an arbitrary point s from
the interior of C(Q). For each ¢; € @, define ¢, to be s + t;(¢; — s) for the unique ¢; > 0
such that ¢, € OC(P). Observe that @’ (obtained by replacing each ¢; € @ with ¢;) has the
property that C(Q") D C(Q).

Now for each ¢; € Q’, we have that ¢/ € dC(P) and there must be two points p},p? € OP
such that ¢, € C({p},p?}). If ¢/ € OP then we simply set p! = p? = ¢/. Define the set
Q" to be the union of the {p},p?} over all the ¢i. Since ¢ € C({p},p?}), we have that
C(Q") D C(Q). Therefore Q" is an e-hull of P, |Q"| < 2|Q|, and Q" C OP. <
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C Proofs Deferred from (¢, )-hull Section
» Lemma C.1. Ifd >1,r<1,0< vy <1, andm:?)-%-d’-log(i—g-d’-%), then
Smd/e—m7'2/32 <.

Proof. Let | =log(33 -d' - %)
gmd e~ /32 = 83— -d - l)d/e_mrz/32 [Substituting m]
=8(3- 2= . )T e 3 [Substituting m)

=8(3- 2. d - )Y ((eH¥)? [Manipulating exponent]

32 por? 1

=803-= -d - ((== -

( (55 5

We split the left half of the expression into three parts:

83 5 - 1) = [8:37)- (55 - )]0

: P)d/)g [Substituting (]

2

We separately multiply each part by (55 - & -7)? to get the desired result.
2

83 (0 D g <@ (S L i ws<s]
32 = 32 d = =
;o1 ,
< (24)7 ~(3—2 1-1)¢ [Since r < 1,1 < d’, and vy < 1]
<1
(=Y B T
2 32 d -7
<~
, 1 , 32 1o 0 r2 1 )
T Y. S 1 P o LY I
32 1., r2 1 ,
<[22 g .2\ (. — . A)d ; <
J(T2 d 7) ] (32 7 ) [Since log z < ]
=1

<

Proof of Lemma 6.13. We consider an arbitrary finite set A C R%. Denote €4 = {e N A :
ec&}and &K ={enA:ec &k} Consider an e =e; UeaUes...Uey € EF. We have

Ane=Ul_(e; NA).

Since each e; N A € £4, we thus have
[E4] < |Eal”.

By [3], we have that VC(&) < 2d2 and |€4] < (JA] + 1)2¢ < |A]*?’. Thus we have
€8] < A",

which completes the proof. |



