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Abstract—The pervasive use of databases for the storage
of critical and sensitive information in many organizations
has led to an increase in the rate at which databases are
exploited in computer crimes. While there are several tech-
niques and tools available for database forensic analysis,
such tools usually assume an apriori database preparation,
such as relying on tamper-detection software to already be
in place and the use of detailed logging. Further, such tools
are built-in and thus can be compromised or corrupted
along with the database itself. In practice, investigators
need forensic and security audit tools that work on poorly-
configured systems and make no assumptions about the
extent of damage or malicious hacking in a database.

In this paper, we present our database forensics meth-
ods, which are capable of examining database content
from a storage (disk or RAM) image without using
any log or file system metadata. We describe how these
methods can be used to detect security breaches in an
untrusted environment where the security threat arose
from a privileged user (or someone who has obtained
such privileges). Finally, we argue that a comprehensive
and independent audit framework is necessary in order to
detect and counteract threats in an environment where the
security breach originates from an administrator (either
at database or operating system level).

Index Terms—database forensics, security audit, evi-
dence gathering

I. INTRODUCTION

Cyber-crime (e.g., data exfiltration or computer
fraud) is a significant concern in today’s society. A
well-known fact from security research and practice
is that unbreakable security measures are virtually
impossible to create. For example, 1) incomplete
access control restrictions allows users to execute
commands beyond their intended roles, and 2) users
may illegally obtain privileges by exploiting se-

curity holes in a Database Management System
(DBMS), OS code or through other means (e.g.,
social engineering). Thus, in addition to deploying
preventive security measures (e.g., access control),
it is necessary to 1) detect security breaches in
a timely fashion, and 2) collect evidence about
attacks to devise counter-measures and assess the
extent of the damage (e.g., what data was leaked
or perturbed). Such measures are most vital when
the user is operating from a position of elevated
privilege, which may enable them to suspend secu-
rity components, alter audit logs or raw data while
avoiding detection. The resulting forensic evidence
can also provide preparation for legal action or help
prevent future attacks.

DBMSes are targeted by criminals because they
serve as repositories of data. Therefore, investigators
must have the capacity to examine the contents of
a DBMS. Currently, an audit log with SQL query
history is a critical (and perhaps only) source of
evidence for investigators [4] when a malicious
operation is suspected. In field conditions, a DBMS
may not provide the necessary logging granularity
(unavailable or disabled). Moreover, the storage
itself might be corrupt or contain multiple DBMSes.

The field of Digital Forensics strives to provide
tools for independent analysis with minimal as-
sumptions about the environment. A particularly im-
portant and well-recognized technique is file carv-
ing [9], which extracts files (e.g., PDF or DOC,
but not DBMS files) from a disk image, including
deleted or corrupted files. Traditional file carving
techniques rely on presence of file headers to detect
and interpret individual files. DBMS files, on the



other hand, do not maintain a file header and are
never independent (e.g., table contents are stored
separate from table name and logical structure infor-
mation). Even if DBMS files could be carved, they
cannot be meaningfully imported into a different
DBMS and must be parsed to retrieve their content.
To accomplish that task, DBMSes need their own
set of digital forensics rules and tools.

Even in an environment with ideal log settings, a
DBMS cannot necessarily guarantee log accuracy
or immunity from tampering. For example, log
tampering is a concern when a breach originated
from a privileged user such as an administrator
(DBA or an attacker who obtained DBA privileges).
Tamper-proof logging mechanisms were proposed
in related work [7], [10], but these only prevent
logs from atypical modifications and do not account
for attacks that skirt logging (e.g., logging was
disabled). Interestingly, even privileged users have
little control of how the low level (internal) DBMS
storage behaves – therefore, an analysis of forensic
artifacts provides a unique approach to identify
tampering in a compromised environment.

The rest of the paper is organized as follows:
Section II further motivates the pronounced need for
developing standalone audit tools that can indepen-
dently verify DBMS behavior. Section III provides
an overview of our prior work on database forensic
and storage analysis. Finally, Section IV presents
two attack vector categories and countermeasures
we developed, and further argues for the need of
a more organized and comprehensive approach to
combat malicious behavior within a DBMS.

II. THE NEED FOR INDEPENDENT DATABASE
AUDIT TOOLS

The effort to ensure cybersecurity has increased
substantially over the years – and a great deal of at-
tention has been directed towards network defense,
intrusion detection systems, and malware counterac-
tion. Surprisingly, far less attention has been paid to
detecting and preventing security vulnerabilities and
forensic analysis mechanisms in database systems
that actually store data being guarded. One of the
reasons for such discrepancy is due to DBMSes
providing an extensive support for their own built-
in access control and security audit tools. In or-
der to deliver desirable features such as ability to

recover from failure, data integrity validation, and
a common language (SQL) DBMSes take over all
aspects of data storage and management within the
OS. However, for the many features they provide,
DBMSes ultimately operate as a black-box and, by
design, do not provide insight as to the current state
of the data and potential breaches or current activity.

The important question is, therefore, what hap-
pens when the DBMS itself is compromised? When
a built-in security component is disabled, or when
data is accessed or altered without a trace in au-
dit logs, the DBMS is incapable of detecting or
reporting such an attack. In every other context,
when dealing with significant amount of valuable
or sensitive data, tools and well-defined system-
atic approaches for performing an external audit
are already required. Nonetheless, a systematic and
generalized (i.e., open source tools, even for closed-
source databases) auditing and forensic DBMS tools
are yet to be developed.

We have developed a generalized approach (cur-
rently supported across row-store relational DBM-
Ses) to database forensic analysis [14]–[16], and
several applications to security breach detection
[12], [13] for both DBA and SysAdmin attack
threats. Our current focus is on transitioning this
research into tools that can be used by forensic and
security analysts, and in developing a comprehen-
sive audit framework for DBMSes by combining
our prior work, detecting other types of security
breaches and malicious access, and developing anti-
and anti-anti-forensics techniques for DBMSes.

III. DATABASE FORENSICS

Unlike traditional files (e.g., PDF), DBMS files
do not contain headers that allow for file identifi-
cation. Instead, DBMS data is both accessed and
cached in page units. All row-store DBMSes use
fixed-size pages to store user data, auxiliary data
(e.g., indexes and materialized views), and the sys-
tem catalog. Pages maintain a consistent structure,
whereas individual record structure varies through-
out DBMS storage, which is why we approach
database forensics at the page level. In this section,
we briefly describe page carving including our im-
plementation (DBCarver), planned future work to
answer forensic questions from DBCarver output,



and anti-forensics techniques that can sanitize and
hide data in DBMS storage.

A. Page Carving

Database page carving is a method we previously
introduced for the reconstruction of relational DBM-
Ses without relying on file system or the DBMS
itself. Page carving is similar to traditional file
carving [9] in that data, including deleted data, can
be reconstructed from images or RAM snapshots
without the use of a live system. Forensic tools,
such as Sleuth Kit [1] and EnCASE Forensic [2],
are commonly used by investigators to reconstruct
file system data but are incapable of parsing DBMS
files. None of the third party recovery tools (e.g.,
[5], [8]) are helpful for independent audit purposes
because (at best) they only recover “active” data
from current tables. A database forensic tool (just
like a forensic file system tool) should also recon-
struct unallocated pieces of data including deleted
rows, internal auxiliary structures (indexes, materi-
alized views), or buffer cache space.

While each DBMS uses its own page layout, a
great deal of overlap between page layouts allowed
us to generalize storage for most row-store DBM-
Ses. In our prior work [14] we presented a compar-
ative page structure study for IBM DB2, Oracle,
MS SQL Server, PostgreSQL, MySQL, SQLite,
Firebird, and Apache Derby. We also described a
set of parameters to generally define page layout
for the purpose of reconstruction.

Deleted Data. When data is deleted, the DBMS
initially marks it as deleted, rather than explicitly
overwriting it. This data becomes unallocated (free
listed) storage – in [15] we described the expected
lifetime of forensic evidence within database stor-
age following deletion and defragmentation. We
described three categories of deleted data: records,
pages, and values. A deleted record can be attributed
to a DELETE, an old version of an UPDATE, or
aborted transactions. Deleted records are identi-
fied by delete marking during page reconstruction.
Dropped or rebuilt objects create deleted pages,
which are identified by carving system catalog
tables. Values from deleted records are found in
auxiliary objects – e.g., indexes; they are identified
by mapping pointers back to records (only records
but not index values are deleted). We presented gen-

eralized pointer deconstruction and pointer-record
mapping algorithms in [13].
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Fig. 1. Deleted row examples: 1-MySQL/Oracle, 2-PostgreSQL and
3-SQLite

Figure 1 visualizes an example of deleted
records for several DBMSes. In all three pages,
Row2-(Customer2, Jane) is deleted while Row1-
(Customer1, Joe) and Row2-(Customer3, Jim) are
active. Page#1 shows a case when the row delimiter
is marked, such as in MySQL or Oracle. Page#2
shows when the raw data delimiter is marked in
PostgreSQL. Page#3 shows when the row identifier
is marked in SQLite. We omit DB2 and SQL Server
as they only alter the row directory on deletion.

Column-Store and NoSQL DBMSes. Currently,
our page carving approach only supports row-store
DBMSes. In our future work, we intend to expand
our database forensic methods to column-store (e.g.,
Vertica) and NoSQL (e.g., MongoDB) DBMSes.

B. DBCarver
We previously presented our implementation of

page carving called DBCarver [16]. Figure 2
provides an overview of DBCarver architecture,
which consists of two main components: the pa-
rameter collector (A) and the carver (F).

The parameter detector loads synthetic data into
a DBMS (B), captures storage (C), finds pages in
storage, and captures page layout parameters in a
configuration file (E) – a text file describing page-
level layout for that particular DBMS. Parameters
include those described in [14], and have since been
expanded to support other metadata. DBCarver
automatically generates parameters values for new
DBMSes, or new DBMS versions. While most
DBMSes retain the same page layout across ver-
sions, we observed different parameter values be-
tween PostgreSQL versions 7.3 and 8.4.
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Fig. 2. DBCarver architecture.

The carver (F) uses the configuration files to
reconstruct any database content from disk images,
RAM snapshots, or any other input file (G). The
carver returns storage artifacts (H), such as user
records, metadata describing user data, deleted data,
and system catalogs.

C. Meta-Querying
After storage artifacts are extracted by

DBCarver, they must be analyzed to determine
their evidential significance. By connecting
reconstructed metadata and data, investigators can
ask questions such as “Return all deleted records
within a file.” No such command is supported by
DBMSes because deleted rows cease to exist from
DBMS’ perspective. More complex questions can
be answered by combining disk and RAM data.
We are interviewing forensic analysts to build a
forensic querying system for real-world scenarios.

In [16] we offered a preliminary view of this sys-
tem and presented several scenarios which an inves-
tigator may wish to explore. We consider forensic
queries to be “meta-queries” because such queries
are not executed on the original active DBMS but
rather on reconstructed DBMS internals obtained
through page carving, which include table data,
deleted records, buffer cache contents, and internal
data and metadata stored by the DBMS.

Scenario 1: Reconstruction of Deleted Data. An
analyst wants to query the carved database storage
for deleted values. Deleted row identification is of
particular interest when the audit log is missing or
altered. For example, the following logged query
obfuscates what records were actually deleted:
DELETE FROM Customer
WHERE Name LIKE NameFunction()

Through database carving analysis, deleted records
can be trivially identified with the following query:
SELECT * FROM Customer_Carved
WHERE RowStatus = ’DELETED’

Note that in order to determine whether extracted
rows were deleted due to normal or malicious
operations, we have later incorporated audit logs and
other evidence sources into the query.

Scenario 2: Detecting Updated Data. An inves-
tigator wants to find the most recent updates. For
example, consider the problem of searching for all
recent product price changes in RAM. In order to
form this query, we join disk and memory storage,
returning the rows for which price is different:
SELECT * FROM RAM_Prod_Carv AS M,

Prod_Carv AS D
WHERE M.PID=D.PID AND

M.Price <> D.Price

D. Anti-Forensics

Anti-forensics (AF) is the field of interfering
with forensic techniques [3]. We note that digital
forensic tools can be used by either investigators and
criminals, to both protect data and to interfere with
a criminal investigation. In this section, we discuss
future work that uses AF to protect data.

Two of the most representative AF techniques we
considered are data wiping and steganography. A
corporation can apply data wiping to erase already-
deleted customer information to prevent potential
data theft. Steganography a data hiding technique –
e.g., a means to discretely blow a whistle on com-
pany’s wrongdoing. Most prior work in database
AF is highly DBMS-specific and limited in its
ability to hide messages. Stahlberg erased deleted
MySQL data by modifying the purge thread in
source code [11]. We propose a more general-
ized sanitization method for all DBMSes (including
closed-source DBMSes). We distinguish four cat-
egories of deleted DBMS data to wipe in order to
prevent unintended data exposure: records, auxiliary
data (e.g., indexes), system catalog, and unallocated
pages. To effectively erase this data, the data itself
must be overwritten and page metadata (e.g., check-
sums and pointers) must be updated accordingly.
We further propose a steganography strategy that
additively alters the database state through database



file modification. This approach bypasses all con-
straints and logging mechanisms since the operation
is performed without the DBMS.

a) Motivating Example: Alice is a spy who
wants to send a message to Bob. If Alice is caught
communicating with Bob, her identity as a spy
will be compromised. If Alice uses cryptography
to send her message to Bob, the message will be
unreadable if intercepted. However, any evidence
of communication with Bob is enough to prosecute
Alice. Therefore, Alice uses steganography to hide
the fact that she communicated with Bob.

b) Experimental Example: The details of how
to alter DBMS storage are beyond the scope of this
paper. We performed the changes in a chosen set of
representative databases: PostgreSQL 9.6, MySQL
5.6, and Oracle 12c. Using a standard industry
benchmark [6], we have manually added records to
storage (bypassing all DBMS access controls, but
requiring file system administrative privileges). By
adding records that contained NULL as the primary
key value (normally not possible), we have created
“hidden” records which can be retrieved by targeted
queries (e.g., WHERE PrimaryKey IS NULL)
yet are naturally excluded from results of almost all
regular user queries. Even an eventual rebuilding
of the index is not going to interfere with our
hidden records because NULL is always physically
excluded from database indexes.

IV. DATABASE SECURITY

Privileged users (e.g., DBA), by definition, have
the ability to control and modify access permis-
sions. Therefore, audit logs alone are fundamentally
unsuitable for the detection of malicious actions
perpetrated by privileged users. DBMSes do not
provide many tools to defend against insider threats.
Interestingly, however, even DBAs have little to no
control over how data is physically stored at the
lowest level. Thus, malicious activity will still create
inconsistencies within storage artifacts discovered
by forensic analysis. In this section, we consider
attack vectors that are detectable using database
forensics methods from Section III. Some of these
solutions (that rely on validating audit log integrity)
assume that some level of logging was enabled and
is available.

A. DBDetective

Audit logs are a critical piece of evidence for
investigators – and existing research has explored
tamper-proof logs. However, DBAs can disable log-
ging for legitimate operations (e.g., bulk loads).
Therefore, we consider an attack where logging was
disabled, malicious activity was performed, and log-
ging was re-enabled. We proposed DBDetective
in our previous work [12] to detect activity missing
from the logs.

To detect unlogged activity, DBDetective
compares the disk images and/or RAM snapshots
output from DBCarver against the audit logs. We
classify two categories of hidden activity: record
modifications and read-only queries (i.e., SQL
SELECT). When a record is inserted or modified the
record itself changes, page metadata may be updated
(e.g., a delete mark is set) and index page(s) are
likely to change. We flag any artifacts that cannot
be explained by a log entry as suspicious, as shown
in Figure 3.

1, Christine, Chicago 

3, Christopher, Seattle 

4, Thomas, Austin 

2, George, New York 

5, Mary, Boston 

T1, DELETE FROM Customer  
WHERE City = ‘Chicago’; 
 
T2, DELETE FROM Customer  
WHERE Name LIKE ‘Chris%’; 

  
  

  
  

  

          Page Type: Table 
          Structure: Customer 

Log File 

UNATTRIBUTED 
DELETE 

DICE Output 
Del. 
Flag 
 

Fig. 3. Detecting unattributed deleted records

Figure 3 is an example of unaccounted,
deleted row detection. DBCarver (aka DICE)
reconstructed 3 deleted rows from Customer:
(1,Christine,Chicago), (3,Christopher,Seattle), and
(4,Thomas,Austin). The log file contains two
operations: DELETE FROM Customer WHERE
City = ‘Chicago’ (T1) and DELETE FROM
Customer WHERE Name LIKE ‘Chris%’
(T2). After comparing the deleted records to
the log file operations, DBDetective returned
(4, Thomas, Austin), indicating a deleted record
that could not be attributed to any of the logged
deletes. Here, we cannot conclude whether T1 or
T2 caused the deletion of (1, Christine, Chicago),
but that is not necessary to identify record #4 as
an unattributed (i.e., unlogged) delete.



When a SELECT query reads a table from disk, it
uses one of two fundamental access patterns: a full
table scan or an index based access. Both of these
query types produce a consistent, repeatable caching
pattern. The same query-to-audit-log matching can
be applied to monitor read-only query access by
performing RAM scans. Using metadata from the
pages in the buffer cache, we identify caching
patterns and match them to the logged commands.

B. DBStorageAuditor

Privileged OS users commonly have access to
database files. Consider a SysAdmin who, acting
as the root, maliciously edits a DBMS file in a Hex
editor or through Python. The DBMS is unaware
of external file write activity taking place outside
its own programmatic access and thus cannot log it.
Such an attack is a ‘black-hat’ application of anti-
forensics discussed in Section III-D. In our previous
work [13], we proposed DBStorageAuditor to
detect database file tampering.

To detect database file tampering,
DBStorageAuditor [13] uses indexes to
verify the integrity of table data. We first verify the
integrity of the indexes by checking for tampering-
based inconsistencies within the B-Tree structure.
Once the index integrity is verified, we deconstruct
the index pointers and match them to table records
using the table page metadata; we generalized
the deconstruction of index pointers for all major
DBMSes. We organize the index pointers based on
physical location to keep our matching approach
scalable. Finally, any extraneous data or erased
data found through index and table comparison is
flagged as suspicious.

C. Event Timeline Analysis

Privileged users with access to the server OS
have the capability to change server information,
specifically the global clock. This can externally
(i.e., outside of DBMS control) affect the veracity
of audit logs. Consider a system administrator who
changes the server global clock to an earlier date,
performs a malicious activity, and resets the global
clock. Such an attack backdates activity without
altering the log files, and disguises the actual execu-
tion time of the malicious activity. As future work,
we will detect such attempts to backdate log entries.

When a global system clock can not be assumed
as reliable, we believe it is necessary to use stor-
age metadata (which even a privileged user cannot
modify) in order to create a timeline of events.
The internal RowID pseudo-column is of particular
interest to construct a timeline. RowID is used by
indexes and reflects the physical location of a record
including its PageID. Whenever a page is modified,
we can store the PageID to know when data was
modified. Thus, the order of the PageIDs must be
consistent with the order of the log events. We
are currently developing tamper-proof techniques to
store and reconstruct the PageID.

D. Quantitative Analysis and Reproducibility

As future work, we will determine the detection
accuracy for each attack described in this section.
For each detection type, we will compute a confi-
dence rating based on a variety of environment vari-
ables (e.g., buffer cache size, volume of operations,
and DBMS storage engine). For example, given
a low volume of DELETE operations in Oracle,
DBDetective would detect attacks with higher
accuracy because Oracle controls storage with a
percent page utilization. This engine setting prevents
deleted records from being overwritten until a page
contains a significant quantity of deleted data.

To verify the presence of malicious operations,
a repeatable analysis analysis must be guaranteed.
We will develop algorithms to collect the minimal
subset of storage artifacts needed to reproduce our
results. These collected storage artifacts must be
sufficient to verify the security breach independent
of our analysis. For example, such functionality is
needed to generate admissible evience that can be
presented in court.

V. CONCLUSION

Despite existing internal controls and security
mechanisms, the sheer volume of valuable data
hosted within DBMSes demands access to forensic
and investigative tools. In every other environment
that deals with so much valuable or sensitive data,
tools and systematic approaches for periodic exter-
nal audits are mandated and available to investiga-
tors. Nonetheless, systematic auditing and forensic
tools for databases have received surprisingly little
attention in research literature thus far.
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