®

Check for
updates

Where Provenance in Database Storage

Alexander Rasin®), Tanu Malik, James Wagner, and Caleb Kim

DePaul University, Chicago, IL 60604, USA
{arasin,tanu}@cdm.depaul.edu, {jwagne32,khim85}@mail.depaul.edu

Abstract. Where provenance is a relationship between a data item and
the location from which this data was copied. In a DBMS, a typical
use of where provenance is in establishing a copy-by-address relationship
between the output of a query and the particular data value(s) that orig-
inated it. Normal DBMS operations create a variety of auxiliary copies of
the data (e.g., indexes, M Vs, cached copies). These copies exist over time
with relationships that evolve continuously — (A) indexes maintain the
copy with a reference to the origin value, (B) MVs maintain the copy
without a reference to the source table, (C) cached copies are created
once and are never maintained. A query may be answered from any of
these auxiliary copies; however, this where provenance is not computed
or maintained. In this paper, we describe sources from which forensic
analysis of storage can derive where provenance of table data. We also
argue that this computed where provenance can be useful (and perhaps
necessary) for accurate forensic reports and evidence from maliciously
altered databases or validation of corrupted DBMS storage.

Keywords: Where Provenance - Database Forensics
DBMS Anti-Tampering

1 Introduction

Where Provenance is defined as the addresses of the data values that were used
to evaluate the query. It is similar to Why Provenance in tracing query inputs,
but focuses on the location of that data. In the relational model, value location is
defined as the row (tuple) and the value’s location within that row. We propose
to extend this concept to support database forensic analysis by computing where
provenance based on the physical address of data copies in DBMS storage.

Database Management Systems (DBMSes) generate a multitude of data
copies as part of their normal operation. For example, a materialized view (MV)
stores the pre-computed results of a query drawn from the data tables in order to
improve query performance. An index contains a copy of values from the indexed
column(s) combined with a pointer back to the source table in order to speed up
record access. Many other copies of data are created by DBMS engine actions
such as caching, log entries, or internal storage defragmentation.

These and other internal copies of data can be extracted from DBMS storage
with the help of database carving (briefly described in Sect.2) and used for

© Springer Nature Switzerland AG 2018
K. Belhajjame et al. (Eds.): IPAW 2018, LNCS 11017, pp. 231-235, 2018.
https://doi.org/10.1007/978-3-319-98379-0_26


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98379-0_26&domain=pdf

232 A. Rasin et al.

evidence of database tampering or storage corruption. Such findings must be
supported by a forensic analysis framework that integrates where provenance to
formalize storage analysis and offer provable results. Recent work by Wagner
et al. [1] relied on ad-hoc case analysis (e.g., if the index value does not match
the value in table record, report this as a likely indication of tampering) to
report malicious activity. Such reports currently require significant effort from
forensic analysts — we describe two recent cases that would greatly benefit from
integration of where provenance into the process of forensic analysis:

Ezample 1. A consultant from Mandiant/FireEye (a major forensic firm) was
working on a case involving a hard drive captured from the suspect. Through
manual inspection of drive image, he came to suspect that the drive contained
a PostgreSQL database that was uninstalled by the owner. Reconstructing raw
data was the first step — but if the case went to court, the analyst could use
where provenance to prove that the accuracy of reconstructed data report.

Ezxample 2. A forensic analyst from Royal Canadian Mounted Police was inves-
tigating a financial fraud case. One of the sources of evidence was a snapshot of
RAM from suspect’s computer that contained a MySQL database (the snapshot
of the hard drive was never recovered in this case). While RAM can contain data
from DBMS tables, all of the in-RAM values are copies of the original tables. In
order to establish MySQL data contents from RAM snapshot with a measure of
confidence, a where provenance derivation could be used.

In addition to these examples, there are other security and audit applica-
tions of where provenance that we outline in Sect. 3. Fully deriving and continu-
ously tracking where provenance remains a goal for future work. In this paper,
we define the categories of data copies created within all major DBMSes. We
consider the causal relationship between the tables and auxiliary structures in
DBMS storage, including active data, accessible data, abandoned data.

2 Background and Related Work

Relational databases store data in page units of fixed size — even logs are often
stored in system tables. Pages in relational databases (including IBM DB2, SQL
Server, Oracle, PostgreSQL, MySQL, Apache Derby, MariaDB, and Firebird)
follow the same basic layout structure. The work in [2] described how this layout
can be generally parameterized, reconstructed and even automatically learned
by loading synthetic data and observing storage behavior. Database page carving
(implemented as DBCarver [3]) is a method based on this analysis that recon-
structs database file contents without relying on the file system or DBMS. It
is also capable of extracting the non-queryable data values, which include: (a)
index values and pointers, (b) deleted records, including partially overwritten
records, (c¢) cache contents, including pages and intermediate query results, (d)
audit logs.



Where Provenance in Database Storage 233

3 Motivating Where Provenance in DBMSes

A forensic analysts will seek to discover and prove what is or was previously
stored in the database tables, or to determine what actions user may have under-
taken within the DBMS. While traditional provenance explains query output by
investigating the data sources and the computation process of the query, in foren-
sic cases the target of analysis is the data table itself. For each additional data
copy (index, MV, RAM), where provenance of that copy will serve as support
and evidence for contents of the original table.

Figure1 represents the overall
flow of data copying that occurs
inside a DBMS engine. After user

DBMS RAM Buffer

Cached pages

Intermediate
™, —> & output \

results

™~

data is loaded into tables (data 4

' N T2
loading process can create extra \//
Disk Storage
7/

il

copies in RAM or logs), every _DBMS

access to these tables will cause I -~ > a'::e“’,‘:,ss /
more copying. A SQL command /

is initially copied into the audit \[i_] Audit log

log; after the query is logged, DBMS tables @=J waLlog

it proceeds to access the tables.
Table access affects several parts of
DBMS storage: modifications prop-
agate into WAL, both read and write access caches pages in RAM (including
intermediate results), and all auxiliary structures are cached in a similar manner.

The goal of this paper is to describe the copies that occur along the flow
arrows in Fig. 1. Computing where provenance (not available in DBMSes) would
also require reversing the arrows by extrapolating the connection back to the
table. For example, a record found in a cached page is evidence of a tuple hav-
ing been present (at some point) in a source table. The location of the cached
record is known, but where provenance also needs the link between that copy
and the original table record. Note that the original table record may already
be deleted (can be restored) or even erased (cannot be restored) in which case
where provenance offers evidence for the source data that ceased to exist.

The second application for where provenance is tracing back the arrow
between audit log and data tables. The idea is that each forensic artifact (e.g.,
a deleted row) must have been caused by some SQL command. User commands
(in Fig. 1) recorded in audit log cause changes to data tables. Therefore, if we
find a storage artifact (e.g., a deleted row) that does not link back to an audit
log command, this could be interpreted as a sign of log tampering.

Fig. 1. The causality flow of data in DBMS.

4 Forensic Evidence in Where Provenance

The three categories of data copies include (1) actively maintained data copies
which encompasses indexes, MVs, and cached copies, (2) accessible data copies
(not actively maintained, may be out-of-date) including old MV values, audit



234 A. Rasin et al.

and WAL logs, and (3) abandoned data copies that consist of all deleted values
(in tables, MVs, and indexes), old cached values and discarded DBMS pages.

Once where provenance of data copies is computed, it will be unified into a
report describing (1) the data values contained within the target of the investiga-
tion, (2) the relative confidence in each reported value, and (3) an extrapolated
timeline information for each data value.

The target of the investigation can be either user data tables or WAL log.
For data tables, Part-#1 would include every value and every record for which
some evidence of existence (at any time) was identified. This will include data
from primary evidence sources (data tables), secondary evidence sources (cached
table pages, indexes, MVs), tertiary evidence sources (indexes over MVs, cached
index pages), and so on. In cases like Example 2 in Sect.1 (only RAM data is
available), the entire report will be based on secondary evidence or lower.

A reported value may derive from conflicting facts (e.g., on-disk table page
and in-RAM cached page disagreeing on what the value was). Part-#2 would
therefore seek to unify multiple reports about each value. A value with multi-
ple agreeing sources would have higher confidence; a value with disagreeing or
lower tier (e.g., tertiary) sources would have a relatively low confidence. Most
importantly, confidence report should include reasons for how it was derived.

Finally, Part-#3 would further annotate all reported values with known time-
line information. Evidence of each reported value will be associated with the
time range during which it (likely) existed. For example, audit logs may help
determine the exact time when the value was created and subsequently deleted.

5 Conclusion

DBMS storage is a rich source of data copies created during normal operations
and accessible through forensic analysis. These copies can serve as evidence of
database state or proof of DBMS content tampering. Where provenance is the
mechanism that can create a formal analytical framework to explain and quantify
accuracy and of the forensic evidence reliability drawn from storage analysis.

A report of all known data augmented with confidence rating and timeline
knowledge will no doubt greatly help forensic and security analysts in their job.
Copies of the data are available — but these copies lack the connection to their
source; in order to reason about the evidence they offer, copy flow in DBMS
storage must be reverse engineered.

Acknowledgments. This material is based upon work supported by the National
Science Foundation Grant CNS-1656268.



Where Provenance in Database Storage 235

References

1. Wagner, J., et al.: Carving database storage to detect and trace security breaches.
Digit. Invest. 22, S127-S136 (2017)

2. Wagner, J., Rasin, A., Grier, J.: Database image content explorer: Carving data
that does not officially exist. Digit. Invest. 18, S97-S107 (2016)

3. Wagner, J., Rasin, A., Malik, T., Hart, K., Jehle, H., Grier, J.: Database forensic
analysis with DBCarver. In: CIDR (2017)



	Where Provenance in Database Storage
	1 Introduction
	2 Background and Related Work
	3 Motivating Where Provenance in DBMSes
	4 Forensic Evidence in Where Provenance
	5 Conclusion
	References




