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Abstract Halldórsson et al (ICALP proceedings of the 39th international colloquium
conference on automata, languages, and programming, vol part I, Springer, pp 449–
460, 2012) investigated the space complexity of the following problem CLIQUE-
GAP(r, s): given a graph stream G, distinguish whether ω(G) ≥ r or ω(G) ≤ s,
where ω(G) is the clique-number of G. In particular, they give matching upper and
lower bounds for CLIQUE-GAP(r, s) for any r and s = c log(n), for some constant
c. The space complexity of the CLIQUE-GAP problem for smaller values of s is left
as an open question. In this paper, we answer this open question. Specifically, for
any r and for s = Õ(log(n)), we prove that the space complexity of CLIQUE-GAP
problem is �̃(ms2

r2
). Our lower bound is based on a new connection between graph

decomposition theory (Chung et al in Studies in pure mathematics, Birkhäuser, Basel,
pp 95–101, 1983; Chung in SIAM J Algebr Discrete Methods 2(1):1–12, 1981) and
the multi-party set disjointness problem in communication complexity.
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1 Introduction

Graphs are ubiquitous structures for representing real-world data in several sce-
narios. In particular, when the data involves relationships between entities it is
natural to represent it as a graph G = (V, E) where V represents entities and E
represents the relationships between entities. Examples of such entity-relationship
pairs include webpages-hyperlinks, papers-citations, IP addresses-network flows,
and people-friendships. Such graphs are usually very large in size, e.g. the people-
friendships “Facebook graph” [27] has 1 billion nodes. Because of the massive size of
such graphs, analyzing them using classical algorithmic approaches is challenging and
often infeasible. A natural way to handle such massive graphs is to process them under
the data streaming model. When dealing with graph data, algorithms in this model
have to process the input graph as a stream of edges. Such an algorithm is expected to
produce an approximation of the required output while using only a limited amount
of memory for any ordering of the edges. This streaming model has become one of
the most widely accepted models for designing algorithms over large data sets and
has found deep connections with a number of areas in theoretical computer science
including communication complexity [3,9] and compressed sensing [14].

While most of the work in the data streaming model is for processing numerical
data, processing large graphs is emerging as one of the key topics in this area. Graph
problems considered so far in this model include counting problems such as triangle
counting [4,6,12,18,19,25],MAX-CUT [20] and small graphminors [8], and classical
graph problems such as bipartite matching [15], shortest path [13], and graph sparsi-
fication [1]. We refer the reader to a recent survey by McGregor for more details on
streaming algorithms for graph problems [23]. Recently, Halldórsson, Sun, Szegedy,
Wang [16] considered the problem of approximating the size of maximum clique in a
graph stream. In particular, they introduced the CLIQUE-GAP(r, s) problem:

Definition 1 CLIQUE-GAP(r, s): given a graph stream G, integer r and s with 0 ≤
s ≤ r , output “1” if G has a r -clique or “0” if G has no (s + 1)-clique. The output can
be either 0 or 1 if the size of the max-clique ω(G) is in [s + 1, r ].

In this paper we further investigate the space complexity of the CLIQUE-GAP
problem and its relation to other well studied topics including multiparty communi-
cation, graph decomposition theory, and counting triangles. We establish several new
results including a solution to an open question raised in [16].

1.1 Our Results

In this paper, we establish a new connection between graph decomposition theory [10,
11] and the multi-party set disjointness problem of the communication complexity
theory. Using this connection, we prove new lower bounds for for CLIQUE-GAP(r, s)
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when s = O(log n) and complement the results of [16]. Our main technical results
are Theorems 1, 2, 3, and 4. We summarize our results below and defer the proofs to
the later sections.

The Upper Bound : We give a one-pass streaming algorithm that solves CLIQUE-
GAP(r, s) using Õ(ms2/r2) space. Note that our results do not contradict the lower
bounds in [16], since their results apply for dense graphs with m = �(n2).

Theorem 1 For any r and s where r ≥ 100s, there is a one-pass streaming algorithm
(Algorithm 1) that, on any graph stream G with m edges and n vertices, answers
CLIQUE-GAP(r, s) correctly with probability ≥ 0.99, using Õ(ms2/r2) space in
expectation.1

Lower Bounds : We give a matching lower bound of Ω̃(ms2/r2) on the space com-
plexity of CLIQUE-GAP(r, s) when s = O(log n).

Theorem 2 For any 0 < δ < 1/2 there exists a global constant c > 0 such that
for any 0 < s < r, M > 0, there exists graph families G1 and G2 that satisfy the
following:

– for each graph G1 ∈ G1, |E(G1)| = m ≥ M and G1 has a r-clique;
– for each graph G2 ∈ G2, |E(G2)| = m ≥ M and G2 has no (s + 1)-clique;
– any randomized one-pass streaming algorithm A that distinguishes whether G ∈
G1 or G ∈ G2 with probability at least 1 − δ uses at least cm/(r2 log2s r) memory
bits.

For s = O(log n) our lower bound matches, up to polylogarithmic factors, the
upper bound of Theorem 1. Using the terminology from graph decomposition theory
[10,11] we extend our results to a lower bound theorem for the general promise
problem GAP(P,Q), which distinguishes between any two graph properties P and
Q satisfying the following restrictions. Note that α∗(G0,Q) is a parameter denotes
the minimum decomposition of G0 by graphs in Q, first defined in [10]. Please refer
to Equation 6 for details.

Theorem 3 Let P,Q be two graph properties such that

– P ∩ Q = ∅;
– If G ′′ ∈ P and G ′′ is a subgraph of G ′, then G ′ ∈ P;
– If G ′, G ′′ ∈ Q and V (G ′) ∩ V (G ′′) = ∅, then G̃ = (V (G ′) ∪ V (G ′′), E(G ′) ∪

E(G ′′)) ∈ Q;

Let G0 be an arbitrary graph in P . Given any graph G with m edges and n vertices,
if a one-pass streaming algorithm A solves GAP(P,Q) correctly with probability at
least 3/4, then A requires Ω( n

|V (G0)|
1

α2∗(G0,Q)
) space in the worst case.

We use the tools we develop for the CLIQUE-GAP problem to give a new two-pass
algorithm to distinguish between graphs with at least T triangles and triangle-free

1 In this and following theorems, the constants we choose are only for demonstrative convenience.
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graphs. For T = n2+β , the space complexity of our algorithm is o(m/
√

T ) for β >

2/3. Cormode and Jowhari [12] give a two-pass algorithm using O(m/
√

T ) space.
Also, for T ≤ n2 they provide a matching lower bound. Our results demonstrate that
for some T > n2, it might be possible to refine the lower bound of Cormode and
Jowhari. We state our results in Theorem 4.

Theorem 4 Let G1 be a class of graphs of n vertices that has at least T = n2+β

triangles for some β ∈ [0, 1]. Let G2 be a class of graphs of n vertices that are
triangle-free. Given graph G = (V, E) with n nodes and m edges, there is a two-pass
streaming algorithm that distinguishes whether G ∈ G1 or G ∈ G2 with constant

probability using Õ(mn2−β

T ) space. In particular, for β > 2/3, the algorithm uses

o(m/
√

T ) space.

Incidence Model : We also give a new lower bound for the space complexity of
CLIQUE-GAP(r, 2) in the incidence model of graph streams (Theorem 5).

Theorem 5 If a one-pass streaming algorithm solves CLIQUE-GAP(r, 2) in the inci-
dence model for any G with m edges and n vertices with probability at least 3/4, it
requires Ω(m/r3) space in the worst case.

1.2 Related Work

Prior work that is closest to our work is the above-mentioned paper of Halldórsson
et al [16]. They show that for any ε > 0, any randomized streaming algorithm for
approximating the size of the maximum clique with approximation ratio cn1−ε/ log n
requires n2ε space (for some constant c). To prove this result they show a lower bound
ofΩ(n2/r2) for CLIQUE-GAP(r, s) (using the two-party communication complexity
of the set disjointness problem) when r = n1−ε and s = 100 · 21/ε log n.

The problem related to cliques that has received the most attention in the streaming
setting is approximately counting the number of triangles in a graph. Counting the
number of triangles is usually an essential part of obtaining important statistics such
as the clustering coefficient and transitivity coefficient [5,21] of a social network.
Starting with the work of Bar-Yossef et al. [4], triangle counting in the streaming
model has received sustained attention by researchers [6,12,19,25]. Researchers have
also considered counting other substructures such as K3,3 subgraphs [7] and cycles
[5,22].

The problem of clique identification in a graph has also been considered in other
models. For example, Alon et al. [2] considered the problem of finding a large hidden
clique in a random graph.

2 Definitions and Results

2.1 Notations and Definitions

We give notations and definitions that are necessary to explain our results. For a graph
G = (V, E) with vertex set V and edge set E , we use m to denote the number of
edges, n to denote the number of vertices, T to denote the number of triangles in G,
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Δ to denote the maximum degree of G, and ω(G) to denote the size of the maximum
clique (also known as the clique number). We use Õ and Ω̃ to suppress logarithmic
factors in the asymptotics.

We consider the adjacency streaming model for processing graphs [4,6]. In this
model the graph G is presented as a stream of edges 〈e1, e2, ..., em〉. We process
edges under the cash register model: edge deletion is not allowed. Another model we
consider in Sect. 6 is the incidence streaming model, which assumes that all the edges
incident at a vertex will arrive together, and that each edge appears twice, once for
each endpoint.

A k-pass streaming algorithm can access the stream k times and should work cor-
rectly irrespective of the order in which the edges arrive (the ordering is fixed for all
passes).

2.2 Lower Bound Techniques

To establish our lower bounds on the CLIQUE-GAP(r, s) problem for arbitrarily small
s, we use the well known approach of reducing a communication complexity problem
to CLIQUE-GAP(r, s). For the reduction, we make use of graph decomposition the-
ory [10,11]. The communication complexity problem we use is the set disjointness
problem in the one-way multi-party communication model.

The set disjointness problem in the one-way k-party communicationmodel, denoted
by DISJn

k , is the following promise problem. The input to the problem is a collection
of k sets S1, . . . , Sk over a universe [n], with the promise that either all the sets are
pairwise disjoint or there is a unique intersection (that is there is a unique a ∈ [n]
so that a ∈ Si for all 1 ≤ i ≤ n). There are k players with unlimited computational
power and with access to randomness. Player i has the input Si and Player i can only
send information to Player (i + 1). After all the communication between players, the
last player (Player k) outputs “0” if the k sets are pairwise disjoint or outputs “1” if the
sets uniquely intersect. For instances that do not meet the promise the last player can
output “0” or “1” arbitrarily. The communication complexity of such a protocol is the
total number of bits communicated by all players. This problem was first introduced
by [3] to prove lower bounds on the space complexity of approximating the frequency
moments. In [9], it is shown that the communication complexity of DISJn

k is Ω(n/k).
We review basics of graph decomposition [10,11]. An H-decomposition of graph

G is a family of subgraphs {G1, G2, . . . , Gt } such that each edge of G is exactly
in one of the Gi s and each Gi belongs to a specified class of graphs H. Let f be a
nonnegative cost function on graphs. The cost of a decomposition with respect to f
is defined as α f (G,H) ≡ minD

∑t
i=1 f (Gi ), where D = {G1, G2, . . . , Gt } is an

H-decomposition of G. Two functions that have received attention are f0(G) ≡ 1
and f1(G) ≡ |V (G)|. The former one minimizes the number of subgraphs among
all decompositions; and the later one counts the total number of nodes in the mini-
mum decomposition. Many interesting problems in graph theory are related to this
framework. For example α f0(G,P) is the thickness of G, for P the set of planar
graphs; α f1(G,B), where B is the set of complete bipartite graphs, arises in the study
of network contacts realizing certain symmetric monotone Boolean functions. Refer
to [10,11] for more details on graph decomposition.
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We are interested in the cost function f0. α f0(G,H) is typically denoted as
α∗(G,H) which is what we use in this paper. For the class B, the class of complete
bipartite graphs, it is known that α∗(Kn,B) = �log2 n� [10].

To illustrate the reduction, consider CLIQUE-GAP(r, 2). Let k = �log2 r�. Let
{H1, H2, . . . , Hk} be a decomposition of G so that Hi ’s are bipartite and ∪Hi is
Kr . We will reduce an instance S1, . . . , Sk of DISJn/r

k to a graph G on n vertices as
follows. The graph G has n/r groups of r vertices each. The players collectively and
independently build the graphG as follows.Consider Player i andher input Si ⊆ [n/r ].
For an a ∈ Si , Player i puts the graph Hi on r vertices of group a into the stream.
It is clear that if Si s are disjoint then the graph G is a collection of disjoint bipartite
graphs and if there is a unique intersection a, the group a forms ∪Hi = Kr . Using
standard arguments, we can show that the space complexity of CLIQUE-GAP(r, 2) is
Ω(n/r log22 r). Details are given in Sect. 4.

This proof can be generalized. In particular, we prove Theorem 2 by choosing H
as set of s-partite graphs and prove Theorem 5 by choosingH as set of k-star graphs.

3 An Upper Bound

In this section we give an algorithm for CLIQUE-GAP(r, s) that uses Õ(ms2/r2)
space. Note that for s = Ω(r), the trivial algorithm that stores the entire graph has the
required space complexity. Hence we will assume s = o(r).

Algorithm 1 Algorithm for CLIQUE-GAP(r, s)
1: Input:

Edge stream 〈e1, e2, . . . , em 〉 of graph G = (V, E), positive integers r, s.
2: Output:

“1” if a clique of order r is detected in G; “0” if G is (s + 1)-clique free.
3: Initialize:

Set p = 40(s + 1)/r .
Set memory buffer M empty.
Compute n pairwise independent bits {Qv |v ∈ V } using O(log n) space such that
for each v ∈ V , Pr [Qv = 1] = p.

4: while not the end of the stream do
5: Read an edge e = (a, b).
6: Insert e into M if Qa = 1 and Qb = 1.
7: If there is an (s + 1)-clique in M , then output “1”.

8: output “0”.

Theorem 1 For any r and s where r ≥ 100s, there is a one-pass streaming algorithm
(Algorithm 1) that, on any graph stream G with m edges and n vertices, answers
CLIQUE-GAP(r, s) correctly with probability ≥ 0.99, using Õ(ms2/r2) space in
expectation.1

Proof If s < 2, it is trivial to detect an edge. So let us assume s ≥ 2. If the input
graph G has no (s + 1)-clique, the algorithm always outputs “0” since the algorithm
outputs “1” only if there is an (s + 1)-clique on a sampled subgraph of G. Consider
the case where G has a r -clique. Let Kr = (VK , EK ) be such a clique. Let the random
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variable Z denote the number of nodes ‘sampled’ from VK . That is, Z = ∑
v∈VK

Qv .
The probability that Qv = 1 is p and Var(Qv) = p(1 − p). Hence E (Z) = r p and
since each Qv is pairwise independent, V ar(Z) = r p(1 − p). Thus for s ≥ 2, by
Chebyshev’s bound, we have

Pr(Z ≤ s) = Pr(Z − E(Z) < s + 1 − E(Z))

≤ Pr(|Z − E(Z)| ≥ |s + 1 − E(Z)|)
≤ V ar(Z)

(s + 1 − E(Z))2

= r p(1 − p)

(s + 1 − r p)2
≤ 40(s + 1)

392(s + 1)2
≤ 1/100. (1)

The probability of sampling an edge (u, v) is p2, given by the probability of sampling
both u and v. Thus the expected memory used by the above algorithm is Õ(ms2/r2).
��

4 Lower Bounds

In this section we present our lower bounds on the space complexity of the CLIQUE-
GAP problem. Our main theorem is the following.

Theorem 2 For any 0 < δ < 1/2 there exists a global constant c > 0 such that for any
0 < s < r, M > 0, there exists graph families G1 and G2 that satisfy the following:

– for each graph G1 ∈ G1, |E(G1)| = m ≥ M and G1 has a r -clique;
– for each graph G2 ∈ G2, |E(G2)| = m ≥ M and G2 has no (s + 1)-clique;
– any randomized one-pass streaming algorithm A that distinguishes whether G ∈
G1 or G ∈ G2 with probability at least 1 − δ uses at least cm/(r2 log2s r) memory
bits.

For s = O(log n), thismatches our Õ(ms2/r2) upper bound up to poly-logarithmic
factors and solves the open question of obtaining lower bounds forCLIQUE-GAP(r, s)
for small values of s (from [16]). Our main technical contribution is a reduction from
the multi-party set disjointness problem (DISJn

k ) in communication complexity to the
CLIQUE-GAP problem. The reduction employs efficient graph decompositions.

We use the following optimal bound on the communication complexity of DISJn
k

proved in [9].

Theorem 6 ([9])Any randomized one-way communication protocol that solves DISJn
k

correctly with probability > 3/4 requires Ω(n/k) bits of communication.

Before we prove Theorem 2 in detail, we will give the construction for CLIQUE-
GAP(4, 2). The reduction is fromDISJn/4

2 to CLIQUE-GAP(4, 2) (for the general case

it will be fromDISJn/r
�logs r� to CLIQUE-GAP(r, s)). For any instance of DISJn/4

2 , where
Player 1 holds a set S1 ⊂ [n/4] and Player 2 holds a set S2 ⊂ [n/4], we construct
an instance G with n vertices of CLIQUE-GAP(4,2) as follows. The n vertices are
denoted by {vi, j |i = 1, 2, 3, . . . , n/4, j = 0, 1, 2, 3}. This notation partitions the
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Fig. 1 a The decomposition of K4 to log2 4 = 2 bipartite graphs. b The decomposition of K8 to log2 8 = 3
bipartite graphs

vertex set into n/4 groups, each of size 4, denoted as Vi ≡ {vi,0, vi,1, vi,2, vi,3} for
i = 1, 2, 3, . . . , n/4. We partition Vi = Vi,0 ∪ Vi,1, where Vi,0 = {vi,0, vi,1} and
Vi,1 = {vi,2, vi,3}. Further partition Vi,0 = Vi,0,0 ∪ Vi,0,1 and Vi,1 = Vi,1,0 ∪ Vi,1,1,
where Vi,0,0 = {vi,0}, Vi,0,1 = {vi,1}, Vi,1,0 = {vi,2} and Vi,1,1 = {vi,3}.

Player 1 places all edges of the complete bipartite graphs between Vi,0 and Vi,1 if
i ∈ S1.

Player 2 places all edges between Vi,0,0 and Vi,0,1 and edges between Vi,1,0, Vi,1,1
if i ∈ S2.

The edges and partitions are shown in Fig. 1a.
If S1 ∩ S2 = {i}, then there is a clique on vertex set Vi (which is of size 4). If

S1 ∩ S2 = ∅, since both Player 1 and Player 2 have only bipartite graph edges on
disjoint vertex sets, the output graph is triangle free.

If there is a one-pass streaming algorithm A for CLIQUE-GAP(4, 2) that distin-
guishes whether the input graph G has clique of size 4 or triangle-free, the players can
use this algorithm to solve DISJn/4

2 as follows: Player 1 runs A on his edge set and
communicates the content of the working memory at the end of his computation to
Player 2. Player 2 continues to run the algorithm on his edge set and outputs the result
of the algorithm as the answer of the DISJ problem. Hence if A uses space M , then
total communication between players ≤ M (in general if there are k players we have
the inequality: total communication ≤ (k − 1)M). This leads to the required lower
bound.

The edge decomposition for the reduction from DISJn/8
3 to CLIQUE-GAP(8, 2) is

shown in Fig. 1b.
For obtaining a lower bound on the space complexity of CLIQUE-GAP(r, s), we

will reduce DISJn/r
�logs r� to CLIQUE-GAP(r, s) and use the lower bound stated in The-

orem 6. For the reduction, we give an extension of the bipartite graph decomposition
result. In particular, we show (implicitly) that α∗(Kr ,H) ≤ �logs r� where H is the
class of all s-partite graphs.

Proof of Theorem 2 We will reduce DISJn/r
t to CLIQUE-GAP(r, s) where t =

�log r/ log s�. Consider an instance of DISJn/r
t , where Player l holds a set Sl ⊂ [n/r ]

for l = 1, 2, . . . , t . To construct an instance G on n vertices of CLIQUE-GAP(r, s),
for l = 1, . . . , t , Player l places an edge set El as described below.

The Construction of El : The construction follows the same pattern as in the figures
above. To explain it precisely we need to structure the vertex set of the graph in
a certain way. W.l.o.g set r = st and n = 0 mod r . We will denote an integer
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in [r ] by its s-ary representation using a t-tuple. We denote the n vertices by V =
{vi,[ j1, j2,..., jt ]|i = 1, 2, 3, . . . , n/r, j1, j2, . . . , jt ∈ [s]}([ j1, j2, . . . , jt ] represents an
integer in [r ] uniquely). This notation partitions the set V into n/r subsets, each of size
r . We denote them as V1, V2, . . . , Vn/r . That is, for each fixed i = 1, 2, . . . , n/r, Vi =
{vi,[ j1, j2,..., jt ]| j1, j2, . . . , jt ∈ [s]}. Next we define a series of s partitions of each Vi

where lth partition is a refinement of the (l − 1)th partition.
Partition 1: Vi = Vi,0 ∪ Vi,1 . . . ∪ Vi,s−1, where for each fixed j1 ∈ [s]

Vi, j1 ≡ {vi,[ j1, j2, j3,..., jt ]| j2, j3, . . . , jt ∈ [s]}. (2)

Partition l: For each set Vi, j1, j2,..., jl−1 in Partition (l − 1), partition Vi, j1, j2,..., jl−1 =
Vi, j1, j2,..., jl−1,0∪Vi, j1, j2,..., jl−1,1 . . .∪Vi, j1, j2,..., jl−1,s−1 as s subsets, each of which is of
size st−l . Here, for each fixed i = 1, 2, . . . , n/r and for each fixed j1, j2, . . . , jl ∈ [s],
we have

Vi, j1, j2,..., jl ≡ {vi,[ j1, j2, j3,..., jl , jl+1,..., jt ]| jl+1, jl+2, . . . , jt ∈ [s]}. (3)

With this structuring of vertices, we can now define El for each Player l. If an
element i is in the set Sl , then for all j1, j2, . . . , jl−1 ∈ [s], Player l has all the s-
partite graph edges between the s partitions of the vertex set Vi, j1, j2,..., jl−1 , namely,
Vi, j1, j2,..., jl−1,0, Vi, j1, j2,..., jl−1,1, Vi, j1, j2,..., jl−1,2, . . . and Vi, j1, j2,..., jl−1,s−1. Formally,

El = ∪i∈Sl ∪ j1, j2,..., jl−1∈[s] E(i, j1, j2, . . . , jl−1), (4)

where

E(i, j1, j2, . . . , jl−1) ≡ ∪ jl , j ′l ∈[s], jl �= j ′l {(a, b)| for all
a ∈ Vi, j1, j2,..., jl−1, jl , b ∈ Vi, j1, j2,..., jl−1, j ′l }. (5)

Note that each edge appears exactly in one of the edge set. End of Construction of
El .

Correctness of theReduction:On a negative instance, players’ input sets S1, S2 . . . St

are pairwise disjoint. The above construction builds all the s-partite graphs on disjoint
sets of vertices, hence the output graph is s-partite and hence (s + 1)-clique free.

On a positive instance, players’ input sets have a unique intersection, S1 ∩ S2 . . . ∩
St = {i}. For each Player l, the edge set El includes all the s-partite graph edges on
each vertex set Vi, j1, j2,..., jl−1 , i.e. ∪ j1, j2,..., jl−1∈[s]E(i, j1, j2, . . . , jl−1). We claim that
there is a r -clique on vertex set Vi . Consider any two distinct vertices u, v ∈ Vi , where
u = vi,[ j1, j2,..., jt ], v = vi,[ j ′1, j ′2,..., j ′t ]. Since u �= v, ( j1, j2, . . . , jt ) �= ( j ′1, j ′2, . . . , j ′t ).
Let q be first integer such that jq �= j ′q . By the definition of the partitions, u ∈
Vi, j1, j2,..., jq−1, jq and v ∈ Vj, j1, j2,..., jq−1, j ′q . Therefore, there is an edge (u, v) in the
edge set output by Player q.

Proof of the Bound: Suppose there is a one-pass streaming algorithm A that solves
CLIQUE-GAP(r, s) in M(n, r, s) space. Then consider the following one-way pro-
tocol for DISJn/r

t . For each 1 ≤ l < t , Player l simulates A on his edge set El and
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communicates the memory content to Player (l + 1). Finally Player t simulates A on
Et and outputs the result of A. The total communication ≤ (t − 1)M(n, r, s). Hence
from the known lower bound on DISJn/r

t , we have that M(n, r, s) = Ω(n/r t2) =
Ω(n/r log2s r). Now consider the hard instance of DISJn/r

t , any player holds a non-
empty set (otherwise this is an easy instance). From the construction, for each hard
instance we know m = Ω(r2 × n/r) = Ω(nr). Hence any one-pass streaming
algorithm that solves CLIQUE-GAP(r, s) requires Ω(m/r2 log2s r) space. We further
justify this argument by the following modification of the reduction.

Exchange Quantifier n to m : The above construction of a lower bound is based on
the quantifier n. Suppose we are given m, r, s, we can construct a reduction graph for
DISJm/2r

t as follows.We construct a graph onm/r vertices.Without loss of generality,
assume r = o(

√
m), otherwise the bound is trivially Ω(1). The construction is the

same for the first n = m/2r vertices. For each player, in addition to sending the
memory content of algorithm, the player also sends the number of edges in the current
graph. By the above analysis, for the last player, the graph will have m′ ≤ m/2 edges.
The last player adds (m −m′) = O(m) edges to the last n vertices without creating an
s-clique. This can be done since by Turán’s theorem [26], an (m/2r)-vertices graph
can have up to (1 − 1/s)m2/8r2 = ω(m) edges without creating an s-clique. The
lower bound is the same with the previous analysis. By picking up graphs constructed
for the hard instance for DISJ problem, we construct the graph classes as required in
the theorem. ��

4.1 A Lower Bound to The General GAP Problem

Using the terminology from graph decomposition theory we prove a general lower
bound theorem for the promise problem GAP(P,Q) which is defined as follows.

Definition 2 LetP andQ be two graph properties (equivalently,P andQ are two sets
of graphs) such thatP∩Q = ∅. Given an input graph G, an algorithm for GAP(P,Q)

should output “1” if G ∈ P and “0” if G ∈ Q. For G /∈ P ∪ Q, the algorithm can
output “1” or “0”.

We first recall the necessary definitions. LetH be a specified class of graphs. AnH-
decomposition2 of a graphG is the decomposition ofG into subgraphsG1, G2, . . . , Gt

such that any edge in G is an edge of exactly one of the Gi ’s and all Gi s belong toH.
Define α∗(G,H) as:

α∗(G,H) ≡ min
D

|D| (6)

where D = {G1, G2, . . . , Gt } is an H-decomposition of G. For convenience, we
define α∗(G,H) = ∞ if the H-decomposition of G is not defined.

Theorem 3 Let P,Q be two graph properties such that

– P ∩ Q = ∅;

2 Note that somepapers define thedecompositionon connectedgraph.Wehere use amoregeneral statement.
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– If G ′′ ∈ P and G ′′ is a subgraph of G ′, then G ′ ∈ P;
– If G ′, G ′′ ∈ Q and V (G ′) ∩ V (G ′′) = ∅, then G̃ = (V (G ′) ∪ V (G ′′), E(G ′) ∪

E(G ′′)) ∈ Q;

Let G0 be an arbitrary graph in P . Given any graph G with m edges and n vertices,
if a one-pass streaming algorithm A solves GAP(P,Q) correctly with probability at
least 3/4, then A requires Ω( n

|V (G0)|
1

α2∗(G0,Q)
) space in the worst case.

Remark 1 We note that in the above statement G0 is an arbitrary graph. To get the
optimal bound, we can select a G0 such that the denominator |V (G0)|α2∗(G0,Q) of
the bound is minimized. We also note that this theorem is indeed a generalization of
Theorem 2. Let P = {G | G has a r -clique } and Q = {G | G has no (s + 1)-clique
}. In the proof of Theorem 2 we use G0 = Kr and shows that α∗(Kr ,Q) ≤ logs r (in
this case m = O(nr)).

Proof of Theorem 3 Denote V0 = V (G0) and E0 = E(G0). Suppose a streaming
algorithmA solves GAP(P,Q) with probability at least 3/4 using M bits of memory.
We can use A to construct a communication protocol that solves DISJn/|V0|

t , where
t = α∗(G0,Q).

The protocol works the same way as Theorem 2, except now each Player l is given
a set Sl ⊂ [n/|V0|]. We construct the input edge set El to the GAP problem of Player
l as follows. Label the n vertices as V = {vi, j |i ∈ [n/|V0|], j ∈ V0}. This notation
partitions the vertices as n/|V0| subsets, V = V1 ∪ V2 . . . ∪ Vn/|V0| each of which is
of size |V0|. For a fixed i = 1, 2, . . . , n/|V0|, denote Vi = {vi, j | j ∈ V0}. Let D =
{G0

1, G0
2, . . . , G0

t } be the optimalQ-decomposition of G0 such that |D| = α∗(G0,Q).
Denote each G0

l as (V 0
l , E0

l ).
For Player l, if i is in her input set Sl , then she has the following edge set:

El(i) ≡ ∪(a,b)∈E0
l
{(vi,a, vi,b)}, (7)

which is a copy of E0
l on vertices Vi . Let the set of all edges that Player l has be

El = ∪i∈Sl El(i). (8)

Clearly {E1(i), E2(i), . . . , Et (i)} is aQ-decomposition of the copy of G0 on vertices
Vi .

On a positive instance, Players’ input sets uniquely intersect, S1∩ S2∩ . . . St = {i}.
Each Player l’s edge set contains El(i). The final stream contains a sub graph G ′

0
induced by ∪t

l=0El(i) on vertices Vi such that G ′
0 is a copy of G0, hence G ′

0 ∈ P . By
definition, the constructed graph G ∈ P .

On a negative instance, Players’ input sets S1, S2 . . . St are pairwise disjoint, let
S′ = S1 ∪ S2 . . . ∪ St . For each i ∈ S′, there exists an unique l such that i ∈ Sl .
Therefore, only Player l outputs the edge sets El(i), which induces a graph from Q.
The final graph is given by {∪i∈S′ Vi ,∪i∈S′ El(i)}. The sub-graphs induced by the Vi s
are vertex disjoint, and therefore the constructed graph G ∈ Q.

If A can decide whether G ∈ P or G ∈ Q with probability at least 3/4, as
in the the proof of Theorem 2, players can simulate A to solve any given instance
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of DISJn/|V0|
t with probability at least 3/4, using the above reduction. If M is the

memory used by A, then by Theorem 6, (t − 1)M ≥ Ω(n/(t |V0|)). Hence we have
M = Ω(n/(|V0|α2∗(G0,Q))). ��

5 Relation to Triangle Counting

For triangle counting problem, given a graph G with at least T triangles, Cormode and
Jowhari [12] give a two-pass algorithm using O(m/

√
T ) space 3. Also, for T ≤ n2

they provide a matching lower bound. Pavan et al. [25] provide a one-pass streaming
algorithm for triangle counting with space complexity of O(mΔ/T ), where Δ is
the max-degree of the graph G. We use the tools we develop for the CLIQUE-GAP
problem to give a new two-pass algorithm to distinguish between graphs with at least
T triangles and triangle-free graphs. For T = n2+β , the space complexity of our
algorithm is o(m/

√
T ) for β > 2/3. Our results demonstrate that for some T > n2,

it might be possible to refine the lower bound of Cormode and Jowhari.

Algorithm 2 DETECT(G, p1, p2, s1): Procedure of Detecting Triangles
1: Input:

Graph edge stream 〈e1, e2, . . . , em 〉 of graph G = (V, E). Real number
p1, p2 ∈ [0, 1], integer s1.

2: Output:
“1” if a triangle detected in G; “0” if not.

3: Initialize:
Set memory buffer Mi for i = 1, 2, . . . , s1 empty.
Computes s1 independent random binary size-n vectors Qi = {Qiv |for all v ∈ V }
for i = 1, 2, . . . s1 using O(s1 log n) space such that for a fixed i , each Qiv is
pairwise independent and Pr [Qiv = 1] = p1.

4: while not the end of the stream do
5: Read an edge e = (u, v).
6: for i = 1, 2, . . . , s1 do
7: Draw a bit ce from {0, 1} independently, such that Pr [ce = 1] = p2.
8: If ce = 1 and either Qiv = 1 or Qiu = 1 , then insert e to Mi .
9: If e completes a triangle with 2 other edges in Mi , then output “1”.

10: Output “0”.

Theorem 4 Let G1 be a class of graphs of n vertices that has at least T = n2+β

triangles for some β ∈ [0, 1]. Let G2 be a class of graphs of n vertices that are
triangle-free. Given graph G = (V, E) with n nodes and m edges, there is a two-pass
streaming algorithm that distinguishes whether G ∈ G1 or G ∈ G2 with constant

probability using Õ(mn2−β

T ) space. In particular, for β > 2/3, the algorithm uses

o(m/
√

T ) space.
To show our bound, we need the following notation.
Let G = (V, E) be a graph with T triangles. For each u ∈ V, τ (u) is the number

of triangles that have u as a node. Let Ṽ ⊆ V be the set of vertices that are nodes of at

3 After the preliminary version on MFCS 2015 [17], McGregor et al. [24] give a two-pass algorithm of
O(m3/2/T ) memory on the incident model.
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least one triangle. Partition Ṽ into t = O(log |Ṽ |) sets as Ṽ = S0 ∪ S1 ∪ S2 . . . ∪ St

where each Si = {a ∈ V |2i ≤ τ(a) < 2i+1}.
Claim There exists an i such that |Si | · 2i+1 > 3T

log n .

Proof This follows from the following observation,

3T <

t∑

i=1

|Si | · 2i+1 ≤ 6T (9)

since each triangle is counted 3 times. ��
Definition 3 Define i(G) = min{i : |Si |2i+1 ≥ 3T

log n }, the significant index of graph
G.

Lemma 1 LetG1 be a class of graphs of n vertices that has at least T = n2+β triangles
for some β ∈ [0, 1] and there is an integer i0 ≤ 2 log n − 1 such that i(G) ≤ i0 for
all G ∈ G1. Let G2 be a class of graphs of n vertices that are triangle-free. Then
there exists a two-pass streaming algorithm, on input a graph stream G = (V, E)

with n nodes and m edges, distinguishes whether G ∈ G1 or G ∈ G2 with constant

probability, using Õ(mn22i0+1

T 2 ) space in the worst case.

Proof Let T̂ (G) be the number of triangles in G and suppose G ∈ G1. Denote nα =
T̂ (G)

2i0+1 log n
for some α > 0. By definition of significant index, we have

3T̂ (G)

log n · |Si(G)| ≤ 2i(G)+1 ≤ 2i0+1 = O(n2). (10)

Hence

n ≥ |Si(G)| ≥ 3T̂ (G)

2i(G)+1 log n
≥ 3T̂ (G)

2i0+1 log n
= 3nα. (11)

Also notice that

3T̂ (G)

2i0+1 log n
= Ω̃

(
T

n2

)

= Ω̃(nβ). (12)

We have β ≤ α ≤ 1. On the other hand for any u ∈ Si(G),

τ(u) = �(2i(G)) = Ω̃

(
T̂ (G)

n

)

= Ω̃(n1+β). (13)

We now construct an algorithm that distinguishes whether G ∈ G1 or G ∈ G2
using Algorithm 2 as follows. Let p1 = �(1/nα), p2 = �(1/nβ), and s1 be some
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sufficiently large positive integer. Make the first pass over the stream using Algorithm
2 and keep the memory. If a triangle is detected, halt the algorithm, output “1”. If not
we make another pass to check if any edge can complete a triangle with the edges we
have already stored in the memory.

If G ∈ G2, the algorithm will be guaranteed output “0”, since no triangle will be
sampled. It is now suffice to show the correctness of the algorithm for the case G ∈ G2.
In the sequel, we will assume G ∈ G1.

In the node sampling step of the algorithm, with constant probability, we sample a
node u from Si(G);

In the edge sampling step of the algorithm, we claim the algorithm samples a 2
edges of a triangle sharing the same node u from G with constant probability by the
following. Let T (u) be the set of triangles that have u as a node. Let X ⊂ E be
the minimum edge set that any triangle t ∈ T (u) touches an edge in X . We claim
|X | = Ω(nβ) by (12), (13) and by

2τ(u) ≤
∑

(u,v)∈X

|T (u, v)| ≤ n|X |, (14)

where T (u, v) is the set of triangles that have nodes u, v, hence of size at most n. We
now partition X = X0 ∪ X1 . . . ∪ Xl as l sets where l = �(log n), such that each Xa

is defined as {(u, v) : 2a ≤ |T (u, v)| < 2a+1}. Since T̂ (G) ≤ ∑
(u,v)∈X |T (u, v)| ≤

3T̂ (G), by similar argument, there exists an a0 such that |Xa0 |2a0+1 >
|T̂ (G)|
log n . Since

n ≥ 2a0 ≥ |T̂ (G)|
|Xa0 | log n , |Xa0 | = Ω̃(n1+β) and |T (u, v)| = �(2a0) = Ω̃(

T̂ (G)

n2
) =

Ω̃(nβ) for each (u, v) ∈ Xa0 , where we use |Xa | ≤ (n
2

)
. Therefore, with p2 =

Ω̃(1/nβ),

Pr
[∃e ∈ Xa0 sampled

] = Ω(1).

Let e ∈ Xa0 that is sampled. Let Ne ⊂ E be the set of neighbor edges of e. Then

Pr
[∃e′ ∈ Ne | e ∈ Xa0 sampled

] = Ω(1).

Conditioning on e, e′ being sampled, with constant probability a triangle will be
detected.

The probability sampling an edge is

p1 p2 = �

(
1

nαnβ

)

= �

(
n2−α

T

)

. (15)

The expected space used in this algorithm is O
(

mn2−α

T

)
= Õ(mn22i0+1

T 2 ).

Proof of Theorem 4 The theorem follows from using the algorithm in Lemma 1 and
set α = β.
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For α +β/2 > 1 (e.g. β > 2/3), we have n2−α = o(n1+β/2) = o(
√

T ), the algorithm
provided by Theorem 4 obtains a space bound o( m√

T
) for the triangle distinguish

problem.

6 Incidence Model

In designing algorithms for graph streams, researchers have also considered the inci-
dence model. This model assumes that the graph G = (V, E) is presented as a stream
of incidence lists {(v, Ev)}v∈V where Ev is the set of edges incident on the vertex v.
This is a valid assumption since in many situations it is natural to store a graph as an
array of incidence lists.

Since the incidence model is a restriction of the adjacency stream model, our upper
bound of O(ms2/r2) for CLIQUE-GAP(r, s) holds in this model also. Here we prove
a lower bound for CLIQUE-GAP(r, 2) in the incidence model.
Theorem 5 If a one-pass streaming algorithm solves CLIQUE-GAP(r, 2) in the inci-
dence model for any G with m edges and n vertices with probability at least 3/4, it
requires Ω(m/r3) space in the worst case.

Proof We will reduce DISJn/r
r to CLIQUE-GAP(r, 2). Given an instance of DISJn/r

r ,
construct an instance G = (V, E) of CLIQUE-GAP(r, 2) as follows. We label the
vertices in V as vi, j with each i ∈ [n/r ], j ∈ [r ]. Assuming each Player j =
1, 2, . . . , r is given a set S j ⊂ [n/r ], Player j has the set of edges E j = {(vi, j , vi,l)|i ∈
S j , l ∈ [r ], s.t. l �= j} (a set of (r − 1)-stars). Note that each edge only appears in one
of these sets. Since for each vertex, all edges incident to that vertex is known by the
players, the players can output the edges in a incidence list form.

LetG be the graph induced by E1∪E2 . . .∪Er . On a negative instance, S1, S2 . . . Sr

are pairwise disjoint, and hence G contains only (r − 1)-stars. On a positive instance,
S1∩S2∩ . . .∩Sr = {i}, and hence G contains a r -clique on vertices vi,1, vi,2, . . . , vi,r .
Therefore, using arguments similar to our other lower bound arguments, if there an
algorithm for CLIQUE-GAP(r, 2) that uses M space, by Theorem 6, M = Ω(n/r3).
In the cases of positive and negative instances, the number of edges m = O(n) and
m = O((r − 1)n/r + r2/2), respectively. Therefore any one-pass algorithm in the
incidence model for CLIQUE-GAP(r, 2) requires Ω(m/r3) space. ��
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