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We propose an algorithm to impute and forecast a time series by transforming the observed time series into a

matrix, utilizing matrix estimation to recover missing values and de-noise observed entries, and performing

linear regression to make predictions. At the core of our analysis is a representation result, which states that

for a large class of models, the transformed time series matrix is (approximately) low-rank. In effect, this

generalizes the widely used Singular Spectrum Analysis (SSA) in the time series literature, and allows us to

establish a rigorous link between time series analysis and matrix estimation. The key to establishing this link

is constructing a Page matrix with non-overlapping entries rather than a Hankel matrix as is commonly done

in the literature (e.g., SSA). This particular matrix structure allows us to provide finite sample analysis for

imputation and prediction, and prove the asymptotic consistency of our method. Another salient feature of

our algorithm is that it is model agnostic with respect to both the underlying time dynamics and the noise

distribution in the observations. The noise agnostic property of our approach allows us to recover the latent

states when only given access to noisy and partial observations a la a Hidden Markov Model; e.g., recovering

the time-varying parameter of a Poisson process without knowing that the underlying process is Poisson.

Furthermore, since our forecasting algorithm requires regression with noisy features, our approach suggests a

matrix estimation based method—coupled with a novel, non-standard matrix estimation error metric—to solve

the error-in-variable regression problem, which could be of interest in its own right. Through synthetic and

real-world datasets, we demonstrate that our algorithm outperforms standard software packages (including R

libraries) in the presence of missing data as well as high levels of noise.
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1 INTRODUCTION
Time series data is of enormous interest across all domains of life: from health sciences and

weather forecasts to retail and finance, time dependent data is ubiquitous. Despite the diversity of

applications, time series problems are commonly confronted by the same two pervasive obstacles:

interpolation and extrapolation in the presence of noisy and/or missing data. Specifically, we

Authors’ addresses: Anish Agarwal, Massachusetts Institute of Technology, 32-D666 Vassar St. Cambridge, MA, 02139, USA,

anish90@mit.edu; Muhammad Jehangir Amjad, Massachusetts Institute of Technology, 32-D560 Vassar St. Cambridge, MA,

02139, USA, mamjad@mit.edu; Devavrat Shah, Massachusetts Institute of Technology, 32-D670 Vassar St. Cambridge, MA,

02139, USA, devavrat@mit.edu; Dennis Shen, Massachusetts Institute of Technology, 32-D560 Vassar St. Cambridge, MA,

02139, USA, deshen@mit.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

2476-1249/2018/12-ART40 $15.00

https://doi.org/0000001.0000001

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 3, Article 40. Publication date: December 2018.

https://doi.org/0000001.0000001
https://doi.org/0000001.0000001


40:2 Anish Agarwal, Muhammad Jehangir Amjad, Devavrat Shah, and Dennis Shen

consider a discrete-time setting with t ∈ Z representing the time index and f : Z → R1
representing

the latent discrete-time time series of interest. For each t ∈ [T ] := {1, . . . ,T } and with probability

p ∈ (0, 1], we observe the random variable X (t ) such that E[X (t )] = f (t ). While the underlying

mean signal f is of course strongly correlated, we assume the per-step noise is independent across

t and has uniformly bounded variance. Under this setting, we have two objectives: (1) interpolation,

i.e., estimate f (t ) for all t ∈ [T ]; (2) extrapolation, i.e., forecast f (t ) for t > T . Our interest is in
designing a generic method for interpolation and extrapolation that is applicable to a large model

class while being agnostic to the time dynamics and noise distribution.

We develop an algorithm based on matrix estimation, a topic which has received widespread

attention, especially with the advent of large datasets. In the matrix estimation setting, there is

a “parameter” matrix M of interest, and we observe a sparse, corrupted signal matrix X where

E[X ] = M . The aim then is to recover the entries ofM from noisy and partial observations given in

X . For our purposes, the attractiveness of matrix estimation derives from the property that these

methods are fairly model agnostic in terms of the structure ofM and distribution of X givenM .

We utilize this key property to develop a model and noise agnostic time series imputation and

prediction algorithm.

1.1 Overview of contributions.

Time series as a matrix. We transform the time series of observations X (t ) for t ∈ [T ] into what

is known as the Page matrix (cf. [23]) by placing contiguous segments of size L > 1 (an algorithmic

hyper-parameter) of the time series into non-overlapping columns; see Figure 1 for a caricature of

this transformation.

As the key contribution, we establish that—in expectation—this generated matrix is either exactly

or approximately low-rank for a large class of models f . Specifically, f can be from the following

families:

Linear Recurrent Formulae (LRF): f (t ) =
∑G
д=1 αд f (t − д).

Compact Support: f (t ) = д(φ(t )), where φ : Z → [0, 1] and д : [0, 1] → R is L-Lipschitz
2
.

Sublinear : f (t ) = д(t ), д : R → R,
���dд(s )ds

��� ≤ Cs−α , α ,C > 0,∀s ∈ R.

Over the past decade, the matrix estimation community has developed a plethora of methods

to recover an exact or approximately low-rank matrix from its noisy, partial observations in a

noise and model agnostic manner. Therefore, by applying such a matrix estimation method to

this transformed matrix, we can recover the underlying mean matrix (and thus f (t ) for t ∈ [T ])
accurately. In other words, we can interpolate and de-noise the original corrupted and incomplete

time series without any knowledge of its time dynamics or noise distribution. Theorem 4.1 and

Corollary 4.1 provide finite-sample analyses for this method and establish the consistency property

of our algorithm, as long as the underlying f satisfies Property 4.1 and the matrix estimation method

satisfies Property 2.1. In Section 5, we show that any additive mixture of the three function classes

listed above satisfies Property 4.1. Effectively, Theorem 4.1 establishes a statistical reduction between
time series imputation and matrix estimation. Our key contribution with regards to imputation lies

in establishing that a large class of time series models (see Section 5) satisfy Property 4.1.

1
We denote R as the field of real numbers and Z as the integers.

2
We say д : R → R is L-Lipschitz if there exists a L ≥ 0 such that ∥д(x ) − д(y)∥ ≤ L ∥x − y ∥ for all x, y ∈ R and ∥ · ∥

denotes the standard Euclidean norm on R.
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Fig. 1. Caricature of imputation and forecast algorithms. We first transform the noisy time series X (t ) (with
? indicating missing data) into a matrix, X , with non-overlapping entries. For imputation, we apply a matrix
estimation (ME) algorithm to X to get estimates, ˆfI (t ), for the de-noised and filled-in entries. For forecasting,
we first apply ME to X̃ (i.e. X not including the last row) and then fit a linear model, β , between with last
row and all other rows, to get forecast estimates, ˆfF (t ).

It is clear that for LRF, the mean transformed matrix is such that its last row can be expressed as a

linear combination of the other rows. An important representation result we make, that generalizes

this notion, is that an approximate LRF relationship holds for the other two model classes. Therefore,

we can forecast f (t ), say for t = T + 1, as follows: apply matrix estimation to the transformed

data matrix as done in imputation; then, linearly regress the last row with respect to the other

rows in the matrix; finally, compute the inner product of the learnt regression vector with the

vector containing the previous L − 1 values that were estimated via the matrix estimation method.

Theorem 4.2 and Corollary 4.2 imply that the mean-squared error of our predictions decays to zero

provided the matrix estimation method satisfies Property 2.2 and the underlying model f satisfies

Property 4.2. Similar to the case of imputation, establishing that Property 4.2 holds for the three

function classes is novel (see Section 5).

Noisy regression. Our proposed forecasting algorithm performs regression with noisy and in-

complete features. In the literature, this is known as error-in-variable regression. Recently, there

has been exciting progress to understand this problem especially in the high-dimensional setting
[11, 24, 39]. Our algorithm offers an alternate solution for the high-dimensional setting through

the lens of matrix estimation: first, utilize matrix estimation to de-noise and impute the feature

observations, and then perform least squares with the pre-processed feature matrix. We demon-

strate that if the true, underlying feature matrix is (approximately) low-rank, then our algorithm

provides a consistent estimator to the true signal (with finite sample guarantees). Our analysis

further suggests the usage of a non-standard error metric, the max row sum error (MRSE) (see

Property 2.2 for details).
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Class of applicable models. As aforementioned, our algorithm enjoys strong performance guar-

antees provided the underlying mean matrix induced by the time series f satisfies certain structural

properties, i.e., Properties 4.1 and 4.2. We argue that a broad class of commonly used time series

models meet the requirements of the three function classes listed above.

LRFs include the following important family of time series — f which can be represented as

a finite sum of products of exponentials (exp{αt}), harmonics (cos(2πωt + ϕ)) and finite degree

polynomials (Pm (t )) [29], i.e., f (t ) =
∑G
д=1 exp

{
αдt

}
cos

(
2πωдt + ϕд

)
Pmд (t ). Further, since stationary

processes and L2 integrable functions are well approximated by a finite summation of harmonics

(i.e., sin and cos), LRFs encompass a vitally important family of models. For this model, we show

that indeed the structural properties required from the time series matrix for both imputation and

forecasting are satisfied.

However, there are many important time series models that do not admit a finite order LRF

representation. A few toy examples of such f include cos(sin(t)), exp
{
sin

2
(t )

}
, log t ,

√
t . Time

series model with compact support, on the other hand, include models composed of a finite sum-

mation of periodic functions (e.g., cos(sin(t)), exp
{
sin

2
(t )

}
). Utilizing our low-rank representation

result, we establish that models with compact support possess the desired structural properties. We

further demonstrate that sub-linear functions, which include models that are composed of a finite

summation of non (super-)linear functions (e.g., log t ,
√
t ), also possess the necessary structural

properties. Importantly, we argue that the finite mixture of the above processes satisfy the necessary

structural properties.

Recovering the hidden state. Our algorithm, being noise and time-dynamics agnostic, makes it

relevant to recover the hidden state from its noisy, partial observations as in a Hidden Markov-like

Model. For example, imagine having access to partial observations of a time-varying truncated

Poisson process
3 without knowledge that the process is Poisson. By applying our imputation

algorithm, we can recover time-varying parameters of this process accurately and, thus, the hidden

states. If we were to apply an Expectation-Maximization (EM) like algorithm, it would require

knowledge of the underlying model being Poisson, and even then theoretical guarantees are not

clear for such an approach.

Sample complexity. Given the generality and model agnostic nature of our algorithm, it is

expected that its sample complexity for a specific model class will be worse than model aware

optimal algorithms. Interestingly, our finite sample analysis suggests that for the model classes

stated above, the performance loss incurred due to this generality is minor. See Section 5.6 for a

detailed analysis.

Experiments. Using synthetic and real-world datasets, our experiments establish that our method

outperforms existing standard software packages (including R) for the tasks of interpolation and

extrapolation in the presence of noisy and missing observations. When the data is generated

synthetically, we “help" the existing software package by choosing the correct parametric model and

algorithm while our algorithm remains oblivious to the underlying model; despite this disadvantage,

our algorithm continues to outperform the standard packages with missing data.

Further, our empirical studies demonstrate that our imputation algorithm accurately recovers

the hidden state for Hidden Markov-like Models, verifying our theoretical imputation guarantees

(see Theorem 4.1). All experimental findings can be found in Section ??.

3
Let C denote a positive, bounded constant, and X a Poisson random variable. We define the truncated Poisson random

variable Y as Y = min{X , C }.
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1.2 Related works
There are two related topics: matrix estimation and time series analysis. Given the richness of both

fields, we cannot do justice in providing a full overview. Instead, we provide a high-level summary

of known results with references that provide details.

Matrix estimation. Matrix estimation is the problem of recovering a data matrix from an incom-

plete and noisy sampling of its entries. This has become of great interest due to its connection to

recommendation systems (cf. [18–20, 25, 34–36, 38, 41]), social network analysis (cf. [1–3, 8, 32]),

and graph learning (graphon estimation) (cf. [5, 14, 15, 54]). The key realization of this rich literature

is that one can estimate the true underlying matrix from noisy, partial observations by simply

taking a low-rank approximation of the observed data. We refer an interested reader to recent

works such as [14, 19] and references there in.

Time series analysis. The question of time series analysis is potentially as old as civilization in

some form. Few textbook style references include [16, 17, 30, 43]. At the highest level, time series

modeling primarily involves viewing a given time series as a function indexed by time (integer

or real values) and the goal of model learning is to identify this function from observations (over

finite intervals). Given that the space of such functions is complex, the task is to utilize function

form (i.e. “basis functions”) so that for the given setting, the time series observation can fit a sparse

representation. For example, in communication and signal processing, the harmonic or Fourier

representation of a time series has been widely utilized, due to the fact that signals communicated

are periodic in nature. The approximation of stationary processes via harmonics or ARIMA has

made them a popular model class to learn stationary-like time series, with domain specific popular

variations, such as ‘Autoregressive Conditional Heteroskedasticity’ (ARCH) in finance. To capture

non-stationary or “trend-like” behavior, polynomial bases have been considered. There are rich

connections to the theory of stochastic processes and information theory (cf. [22, 28, 42, 47]).

Popular time series models with latent structure are Hidden Markov Models (HMM) in probabilistic

form (cf. [10, 33] and Recurrent Neural Networks (RNN) in deterministic form, cf. [44]).

The question of learning time series models with missing data has received comparatively less

attention. A common approach is to utilize HMMs or general State-Space-Models to learn with

missing data (cf. [26, 48]). To the best of the authors’ knowledge, most work within this literature

is restricted to such class of models (cf. [27]). Recently, building on the literature in online learning,

sequential approaches have been proposed to address prediction with missing data (cf. [9]).

Time series and matrix estimation. The use of a matrix structure for time series analysis has

roughly two streams of related work: SSA for a single time series (as in our setting), and the use of

multiple time series. We discuss relevant results for both of these topics.

Singular Spectrum Analysis (SSA) of time series has been around for some time. Generally, it assumes

access to time series data that is not noisy and fully observed. The core steps of SSA for a given time

series are as follows: (1) create a Hankel matrix from the time series data; (2) perform a Singular

Value Decomposition (SVD) of it; (3) group the singular values based on user belief of the model

that generated the process; (4) perform diagonal averaging for the “Hankelization" of the grouped

rank-1 matrices outputted from the SVD to create a set of time series; (5) learn a linear model for

each “Hankelized" time series for the purpose of forecasting.

At the highest level, SSA and our algorithm are cosmetically similar to one another. There

are, however, several key differences: (i) matrix transformation—while SSA uses a Hankel matrix

(with repeated entries), we transform the time series into a Page matrix (with non-overlapping

structure); (ii) matrix estimation—SSA heavily relies on the SVD while we utilize general matrix

estimation procedures (with SVD methods representing one specific procedural choice); (iii) linear
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regression—SSA assumes access to fully observed and noiseless data while we allow for corrupted

and missing entries.

These differences are key in being able to derive theoretical results. For example, there have been

numerous recent works that have attempted to apply matrix estimation methods to the Hankel

matrix inspired by SSA for imputation, but these works do not provide any theoretical guarantees

[45, 46, 49]. In effect, the Hankel structure creates strong correlation of noise in the matrix which is

an impediment for proving theoretical results. Our use of the Page matrix overcomes this challenge

and we argue that in doing so we still retain the underlying structure in the matrix. With regards

to forecasting, the use of matrix estimation methods that provide guarantees with respect to MRSE

rather than standard MSE is needed (which SSA provides no theoretical analysis for). While we do

not explicitly discuss such methods in this work, such methods are explored in detail in [4]. With

regards to imputation, SSA does not provide direction on how to group the singular values, which

is instead done based on user belief of the generating process. However, due to recent advances in

matrix estimation literature, there exist algorithms that provide data-driven methods to perform

spectral thresholding (cf. [19]). Finally, it is worth nothing that to the best of authors’ knowledge,

the classical literature on SSA seem to be lacking finite sample analysis in the presence of noisy

observations, which we do provide for our algorithm.

Multiple time series viewed as matrix. In a recent line of work [6, 7, 21, 40, 51, 53], multiple time

series have been viewed as a matrix with the primary goal of imputing missing values or de-noising

them. Some of these works also require prior model assumptions on the underlying time series. For

example in [53], as stated in Section 1, the second step of their algorithm changes based on the

user’s belief in the model that generated the data along with the multiple time series requirement.

In summary, to the best of our knowledge, ours is the first work to give rigorous theoretical

guarantees for a matrix estimation inspired algorithm for a single, univariate time series.

Recovering the hidden state. The question of recovering the hidden state from noisy observa-

tions is quite prevalent and a workhorse of classical systems theory. For example, most of the

system identification literature focuses on recovering model parameters of a Hidden Markov Model.

While Expectation-Maximization or Baum-Welch are the go-to approaches, there is limited the-

oretical understanding of it in generality (for example, see a recent work [52] for an overview)

and knowledge of the underlying model is required. For instance, [13] proposed an optimization

based, statistically consistent estimation method. However, the optimization “objective” encoded

knowledge of the precise underlying model.

It is worth comparing our method with a recent work [6] where the authors attempt to recover

the hidden time-varying parameter of a Poisson process via matrix estimation. Unlike our work,

they require access to multiple time series. In a sense, our algorithm provides the solution to the

same question without requiring access to any other time series!

1.3 Notation.
For any positive integer N , let [N ] = {1, . . . ,N }. For any vector v ∈ Rn

, we denote its Euclidean

(ℓ2) norm by ∥v ∥
2
, and define ∥v ∥2

2
=

∑n
i=1v

2

i . In general, the ℓp norm for a vector v is defined as

∥v ∥p =

( ∑n
i=1 |vi |

p
)
1/p

.

For am × n real-valued matrix A = [Ai j ], its spectral/operator norm, denoted by ∥A∥, is defined

as ∥A∥
2
= max1≤i≤k |σi |, where k = min{m,n} and σi are the singular values of A (assumed to

be in decreasing order and repeated by multiplicities). The Frobenius norm, also known as the

Hilbert-Schmidt norm, is defined as ∥A∥2F =

∑m
i=1

∑n
j=1A

2

i j =

∑k
i=1 σ

2

i . The max-norm, or sup-norm,
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is defined as ∥A∥
max

= maxi, j
��Ai j

��
. The Moore-Penrose pseudoinverse A†

of A is defined as

A†
=

k∑
i=1

(1/σi )yix
T
i , where A =

k∑
i=1

σixiy
T
i ,

with xi and yi being the left and right singular vectors of A, respectively.
For a random variable, X , we define its sub-gaussian norm as

∥X ∥ψ2

= inf

{
t > 0 : E exp

(
X 2/t2

)
≤ 2

}
.

If ∥X ∥ψ2

is bounded by a constant, we call X a sub-gaussian random variable.

Let f and д be two functions defined on the same space. We say that f (x ) = O(д(x )) if and only if

there exists a positive real numberM and a real number x0 such that for all x ≥ x0, | f (x )| ≤ M |д(x )|.
Similarly f (x ) = Ω(д(x )) if there exists a positive real numberM and a real number x0 such that for

all x ≥ x0, | f (x )| ≥ M |д(x )|

1.4 Organization
In Section 2, we list the desired properties needed from matrix estimation estimation methods

to achieve our theoretical guarantees for imputation and forecasting. In Section 3, we formally

describe the matrix estimation based algorithms we utilize for time series analysis. In Section 4, we

identify the required properties of time series models f under which we can provide finite sample

analysis for imputation and forecasting performance. In Section 5, we list out a broad set of time

series models that satisfy the properties in Section 4 and we analyze the sample complexity of our

algorithm for each of these models. Lastly, in Section ??, we corroborate our theoretical findings
with detailed experiments.

2 MATRIX ESTIMATION
2.1 Problem setup
Consider anm × n matrixM of interest. Suppose we observe a random subset of the entries of a

noisy signal matrix X , such that E[X ] = M . For each i ∈ [m] and j ∈ [n], the (i, j)-th entry Xi j is a

random variable that is observed with probability p ∈ (0, 1] and is missing with probability 1 − p,

independently of all other entries. Given X , the goal is to produce an estimator M̂ that is “close” to

M . We use two metrics to quantify the estimation error:

(1) entry-wise mean-squared error,

MSE(M̂,M) := E
[
1

mn

m∑
i=1

n∑
j=1

(M̂i j −Mi j )
2

]
;

(2) max row sum error,

MRSE(M̂,M) := E
[
1

√
n
max

i ∈[m]

( n∑
j=1

(M̂i j −Mi j )
2

)
1/2]
.

Here, M̂i j and Mi j denote the (i, j)-th elements of M̂ and M , respectively. We highlight that the

MRSE is a non-standard matrix estimation error metric, but we note that it is a stronger notion

than the RMSE(M̂,M)
4
; in particular, it is easily seen that MRSE(M̂,M) ≥ RMSE(M̂,M). Hence,

for any results we prove in Section 4 regarding the MRSE, any known lower bounds for RMSE

4
RMSE(M̂ , M ) := E

[
1√
mn

( ∑m
i=1

∑n
j=1(M̂i j −Mi j )

2

)
1/2]

.
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of matrix estimation algorithms immediately hold for our results. We now give a definition of a

matrix estimation algorithm, which will be used in the following sections.

Definition 2.1. A matrix estimation algorithm, denoted as ME : Rm×n → Rm×n , takes as input a
noisy matrix X and outputs an estimator M̂ .

2.2 Required properties of matrix estimation algorithms
As aforementioned, our algorithm (Section 3.3) utilizes matrix estimation as a pivotal “blackbox”

subroutine, which enables accurate imputation and prediction in a model and noise agnostic

setting. Over the past decade, the field of matrix estimation has spurred tremendous theoretical and

empirical research interest, leading to the emergence of a myriad of algorithms including spectral,

convex optimization, and nearest neighbor based approaches. Consequently, as the field continues

to advance, our algorithm will continue to improve in parallel. We now state the properties needed

of a matrix estimation algorithm ME(·) to achieve our theoretical guarantees (formalized through

Theorems 4.1 and 4.2); refer to Section 1.3 for matrix norm definitions.

Property 2.1. Let ME satisfy the following: Define Y = [Yi j ] where Yi j = Xi j if Xi j is observed,
and Yi j = 0 otherwise. Then, for all p ≥ max(m,n)−1+ζ for some ζ ∈ (0, 1], the produced estimator
M̂ = ME(X ) satisfies 


p̂M̂ − pM




2
F
≤

1

mn
C1 ∥Y − pM ∥ ∥pM ∥∗.

Here, p̂ 5 denotes the proportion of observed entries in X and C1 is a universal constant.

We argue the two quantities in Property 2.1, ∥Y − pM ∥ and ∥M ∥∗, are natural. ∥Y − pM ∥ quantifies

the amount of noise corruption on the underlying signal matrixM ; for many settings, this norm

concentrates well (e.g. a matrix with independent zero-mean sub-gaussian entries scales as

√
m+

√
n

with high probability [50]). ∥M ∥∗ quantifies the inherent model complexity of the latent signal

matrix; this norm is well behaved for an array of situations, including low-rank and Lipschitz

matrices (e.g. for low-rank matrices, ∥M ∥∗ scales as
√
rmn where r is the rank of the matrix, see

[19] for bounds on ∥M ∥∗ under various settings). We note the universal singular value thresholding

algorithm proposed in [19] is one such algorithm that satisfies Property 2.1. We provide more

intuition for why we choose Property 2.1 for our matrix estimation methods in Section 4.2, where

we bound the imputation error.

Property 2.2. Let ME satisfy the following: For all p ≥ p∗(m,n), the produced estimator M̂ = ME(X )

satisfies

MRSE(M̂,M) ≤ δ3(m,n)

where limm,n→∞ δ3(m,n) = 0.

Property 2.2 requires the normalized max row sum error to decay to zero as we collect more

data. While spectral thresholding and convex optimization methods accurately bound the average

mean-squared error, minimizing norms akin to the normalized max row sum error require matrix

estimation methods to utilize “local" information, e.g., nearest neighbor type methods. For instance,

[54] satisfies Property 2.2 for generic latent variable models (which include low-rank models) with

p∗(m,n) = 1; [36] also satisfies Property 2.2 for p∗(m,n) ≫ min(m,n)−1/2; [14] establishes this for
low-rank models as long as p∗(m,n) ≫ min(m,n)−1.

5
Precisely, we define p̂ = max{ 1

mn
∑m
i=1

∑n
j=1 1Xi j observed,

1

mn }.
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3 ALGORITHM
3.1 Notations and definitions.
Recall that X (t ) denotes the observation at time t ∈ [T ] where E[X (t )] = f (t ). We shall use the

notation X [s : t] = [X (s), . . . ,X (t )] for any s ≤ t . Furthermore, we define L > 1 to be an algorithmic

hyperparameter and N = ⌊T /L⌋ − 1. For any L × N matrix A, let AL = [ALj ]j≤N represent the

the last row of A. Moreover, let Ã = [Ai j ]i<L, j≤N denote the (L − 1) × N submatrix obtained by

removing the last row of A.

3.2 Viewing a univariate time series as a matrix.
We begin by introducing the crucial step of transforming a single, univariate time series into the

corresponding Page matrix. Given time series data X [1 : T ], we construct L different L×N matrices

X (k )
, defined as

X (k )
= [X (k )

i j ] = [X (i + (j − 1)L + (k − 1))]i≤L, j≤N ,

where k ∈ [L] 6
. In words, X (k )

is obtained by dividing the time series into N non-overlapping

contiguous intervals each of length L, thus constructing N columns; for k ∈ [L], X (k )
is the k-th

shifted version with starting value X (k). For the purpose of imputation, we shall only utilize X (1)
.

In the case of forecasting, however, we shall utilize X (k )
for all k ∈ [L]. We defineM (k )

analogously

to X (k )
using f (t ) instead of X (t ).

3.3 Algorithm description.
We will now describe the imputation and forecast algorithms separately (see Figure 1).

Imputation. Due to the matrix representationX (1)
of the time series, the tasks of imputing missing

values and de-noising observed values translates to that of matrix estimation.

(1) Transform the data X [1 : T ] into the matrix X (1)
via the method outlined in Subsection 3.2.

(2) Apply a matrix estimation method (as in Definition 2.1) to produce M̂ (1)
= ME(X (1)

).

(3) Produce estimate: f̂I (i + (j − 1)L) := M̂ (1)

i j for i ∈ [L] and j ∈ [N ].

Forecast. In order to forecast future values, we first de-noise and impute via the procedure outlined

above, and then learn a linear relationship between the the last row and the remaining rows through

linear regression.

(1) For k ∈ [L], apply the imputation algorithm to produce
̂̃M (k )

from X̃ (k )
(recall from Section

3.2 that Ã refers to the submatrix of the first L − 1 rows of A).

(2) For k ∈ [L], define ˆβ (k ) := argminv ∈RL−1





X (k )
L − (

̂̃M (k )
)
Tv





2
2

.

(3) Produce the estimate at time t > T as follows:

(i) Let vt := [X (t − L + 1) : X (t − 1)] and k = (t mod L) + 1.

(ii) Let v
proj

t := argminv ∈RL−1





vt − (
̂̃M (k )

)
Tv





2
2

.

(iii) Produce estimate:
ˆfF (t ) := (v

proj

t )
T · ˆβ (k ).

Why X (k ) is necessary for forecasting: For imputation, we are attempting to de-noise all obser-

vations made up to time T ; hence, it suffices to only use X (1)
since it contains all of the relevant

information. However, in the case of making predictions, we are only creating an estimator for the

last row. If we take X (1)
for instance, then it is not hard to see that our prediction algorithm only

6
Technically to define each X (k )

, we need access to T ′
= T + L time steps of data. To reduce notational overload and since

it has no bearing on our theoretical analysis, we let T ′
= T .
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produces estimates for X (L),X (2L),X (3L), . . . , and so on. Therefore, we must repeat this procedure

L times in order to produce an estimate for each entry.

Choosing the number of rows L: Theorems 4.1 and 4.2 (and the associated corollaries) suggest

L should be as large as possible, with the requirement L = o(N ). Thus, it suffices to let N = L1+δ for

any δ > 0, e.g., N = L2 = T 2/3
.

4 MAIN RESULTS
4.1 Properties.
We now introduce the required properties for the matrices X (k )

andM (k )
to identify the time series

models f for which our algorithm provides an effective method for imputation and prediction.

Under these properties, we state Theorems 4.1 and 4.2, which establish the efficacy of our algorithm.

The proofs of these theorems can be found in Appendices B and C, respectively. In Section 5, we

argue these properties are satisfied for a large class of time series models.

Property 4.1. (r ,δ1)-imputable
Let matrices X (1) andM (1) satisfy the following:
A. For each i ∈ [L] and j ∈ [N ]:
1. X (1)

i j are independent sub-gaussian random variables7 satisfying E[X (1)

i j ] = M (1)

i j and



X (1)

i j





ψ2

≤ σ .

2. X (1)

i j is observed with probability p ∈ (0, 1], independent of other entries.
B. There exists a matrixM(r ) of rank r such that for δ1 ≥ 0,


M (1) −M(r )





max

≤ δ1.

Property 4.2. (Cβ ,δ2)-forecastable
For all k ∈ [L], let matrices X (k ) andM (k ) satisfy the following:
A. For each i ∈ [L] and j ∈ [N ]:
1. X (k )

i j = M (k )
i j + ϵi j , where ϵi j are independent sub-Gaussian random variables satisfying E[ϵi j ] = 0

and Var(ϵi j ) ≤ σ 2.
2. X (k )

i j is observed with probability p ∈ (0, 1], independent of other entries.
B. There exists a β∗(k ) ∈ RL−1 with



β∗(k )


1
≤ Cβ for some constant Cβ > 0 and δ2 ≥ 0 such that


M (k )

L − (M̃ (k )
)
T β∗(k )





2

≤ δ2.

For forecasting, we make the more restrictive additive noise assumption since we focus on linear

forecasting methods. Such methods generally require additive noise models. If one can construct

linear forecasters under less restrictive assumptions, then we should be able to lift the analysis of

such a forecaster to our setting in a straightforward way.

4.2 Imputation.
The imputation algorithm produces

ˆfI = [
ˆfI (t )]t=1:T as the estimate for the underlying time series

f = [f (t )]t=1:T . We measure the imputation error through the relative mean-squared error:

MSE(
ˆfI , f ) :=

E



 ˆfI − f




2
2

∥ f ∥2
2

. (1)

7
Recall that this condition only requires the per-step noise to be independent; the underlying mean time series f remains

highly correlated.
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Recall from the imputation algorithm in Section 3.3 thatM (1)
is the Page matrix corresponding

to f and M̂ (1)
is the estimate ME produces; i.e. M̂ (1)

= ME(X (1)
). It is then easy to see that for any

matrix estimation method we have

MSE(
ˆfI , f ) =

E



M̂ (1) −M (1)




2
F

M (1)



2
F

. (2)

Thus, we can immediately translate the (un-normalized) MSE of any matrix estimation method to

the imputation error MSE(
ˆfI , f ) of the corresponding time series.

However to highlight how the rank and the low-rank approximation error δ1 of the underlying
mean matrix M (1)

(induced by f ) affect the error bound, we rely on Property 2.1, which make

these dependencies clear through the quantity ∥pM ∥∗. We thus have the following theorem then

establishes a precise link between time series imputation and matrix estimation methods.

Theorem 4.1. Assume Property 4.1 holds and ME satisfies Property 2.1. Then for someC1,C2,C3, c4 >
0,

MSE(
ˆfI , f ) ≤

C1σ

p

(
LNδ1

∥ f ∥2
2

+

√
rLNδ1

∥ f ∥2
2

+

√
rN

∥ f ∥
2

)
+

C2(1 − p)

pLN
+C3e

−c4N . (3)

Theorem 4.1 states that any matrix estimation subroutine ME that satisfies Property 2.1 will

accurately filter noisy observations and recover missing values. This is achieved provided that the

rank ofM(r ) and our low-rank approximation error δ1 are not too large. Note that knowledge of
r is not required apriori for many standard matrix estimation algorithms. For instance, [19] does

not utilize the rank ofM in its estimation procedure; instead, it performs spectral thresholding of

the observed data matrix in an adaptive, data-driven manner. Theorem 4.1 implies the following

consistency property of
ˆfI .

Corollary 4.1. Let the conditions for Theorem 4.1 hold. Let ∥ f ∥2
2
= Ω(T ) 8. Further, suppose f is

(C5L
1−ϵ2 ,C6L

−ϵ1 )-imputable for some ϵ1, ϵ2 ∈ (0, 1) and C5,C6 > 0. Then for p ≫ L
−min

(
2ϵ1,ϵ2

)
lim

T→∞
MSE(

ˆfI , f ) = 0.

We note that Theorem 4.1 follows in a straightforward manner from Property 2.1 and standard

results from random matrix theory [50]. However, we again highlight that our key contribution

lies in establishing that the conditions of Corollary 4.1 hold for a large class of time series models

(Section 5).

4.3 Forecast.
Recall

ˆfF (t ) can only utilize information till time t − 1. For all k ∈ [L], our forecasting algorithm

learns
ˆβ (k ) with the previous L − 1 time steps. We measure the forecasting error through:

MSE(
ˆfF , f ) :=

1

T − L + 1

E



 ˆfF − f




2
2

. (4)

Here,
ˆfF = [

ˆfF (t )]t=L:T denotes the vector of forecasted values. The following result relies on a

novel analysis of how applying a matrix estimation pre-processing step affects the prediction error

of error-in-variable regression problems (in particular, it requires analyzing a non-standard error

metric, the MRSE).

8
Note the condition ∥f ∥2

2
= Ω(T ) is easily satisfied for any time series f by adding a constant shift to every observation

f (t ).
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Theorem 4.2. Assume Property 4.2 holds and ME satisfies Property 2.2, with p ≥ p∗(L,N )
9. Let

r̂ := max

k ∈[L]
rank(

̂̃M (k )
). Then,

MSE(
ˆfF , f ) ≤

1

N − 1

(
(δ2 +

√
CβNδ3)

2
+ 2σ 2r̂

)
.

Note that r̂ is trivially bounded by L = o(N ) by assumption (see Section 3). If the underlying

matrix M is low-rank, then ME algorithms such as the USVT algorithm (cf. [19]) will output an

estimator with a small r̂ . However, since our bound holds for general ME methods, we explicitly

state the dependence on r̂ .
In essence, Theorem 4.2 states that any matrix estimation subroutine ME that satisfies Property

2.2 will produce accurate forecasts from noisy, missing data. This is achieved provided the linear

model approximation error δ2 is not too large (recall δ3 = o(1) by Property 2.2). Additionally,

Theorem 4.2 implies the following consistency property of
ˆfF .

Corollary 4.2. Let the conditions for Theorem 4.2 hold. Suppose f is (C1,C2

√
NL−ϵ1 )-forecastable for

any ϵ1,C1,C2 > 0 andN = L1+δ for any δ > 0. Then forp ≥ p∗(L,N ), such that limL,N→∞ δ3(L,N ) = 0

for p∗(L,N ),
lim

T→∞
MSE(

ˆfF , f ) = 0.

Similar to the case of imputation, a large contribution of this work is in establishing that the

conditions of Corollary 4.2 hold for a large class of time series models (Section 5). Effectively,

Corollary 4.2 demonstrates that learning a simple linear relationship among the singular vectors

of the de-noised matrix is sufficient to drive the empirical error to zero for a broad class of time

series models. The simplicity of this linear method suggests that our estimator will have low

generalization error, but we leave that as future work. We should also note that for auto-regressive

processes (i.e., f (t ) =
∑G
д=1 αд f (t − 1) + ϵ(t ) where ϵ(t ) is mean-zero noise), previous works (e.g.,

[37]) have already shown that simple linear forecasters are consistent. For such models it is easy to

see that the underling mean matrixM (k )
is not (approximately) low-rank and so it is not necessary

to do the pre-processing matrix estimation step as we do in Section 3.3.

5 FAMILY OF TIME SERIES THAT FIT OUR FRAMEWORK
In this section, we list out a broad set of time series models that satisfy Properties 4.1 and 4.2, which

are required for the results stated in Section 4. The proofs of these results can be found in Appendix

D. To that end, we shall repeatedly use the following model types for our observations.

Model Type 1. For any t ∈ Z, let X (t ) be independent sub-gaussian random variables such that

E[X (t )] = f (t ) and ∥X (t )∥ψ2

≤ σ . Note the noise on f (t ) is generic (e.g. non-additive).
Model Type 2. For t ∈ Z, let X (t ) = f (t ) + ϵ(t ), where ϵ(t ) are sub-gaussian independent random

variables with E[ϵ(t )] = 0 and Var(ϵ(t )) ≤ σ 2
.

5.1 Linear Recurrent Functions (LRFs).
For t ∈ Z, let

f LRF(t ) =
G∑
д=1

αд f (t − д). (5)

Proposition 5.1. .
9
Refer to Section 2.2 for lower bounds on p∗(L, N ) for various ME algorithms. The dependence of the bound on p is

implicitly captured in δ3.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 3, Article 40. Publication date: December 2018.



Model Agnostic Time Series Analysis via Matrix Estimation 40:13

(i) UnderModel Type 1, f LRF satisfies Property 4.1 with δ1 = 0, r = G10.
(ii) UnderModel Type 2, f LRF satisfies Property 4.2 with δ2 = 0 and Cβ = CG for k ∈ [L] where C

is an absolute constant.

By Proposition 5.1, Theorems 4.1 and 4.2 give the following corollaries:

Corollary 5.1. Under Model Type 1, let the conditions of Theorem 4.1 hold. Let N = L1+δ for any
δ > 0. Then for some C > 0, if

T ≥ C ·

(
G

δ 2error

)
2+δ

,

we haveMSE(
ˆfI , f

LRF
) ≤ δerror.

Corollary 5.2. Under Model Type 2, let the conditions of Theorem 4.2 hold. Let N = L1+δ for any
δ > 0. Then for some C > 0, if

T > C ·

(
σ 2

δerror −Gδ 2
3

) 2+δ
δ

,

we haveMSE(
ˆfF , f

LRF
) ≤ δerror.

We now provide the rank,G, of an important class of time series methods, a finite sum of the

product of polynomials, harmonics and exponential time series functions.

Proposition 5.2. Let Pma be a polynomial of degreema . Then,

f (t ) =
A∑
a=1

exp{αat} cos(2πωat + ϕa)Pma (t )

admits a representation as in (5). Further the order G of f (t ) is independent of T , the number of
observations, and is bounded by

G ≤ A(mmax + 1)(mmax + 2)

wheremmax = maxa∈Ama .

5.2 Functions with Compact Support.
For t ∈ Z, let

f Compact
(t ) = д(φ(t )) (6)

where φ : Z → [0, 1] and д : [0, 1] → R is L-Lipschitz.

Proposition 5.3. For any ϵ ∈ (0, 1),

(i) UnderModel Type 1, f Compact satisfies Property 4.1 with δ1 = L
Lϵ , r = Lϵ .

(ii) UnderModel Type 2, f Compact satisfies Property 4.2 with δ2 = 2δ1
√
N and Cβ = 1 for k ∈ [L].

Using Proposition 5.3, Theorems 4.1 and 4.2 immediately lead to the following corollaries.

10
To see this, take G = 2 for example. WLOG, let us consider the first column. Then f (3) = f (2) + f (1), which in turn gives

f (4) = f (3) + f (2) = 2f (2) + f (1) and f (5) = f (4) + f (3) = 3f (2) + 2f (1). By induction, it is not hard to see that this holds

more generally for any finite G .
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Corollary 5.3. Under Model Type 1, let the conditions of Theorem 4.1 hold. Let N = L1+δ for any
δ > 0. Then for some C > 0 and any ϵ ∈ (0, 1), if

T ≥ C ·

((
1

δerror

) 2

1−ϵ
+

(
L

δerror

) 1

ϵ

)
2+δ

,

we haveMSE(
ˆfI , f

LRF
) ≤ δerror.

Corollary 5.4. Under Model Type 2, let the conditions of Theorem 4.2 hold. Let N = L1+δ for any
δ > 0. Then for some C > 0 and any ϵ ∈ (0, 1), if

T ≥ C ·

(
σ 2

δerror − (
L
Lϵ + δ3)2

) 2+δ
δ

,

we haveMSE(
ˆfF , f

LRF
) ≤ δerror.

As the following proposition makes precise, any Lipschitz function of a periodic time series, falls

into this family.

Proposition 5.4.

f Harmonic
(t ) =

G∑
д=1

φд
(
sin

(
2πωдt + ϕ

) )
where φд is Lд-Lipschitz and ωд is rational, admits a representation as in (6). Let xlcm denote the
fundamental period. 11 Then the Lipschitz constant, L, of f Harmonic

(t ) is bounded by

L ≤ 2π ·max

д∈G
(Lд) ·max

д∈G
(ωд) · xlcm.

5.3 Finite sum of Sublinear Trends.
Consider f Trend(t ) such that ����d f Trend(t )dt

���� ≤ C∗t
−α

(7)

for some α ,C∗ > 0.

Proposition 5.5. Let
����df Trend(t )dt

���� ≤ C∗t
−α for some α ,C∗ > 0. Then for any ϵ ∈ (0,α ),

(i) UnderModel Type 1, f Trend satisfies Property 4.1 with δ1 = C∗

Lϵ /2 , r = Lϵ/α +
L−Lϵ /α
Lϵ /2 .

(ii) UnderModel Type 2, f Trend satisfies Property 4.2 with δ2 = 2δ1
√
N and Cβ = 1 for k ∈ [L].

By Proposition 5.5 and Theorems 4.1 and 4.2, we immediately have the following corollaries on the

finite sample performance guarantees of our estimators.

Corollary 5.5. Under Model Type 1, let the conditions of Theorem 4.1 hold. Let N = L1+δ for any
δ > 0. Then for some C > 0, if

T ≥ C ·

(
1

δ 2(α+1)/αerror

)
2+δ

,

11
The “fundamental period”, x

lcm
, of {ω1, . . . , ωG } is the smallest value such that x

lcm
/(qa/pa ) is an integer for all

a ∈ A. Let S ≡ {qa/pa : д ∈ G } and let p
lcm

be the least common multiple (LCM) of {p1, . . . , pG }. Rewriting S as{q1 ∗ plcm/p1
p
lcm

, . . . ,
qG ∗ p

lcm
/pG

p
lcm

}
, we have the set of numerators, {q1 ∗ plcm/p1, . . . , qG ∗ p

lcm
/pA } are all integers

and we define their LCM as d
lcm

. It is easy to verify that x
lcm

= d
lcm

/p
lcm

is indeed a fundamental period. As an example,

consider x = {n, n/2, n/3, . . . , n/n − 1}, in which case the above computation results in x
lcm

= n.
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we haveMSE(
ˆfI , f

LRF
) ≤ δerror.

Corollary 5.6. Under Model Type 2, let the conditions of Theorem 4.2 hold. Let N = L1+δ for any
δ > 0. Then for some C > 0 and for any ϵ ∈ (0,α ), if

T ≥ C ·

(
σ 2

δerror − (L−ϵ/2 + δ3)2

) 2+δ
δ

,

we haveMSE(
ˆfF , f

LRF
) ≤ δerror.

Proposition 5.6. For t ∈ Z with αb < 1 for b ∈ [B],

f Trend(t ) =
B∑
b=1

γbt
αb

+

Q∑
q=1

log

(
γqt

)
admits a representation as in (7).

5.4 Additive Mixture of Dynamics.
We now show that the imputation results hold even when we consider an additive mixture of any

of the models described above. For t ∈ Z, let

f Mixture
(t ) =

Q∑
q=1

ρq fq (t ).

Here, each fq is such that under Model Type 1 with E[X (t )] = fq (t ), Property 4.1 is satisfied with

δ1 = δq and r = rq for q ∈ [Q].

Proposition 5.7. Under Model Type 1, f Mixture satisfies Property 4.1 with δ1 =

∑Q
q=1 ρqδq and

r =
∑Q
q=1 rq .

Proposition 5.7 and Corollary 4.1 imply the following.

Corollary 5.7. Under Model Type 1, let the conditions of Theorem 4.1 hold. For each q ∈ [Q], let
δq ≤ C ′

qL
−ϵq and rq = o(L) for some ϵq ,C ′

q > 0. Then, limT→∞ MSE(
ˆfI , f

Mixture
) = 0.

In summary, Corollaries 5.1, 5.3, 5.5 and 5.7 imply that for any additive mixture of time series dynamics
coming from f LRF, f Compact and f Trend, the algorithm in Section 3.2 produces a consistent estimator
for an appropriate choice of L.

5.5 Hidden State.

Latent f (1) f (2) f (t )

X (1) X (2) X (t )Observed

. . .. . .

Fig. 2. Hidden State Model with E[X (t )] = f (t ) and ∥X (t )∥ψ2

≤ σ .
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A common problem of interest is to uncover the hidden dynamics of latent variables given noisy

observations. For example, consider the problem of estimating the true weekly demand rate of

umbrellas at a retail store given its weekly sales of umbrellas. This can be mathematically described

as uncovering the underlying parameters of a time varying truncated Poisson process
12
whose

samples are the weekly sales reports, (cf. [6]). In general, previous methods to learn the hidden

states either require multiple time series as inputs or require that the underlying noise model is

known (refer to Section 1.2 for a detailed overview).

In contrast, by viewing f (t ) as the time-varying latent variables (see Figure 2), we are well

equipped to handle more generic noise distributions and complicated hidden dynamics. Specifically,

our imputation and forecast algorithms can uncover the latent dynamics if: (i) per-step noise is sub-

gaussian (additive noise is needed for forecasting); (ii) E[X (t )] = f (t ). Moreover, our algorithm is

model and noise agnostic, robust to missing entries, and comes with strong theoretical consistency

guarantees (Theorems 4.1 and 4.2). Given these findings, our approach is likely to become a useful

gadget in the toolkit for dealing with scenarios pertinent to uncovering latent states a la Hidden

Markov-like models. We corroborate our findings through experiments in Section ??.

5.6 Sample complexity.
As discussed, our algorithm operates for a large class of models – it is not tailored for a specific model

class (e.g. sum of harmonics). In particular, for a variety of model classes, our algorithm provides

consistent estimation for imputation while the forecasting MSE scales with the quality of the matrix

estimation algorithm (i.e. δ3). Naturally, it is expected that to achieve accurate performance, the

number of samples (i.e. T ) required will scale relatively poorly compared to model specific optimal

algorithms. Corollaries 5.1 to 5.6 provide finite sample analysis, which quantify this “performance

loss”, which indicate that this performance loss is minor. As an example, consider imputation for

any periodic time series with periods between [n]. By proposition 5.2, it is easy to see that the order,

G , of such a time series is 2n. Thus corollary 5.1 indicates that the MSE goes to 0 with T ∼ n2+δ for

any δ > 0 as n → ∞. For such a time series, one expects such a result to require T ∼ n logn even

for a model aware optimal algorithm.

6 CONCLUSION
In this paper, we introduce a novel algorithm for time series imputation and prediction using matrix

estimation methods, which allows us to operate in a model and noise agnostic setting. Further,

we identify generic conditions on the time series model class under which the algorithm provides

consistent estimation. As a key contribution, we establish that many popular model classes and

their mixtures satisfy these generic conditions. Using synthetic and real-world data, we exhibit

the efficacy of our algorithm with respect to a state-of-the-art software implementation available

through R. Our finite sample analysis agrees with these experimental results. Lastly, we demonstrate

our method can provably recover the hidden state of dynamics, which could be of interest in its

own right.

12
Recall a truncated Poisson random variable Y (t ) is defined as Y (t ) = min{X (t ), C }, where C denotes a positive, bounded

constant, and X (t ) = Poisson(f (t )).
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A USEFUL THEOREMS
Theorem A.1. Bernstein’s Inequality. [12]
Suppose that X1, . . . ,Xn are independent random variables with zero mean, and M is a constant such
that |Xi | ≤ M with probability one for each i . Let S :=

∑n
i=1Xi and v := Var(S). Then for any t ≥ 0,

P(|S | ≥ t ) ≤ 2 exp

(
−

3t2

6v + 2Mt

)
.

Theorem A.2. Norm of matrices with sub-gaussian entries. [50]
LetA be anm ×n random matrix whose entries Ai j are independent, mean zero, sub-gaussian random
variables. Then, for any t > 0, we have

∥A∥ ≤ CK (
√
m +

√
n + t )

with probability at least 1 − 2 exp

(
−t2

)
. Here, K = maxi, j



Ai j



ψ2

.

B IMPUTATION ANALYSIS
Lemma B.1. Let X be an L × N random matrix (with L ≤ N ) whose entries Xi j are independent
sub-gaussian entries where E[Xi j ] = Mi j and



Xi j



ψ2

≤ σ . Let Y denote the L × N matrix whose
entries Yi j are defined as

Yi j =

{
Xi j w.p. p,
0 w.p. 1 − p,

for some p ∈ (0, 1]. Let p̂ = max

{
1

LN
∑L

i=1
∑N

j=1 1Xi j observed,
1

LN

}
. Define events E1 and E2 as

E1 :=
{
|p̂ − p | ≤ p/20

}
, (8)

E2 :=
{
∥Y − pM ∥ ≤ C1σ

√
N

}
. (9)

Then, for some positive constant c1

P(E1) ≥ 1 − 2e−c1LNp − (1 − p)LN , (10)

P(E2) ≥ 1 − 2e−N . (11)

Proof. Let p̂0 =
1

LN
∑L

i=1
∑N

j=1 1Xi j observed, which implies E[p̂0] = p. We define the event E3 :=

{p̂0 = p̂}. Thus, we have that

P(Ec
1
) = P(Ec

1
∩ E3) + P(Ec

1
∩ Ec

3
)

= P(|p̂0 − p | ≥ p/20) + P(Ec
1
∩ Ec

3
)

≤ P(|p̂0 − p | ≥ p/20) + P(Ec
3
)

= P(|p̂0 − p | ≥ p/20) + (1 − p)LN ,

where the final equality follows by the independence of observations assumption and the fact that

p̂0 ̸= p̂ only if we do not have any observations. By Bernstein’s Inequality, we have that

P(|p̂0 − p | ≤ p/20) ≥ 1 − 2e−c1LNp .

Furthermore, since E[Yi j ] = pMi j , Theorem A.2 yields

P(E2) ≥ 1 − 2e−N .
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□

Corollary B.1. Let E := E1 ∩ E2. Then,

P(Ec ) ≤ C1e
−c2N , (12)

where C1 and c2 are positive constants independent of L and N .

Proof. By DeMorgan’s Law and the Union Bound, we have that

P(Ec ) = P(Ec
1
∪ Ec

2
)

≤ P(Ec
1
) + P(Ec

2
)

≤ C1e
−c2N , (13)

where C1, c2 > 0 are appropriately defined, but are independent of L and N . □

Lemma B.2. LetM (1) be defined as in Section 4.1 and satisfy Property 4.1. Then,


M (1)





∗
≤ L

√
Nδ1 +

√
rLNδ1 +

√
r ∥M ∥F .

Proof. By the definition ofM (1)
and the triangle inequality property of nuclear norms,


M (1)





∗
≤




M (1) −M(r )





∗
+



M(r )



∗

(a)
≤

√
L



M (1) −M(r )





F
+



M(r )



∗

(b)
≤ L

√
Nδ1 +



M(r )



∗
.

Note that (a) makes use of the fact that ∥Q ∥∗ ≤
√
rank(Q)∥Q ∥F for any real-valued matrixQ and

(b) utilizes Property 4.1. Since rank(M(r )) = r , we have


M(r )




∗
≤

√
r


M(r )




F . Applying triangle

inequality and Property 4.1 again further yields

M(r )



F ≤



M(r ) −M



F + ∥M ∥F ≤

√
LNδ1 + ∥M ∥F .

This completes the proof. □

Theorem (4.1). Assume Property 4.1 holds andME satisfies Property 2.1. Then for someC1,C2,C3, c4 >
0,

MSE(
ˆfI , f ) ≤

C1σ

p

(
LNδ1

∥ f ∥2
2

+

√
rLNδ1

∥ f ∥2
2

+

√
rN

∥ f ∥
2

)
+

C2(1 − p)

pLN
+C3e

−c4N .

Proof. By (2), it suffices to analyze the time series imputation error by measuring the relative

mean-squared error of M̂ (1)
. For notational simplicity, let us drop the superscripts on M̂ (1)

andM (1)
.

Let E := E1 ∩ E2, where E1 and E2 are defined as in Lemma B.1. By the law of total probability, we

have that

E



M̂ −M




2
F
≤ E

[


M̂ −M



2
F
| E

]
+ E

[


M̂ −M



2
F
| Ec

]
P(Ec ). (14)

We begin by bounding the first term on the right-hand side of (14). By Property 2.1 and assuming

E occurs, we have that


p̂M̂ − pM



2
F
≤ C1∥Y − pM ∥ ∥pM ∥∗ ≤ C2σ

√
N ∥M ∥∗.
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Therefore,

p2



M̂ −M




2
F
≤ C3p̂

2




M̂ −M



2
F

≤ C3




p̂M̂ − pM



2
F
+C3(p̂ − p)2∥M ∥2F

≤ C4pσ
√
N ∥M ∥∗ +C3(p̂ − p)2∥ f ∥2

2

for an appropriately defined C4. Observe that E(p̂ − p)2 = p(1 − p)/LN . Thus using Corollary B.1

and taking expectations, we obtain

E



M̂ −M




2
F
≤ C4p

−1σ
√
N ∥M ∥∗ +

C3(1 − p)∥ f ∥2
2

pLN
+C5∥ f ∥

2

2
e−c6N .

Normalizing by ∥ f ∥2
2
gives

MSE(
ˆfI , f ) ≤

C4σ
√
N ∥M ∥∗

p ∥ f ∥2
2

+

C3(1 − p)

pLN
+C5e

−c6N .

Invoking Lemma B.2, we obtain

MSE(
ˆfI , f ) ≤

C4σ

p

(
LNδ1

∥ f ∥2
2

+

√
rLNδ1

∥ f ∥2
2

+

√
rN

∥ f ∥
2

)
+

C3(1 − p)

pLN
+C5e

−c6N .

The proof is complete after relabeling constants.

□

C FORECAST ANALYSIS
Let us begin by analyzing the forecasting error for any k ∈ [L].

Lemma C.1. For each k ∈ [L], assume Property 4.2 holds and ME(·) satisfies Property 2.2. Then,

E

[ ∑
t ∈Sk

(
ˆfF (t ) − f (t )

)
2

]
≤

(
δ2 +

√
CβNδ3

)
2

+ 2σ 2r̂k . (15)

Here, Sk := {t ∈ [T ] : (t mod L) + 1 = k} and r̂k := rank( ̂̃M (k )
).

Proof. Observe that we can write

E





M (k )
L − (

̂̃M (k )
)
T ˆβ (k )





2
2

≡ E

[ ∑
t ∈Sk

(
ˆfF (t ) − f (t )

)
2

]
. (16)

For notational simplicity, letQ := (M̃ (k )
)
T
and Q̂ := (

̂̃M (k )
)
T
. Similarly, we will drop all superscripts

(k) throughout this analysis for notational ease. RecallXL = ML+ϵL . Then note that by the definition
of the optimization in step 2 of the forecast algorithm,


XL − Q̂ ˆβ




2
2

≤




XL − Q̂β∗



2
2

=




ML − Q̂β∗



2
2

+ ∥ϵL ∥
2

2
+ 2ϵTL (ML − Q̂β∗). (17)

Moreover, 


XL − Q̂ ˆβ



2
2

=




ML − Q̂ ˆβ



2
2

+ ∥ϵL ∥
2

2
− 2ϵTL (Q̂

ˆβ −ML). (18)
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Combining (17) and (18) and taking expectations, we have

E



ML − Q̂ ˆβ




2
2

≤ E



ML − Q̂β∗




2
2

+ 2E[ϵTL Q̂(
ˆβ − β∗)]. (19)

Let us bound the final term on the right hand side of (19). Under our independence assumptions,

observe that

E[ϵTL Q̂]β∗ = E[ϵTL ]E[Q̂]β∗ = 0. (20)

Recall
ˆβ = Q̂†XL = Q̂†ML + Q̂†ϵL . Using the cyclic and linearity properties of the trace operator

(coupled with similar independence arguments), we further have

E[ϵTL Q̂ ˆβ] = E[ϵTL Q̂Q̂†
]ML + E[ϵTL Q̂Q̂†ϵL]

= E
[
Tr

(
ϵTL Q̂Q̂†ϵL

)]
= E

[
Tr

(
Q̂Q̂†ϵLϵ

T
L

)]
= Tr

(
E[Q̂Q̂†

] · E[ϵLϵ
T
L ]

)
≤ σ 2E

[
Tr

(
Q̂Q̂†

)]
. (21)

Let Q̂ = USVT
be the singular value decomposition of Q̂ . Then

Q̂Q̂†
= USVTVS†UT

= U ˜IUT . (22)

Here,
˜I is a block diagonal matrix where its nonzero entries on the diagonal take the value 1.

Plugging in (22) into (21), and using the fact that the trace of a square matrix is equal to the sum of

its eigenvalues,

σ 2E
[
Tr

(
Q̂Q̂†

)]
= σ 2E[rank(Q̂)]. (23)

We now turn our attention to the first term on the right hand side of (19). By Property 4.2, we

obtain 


ML − Q̂β∗




2

=




ML − (Q −Q + Q̂)β∗




2

≤ ∥ML −Qβ∗∥
2
+




(Q − Q̂)β∗




2

≤ δ2 +



(Q − Q̂)β∗





2

.

Thus we have that

E



(Q − Q̂)β∗





2

= E





(M̃ −
̂̃M)

T β∗





2

(24)

≤
L−1∑
i=1

��β∗i �� · E[( N∑
j=1

(M̂i j −Mi j )
2

)
1/2

]
(25)

≤ ∥β∗∥
1
· E

[(
max

1≤i<L

N∑
j=1

(M̂i j −Mi j )
2

)
1/2

]
(26)

=: Cβ
√
N ·MRSE(

̂̃M, M̃). (27)

Putting everything together, we obtain our desired result. □
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Theorem (4.2). Assume Property 4.2 holds and ME satisfies Property 2.2, with p ≥ p∗(L,N ). Let

r̂ := max

k ∈[L]
rank(

̂̃M (k )
). Then,

MSE(
ˆfF , f ) ≤

1

N − 1

(
(δ2 +

√
CβNδ3)

2
+ 2σ 2r̂

)
.

Proof. For simplicity, define δ (k) := (δ2 +
√
Nδ3)

2
+ 2σ 2r̂k . By Lemma C.1, for all k ∈ [L] we have

E

[ ∑
t ∈Sk

(
ˆfF (t ) − f (t )

)
2

]
≤ δ (k). (28)

Let δmax := (δ2 +
√
CβNδ3)

2
+ 2σ 2r̂ . Recall Sk := {t ∈ [T ] : (t mod L) + 1 = k}. Then, it follows that

MSE(
ˆfF , f ) ≤

δmax

N − 1

□

D MODEL ANALYSIS
We first define a somewhat technical Property D.1, that will aid us in proving that the various

models in Section 5 satisfy Property 4.1 and 4.2. Recall f is the underlying time series we would

like to estimate. Define ηk : Z × Z → R such that

ηk (θi , ρ j ) B f (i + (j − 1)L + (k − 1)). (29)

where θi = i, ρ j = (j − 1)L + (k − 1).

Intuitively, (29) is representing f (t ) as a function of two parameters, ηk (θi , ρ j ) where θi = i ,
ρ j = (j − 1)L + (k − 1). By doing so we can express f as a latent variable model, a representation

which is very amenable to theoretical analysis in the matrix estimation literature; specifically,

[M (k )
i j ] = [ηk (θi , ρ j )] by construction ofM (k )

. Effectively, the latent parameters, θi , ρ j encode the

amount of shift in the argument to f (t ), so as to obtain the appropriate entry in the matrix,M (k )
.

Property D.1. Let matrices X (k ) andM (k ) satisfy the following:

A. For each i ∈ [L], j ∈ [N ]:
1. X (k )

i j are independent across i, j, and each have variance at most σ 2.

2. X (k )
i j is observed with probability p ∈ (0, 1], independently.

B. There exists p : [L] → [L] such that:
1. Define P(θ ) := {p(θi ) : i ∈ [L]} ⊂ {θ1, . . . ,θL}. Let it be such that |P(θ )| = r4 < L.
2. Define L × N matrix,M(r ), as [M

(r )
i j ] = [ηk (p(θi ), ρ j )]. Then for δ4 ≥ 0,


M (k ) −M(r )





max

≤ δ4.

We begin with Proposition D.1, which motivates the use of linear methods in forecasting.

Proposition D.1. For all k ∈ [L], letM (k ), defined as in Section 4.1, satisfy Property D.1. Then there
exists β∗ such that 


M (k )

L − (M̃ (k )
)
T β∗





2

≤ 2δ4
√
N ,

where ∥β∗∥
0
= 1.
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Proof. We drop the dependence on k fromM (k )
and ηk for notational convenience. Furthermore,

we prove it for the case of k = 1 since the proofs for general k follow identical arguments by first

making an appropriate shift in the entries of the matrix of interest. Assume we have access to data

fromX [1:T +r4−1]. Let us first construct a matrix with overlapping entries,M = [M i j ] = [f (i+j−1)],

of dimension L × (T + r4 − 1). We haveM i j = η( ¯θi , ρ̄ j ) with ¯θi = i and ρ̄ j = [j − 1,γ ], where η is as

defined in (29). By construction, the skew-diagonal entries from left to right ofM are constant, i.e.

Mki := {Mk−j,i+j : 1 ≤ k − j ≤ L, 1 ≤ i + j ≤ T + r − 1}. (30)

Under this setting, we note that the columns ofM are subsets of the columns ofM . Specifically, for

all 0 ≤ j < N and k ≤ L,

Mk, jL+1 = Mk, j+1. (31)

By construction, observe that every entry withinM exists withinM . Hence,M i j = Mi′, j′ for some

i ′, j ′, and ��η( ¯θi , ρ̄ j ) − η(p( ¯θi ), ρ̄ j )�� = ��η(θi′, ρ j′) − η(p(θi′), ρ j′)��
≤



M −M(r )



max

≤ δ4,

where the inequality follows from Condition B.2 of Property D.1. In light of this, just as we defined

M(r ) with respect toM , we defineM (r ) fromM . Specifically, the (i, j)th element ofM (r ) is

M
(r )
i j = η(p( ¯θi ), ρ̄ j ). (32)

By Condition B.1 of Property D.1 and applying the Pigeonhole Principle, we observe that within the

last r4+1 rows ofM(r ), at least two rows are identical.Without loss of generality, let these two rows be

denoted asM (r )
L−r1

= [M (r )
L−r1,i

]i≤N andM (r )
L−r2

= [M (r )
L−r2,i

]i≤N , respectively, where r1 ∈ {1, . . . , r4−1},

r2 ∈ {2, . . . , r4}, and r1 < r2. Since ¯θi = i = θi , we trivially have that p( ¯θi ) = p(θi ). Consequently, it

must be the case that the same two rows inM (r ) are also identical, i.e. for all i ≤ T + r4 − 1,

M
(r )
L−r1,i = M

(r )
L−r2,i . (33)

Using this fact, we have that for all i ≤ T + r − 1,���ML−r1,i −ML−r2,i

��� ≤ ���ML−r1,i −M
(r )
L−r1,i

��� + ���ML−r2,i −M
(r )
L−r2,i

��� (34)

+

���M (r )
L−r1,i −M

(r )
L−r1,i

���
≤ 2δ4, (35)

where the last inequality follows from (33) and the construction of M (r ). Additionally, by the

skew-diagonal property ofM as described above by (30), we necessarily have the following two

equalities:

MLi = ML−r1,r1+i (36)

ML−∆r ,i = ML−r2,r1+i , (37)

where ∆r = r2 − r1. Thus, by (34), (36), and (37), we obtain for all i ≤ T ,���MLi −ML−∆r ,i

��� = ���ML−r1,r1+i −ML−r2,r1+i

���
≤ 2δ4. (38)
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Thus, applying (31) and (38), we reach our desired result, i.e. for all i ≤ N ,��MLi −ML−∆r ,i
�� ≤ 2δ4. (39)

Recall M̃ = [Mi j ]i<L, j≤N excludes the last row ofM . From above, we know that there exists some

row ℓ := L − ∆r < L such that ∥ML −Mℓ ∥2 ≤ 2δ4
√
N . Clearly, we can express

Mℓ = M̃T β∗, (40)

where β∗ ∈ RL−1
is a 1-sparse vector with a single nonzero component of value 1 in the ℓth index.

This completes the proof.

□

Corollary D.1. For all k ∈ [L], let M (k ), defined as in Section 4.1, satisfy Property D.1 with δ4, r4.
ThenM (k ) obeys,

(i) UnderModel Type 1, Property 4.1 is satisfied with δ1 = δ4, r = r4.
(ii) UnderModel Type 2, Property 4.2 is satisfied with δ2 = 2δ4

√
N .

Proof. Condition A of both Property 4.1 and 4.2 is satisfied by definition. (i) Condition B.1, B.2

of Property D.1 together imply Condition B of Property 4.1 for the same δ1, r4. (ii) Proposition D.1

implies Condition B of Property 4.2 by scaling δ4 with 2

√
N . □

D.1 Proof of Proposition 5.1
Proposition (5.1). .

(i) UnderModel Type 1, f LRF satisfies Property 4.1 with δ1 = 0, r = G;
(ii) Under Model Type 2, f LRF satisfies Property 4.2 with δ2 = 0 and Cβ = C · G where C is an

absolute constant.

Proof. Let f (t ) = f LRF. By definition of f (t ), we have that for ∀i ∈ {G + 1, . . . ,L}, j ∈ {1, . . .N },

M (k )
i j = f (i + (j − 1)L + (k − 1)

=

G∑
д=1

αд f ((i − д) + (j − 1)L + (k − 1))

=

G∑
д=1

αдM
(k )
(i−д)j .

In particular,M (k )
Lj =

∑G
д=1 αдM

(k )
(L−д)j ∀j ∈ {1, . . .N }, and so we immediately have condition (ii) of

the Proposition with C = maxд∈G αд . Since every row from G + 1, . . . ,L is a linear combination of

the rows above, the rank ofM (k )
is at most G. Ergo, we have condition (i) of the Proposition. □

Corollary (5.1). UnderModel Type 1, let the conditions of Theorem 4.1 hold. Let N = L1+δ for any
δ > 0. Then for some C > 0, if

T ≥ C
( G

δ 2error

)
2+δ

we haveMSE(
ˆfI , f

LRF
) ≤ δerror.

Proof. By Proposition 5.1, we have for some C1,C2,C3, c4 > 0

MSE( ˆfI , f LRF) ≤ C1

1

p

√
G

L
+C2

(1 − p)

LNp
+C3e

−c4N .
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We require the r.h.s of the term above to be less than δerror. We have,

C1

1

p

√
G

L
+C2

(1 − p)

LNp
+C3e

−c4N
(a)
≤ C

(√G

L
+

1

LN
+ e−c4N

)
(b)
≤ C

(√G

L

)
where (a) follows for appropriately defined C > 0 and by absorbing p into the constant; (b) follows

since
1

LN ≤ G
L and e−c4N ≤

√
G
L for sufficiently large L,N and by redefining C . Hence, it suffices

that δerror ≥ C
(√

G
L

)
=⇒ T ≥ C

(
G

δ 2

error

)
2+δ

. □

Corollary (5.2). UnderModel Type 2, let the conditions of Theorem 4.2 hold. Let N = L1+δ for any
δ > 0. Then for some C > 0, if

T > C
( σ 2

δerror −Gδ 2
3

) 2+δ
δ

we haveMSE(
ˆfF , f

LRF
) ≤ δerror.

Proof. By Proposition 5.1, we have

MSE( ˆfF , f LRF) ≤
1

N − 1

(Gδ 2
3
N + 2σ 2r̂ ).

We require the r.h.s of the term above to be less than δerror. Since
1

N σ
2r̂ ≤ 1

Lδ σ
2
, it suffices that

δerror
(a)
≥ C

(
Gδ 2

3
+

1

Lδ
σ 2

)
=⇒ Lδ

(b)
≥ C

σ 2

δerror −Gδ 2
3

=⇒ T ≥ C
( σ 2

δerror −Gδ 2
3

) 2+δ
δ

where (a) and (b) follow for appropriately defined C > 0. □

D.2 Proof of Proposition 5.2
Proposition (5.2). Let Pma be a polynomial of degreema . Then,

f (t ) =
A∑
a=1

exp{αat} cos(2πωat + ϕa)Pma (t )

admits a representation as in (5). Further the order G of f (t ) is independent of T , the number of
observations, and is bounded by

G ≤ A(mmax + 1)(mmax + 2)

wheremmax = maxa∈Ama .

Proof. This proof is adapted from [29]. We state it here for completeness.

First, observe that if there exists latent functionsψl : {1, . . . ,L} → R and ρl : {1, . . . ,N } → R
for l ∈ [G] such that we can write,

f (i + j) =
G∑
l=1

ψl (i)ρl (j), i ∈ [L], j ∈ [N ] (41)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 3, Article 40. Publication date: December 2018.



40:28 Anish Agarwal, Muhammad Jehangir Amjad, Devavrat Shah, and Dennis Shen

then eachM (k )
(induced by f for k ∈ [L]) has rank at most G.

Second, observe that time series that admit a representation of the form in (41) form a linear

space which is closed with respect to term-by-term multiplication, i.e.,

f (i + j) = f (1) ◦ f (2) =
( G1∑
l=1

ψ (1)

l (i) ρ(1)l (j)
) ( G2∑

l=1
ψ (2)

l (i) ρ(2)l (j)
)

(42)

where G1 and G2 are the orders of the f (1) and f (2) respectively.
Given the two observations above, it suffices to show separately that f (1)(t ) = exp{αt} cos(2πωt + ϕ)

and f (2)(t ) = Pm (t ) have a representation of the form in (41).

We begin with f (1)(t ) = exp{αt} cos(2πωt + ϕ). For i ∈ [L], j ∈ [N ],

f (1)(i + j) = exp{α (i + j)} cos(2πω(i + j) + ϕ)

(a)
= exp{αi} cos(2πωi) · exp{α j} cos(2πωj + ϕ)

− exp{αi} sin(2πωi) · exp{α j} sin(2πωj + ϕ)

:= ψ1(i)ρ1(j) +ψ2(i)ρ2(j)

where in (a) we have used the trigonometric identity cos(a + b) = cos(a) cos(b) − sin(a) sin(b). Thus
for f (1)(t ), G = 2.

For f (2)(t ) = Pm (t ), with i ∈ [L], j ∈ [N ], we have Pm (i + j) =
∑m
l=0 cl (i + j)l . By expanding (i + j)l ,

it is easily seen (using the Binomial theorem) that there are l + 1 unique terms involving powers of

i and j. Hence for f (2)(t ), G ≤
∑m+1

l=1 l = (m+1)(m+2)

2

13

Nowwe boundG for f (t ) =
∑A

a=1 exp{αat} cos(2πωat + ϕa)Pma (t ). For f
(1)
(t ) = exp{αt} cos(2πωt + ϕ),

we have G(1)
= 2. For f (2)(t ) = Pma (t ), we have G

(2) ≤
(ma+1)(ma+2)

2
≤

(mmax+1)(mmax+2)

2
. By (42), it is

clear that the order,G(1,2)
, for f (1) ◦ f (2) is bounded byG(1) ·G(2) ≤ (mmax + 1)(mmax + 2). Since there

are A such terms, it follows immediately that for f (t ), we have G ≤ A(mmax + 1)(mmax + 2), which

completes the proof. □

D.3 Proof of Proposition 5.3
Proposition (5.3). For any ϵ ∈ (0, 1),

(i) UnderModel Type 1, f Compact satisfies Property 4.1 with δ1 = L
Lϵ , r = Lϵ .

(ii) UnderModel Type 2, f Compact satisfies Property 4.2 with δ2 = 2δ1
√
N and Cβ = 1.

Proof. Without loss of generality, we drop the dependence of k on ηk to decrease notational

overload. Recall that η as defined in (29) has row and column parameters {θ1 · · · θL} and {ρ1 · · · ρN },
which denote shifts in the time index. Let R and D refer to the set of row and column parameters

respectively. Since f = д(φ(t )) where φ : Z → [0, 1] and д is L-Lipschitz, rather than considering

the set of time steps {1, . . . ,T }, it suffices to consider instead the set {д(φ(1)), . . . ,д(φ(T ))} ∈ [0,L].

Because θi is simply an index to a time step, it is sufficient to consider an alternate, compact set of

row parameters, R̄, where θi ∈ R̄ ⊂ [0,L]. Crucially, we highlight that R̄ is independent of L.
From here onwards, the arguments we make follow directly from arguments in [19]. We provide it

here for completeness. For any δ > 0, we first define a partition P (δ ) of R̄ where the following holds:

for any A ∈ P (δ ), whenever θ ,θ
′

are two points such that θ ,θ ′ ∈ A, we have |η(θ , ρ j )−η(θ
′, ρ j )|≤ δ

for all j ∈ [N ].

Due to the Lipschitzness property of the function η (with Lipschitz constant L) and the compact-

ness of [0,xlcm], it can be shown that |P (δ )|≤ xlcmLδ
−1
.

13
To build intuition, consider f (t ) = t 2, in which case f (i + j ) = i2 + j2 + (2i )(j ) := ψ1(i )ρ1(j ) +ψ2(i )ρ2(j ) +ψ3(i )ρ3(j ). Here,

G = 3.
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Let T be a subset of R̄ that is constructed by selecting exactly one element from each partition in

P (δ ), i.e. |T |= |P (δ )|. Let p : [L] → [L] be the mapping from R̄ to T . Therefore, it follows that for
each θ ∈ R̄, we can find p(θ ) ∈ T so that θ and p(θ ) belong to the same partition of P (δ ). LetM(r ) be

the matrix whose (i, j)th element is f (p(θi ), ρ j ). Then by construction ∀ k ,


M (k ) −M(r )





max

≤ δ .

Now, if θi and θ j belong to the same element of P (δ ), then p(θi ) and p(θ j ) are identical. Therefore,
there are at most |P (δ )| distinct rows in M(r ). Let P(θ ) := {p(θi ) : i ∈ [L]} ⊂ {θ1, . . . ,θL}. By
construction, we have that |P(θ )| = |P (δ )|. Choosing δ = LL−ϵ , then |P(θ )| = Lϵ .
Hence Property D.1 is satisfied with δ4 =

L
Lϵ , r4 = Lϵ . By Corollary D.1, we have: under Model

Type 1, Property 4.1 is satisfied with δ1 = δ4 and r = r4; under Model Type 2, Property 4.2 is satisfied

with δ2 = 2δ1
√
N . This completes the proof. □

Corollary (5.3). UnderModel Type 1, let the conditions of Theorem 4.1 hold. Let N = L1+δ for any
δ > 0. Then for some C > 0 and any ϵ ∈ (0, 1) if

T ≥

(
(

1

δerror
)

2

1−ϵ + (

L

δerror
)

1

ϵ

)
2+δ

we haveMSE(
ˆfI , f

LRF
) ≤ δerror.

Proof. By Proposition 5.3, for any ϵ ∈ (0, 1) and some C1,C2,C3, c4 > 0,

MSE( ˆfI , f Compact
) ≤ C1

(
L

√
pLϵ

+

1

√
pL(1−ϵ )/2

)
+C2

(1 − p)

LNp
+C3e

−c4N

We require the r.h.s of the term above to be less than δerror. We have,

C1

(
L

√
pLϵ

+

1

√
pL(1−ϵ )/2

)
+C2

(1 − p)

LNp
+C3e

−c4N

(a)
≤ C

(
L

Lϵ
+

1

L(1−ϵ )/2
+

1

LNp
+ e−c4N

)
(b)
≤ C

(
L

Lϵ
+

1

L(1−ϵ )/2

)
where (a) follows for appropriately defined C > 0 and by absorbing p into the constant; (b) follows

since
1

LN ≤ L
Lϵ , e

−c4N ≤ L
Lϵ for sufficiently large L,N and by redefining C .

Let x = 1 − ϵ . To have
C

Lx /2 ≤ δerror/2, it suffices that L ≥ (
C

δ 2/x
error

). Similarly, we solve
L

L1−x ≤ δ/2

to get L ≥ C(
L

δerror
)

1

1−x . Thus we require L to be

L ≥ C

(
(

1

δerror
)

2

x + (

L

δerror
)

1

1−x

)
(43)

=⇒ T ≥

(
(

1

δerror
)

2

1−ϵ + (

L

δerror
)

1

ϵ

)
2+δ

(44)

□
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Corollary (5.4). UnderModel Type 2, let the conditions of Theorem 4.2 hold. Let N = L1+δ for any
δ > 0. Then for some C > 0 and any ϵ ∈ (0, 1) if

T ≥ C

(
σ 2

δerror −
(
L
Lϵ + δ3

)
2

) 2+δ
δ

we haveMSE(
ˆfF , f

LRF
) ≤ δerror.

Proof. By Proposition 5.3, for any ϵ ∈ (0, 1),

MSE( ˆfF , f Compact
) ≤

1

N − 1

(
(

2L

Lϵ
+ δ3)

2N + 2σ 2r̂
)
.

We require the r.h.s of the term above to be less than δerror. Since
1

N σ
2r̂ ≤ 1

Lδ σ
2
, it suffices that

δerror
(a)
≥ C

((
L

Lϵ
+ δ3

)
2

+

1

Lδ
σ 2

)
=⇒ Lδ

(b)
≥ C

σ 2

δerror −
(
L
Lϵ + δ3

)
2

=⇒ T ≥ C

(
σ 2

δerror −
(
L
Lϵ + δ3

)
2

) 2+δ
δ

where (a) and (b) follow for appropriately defined C > 0. □

Proposition (5.4).

f Harmonic
(t ) =

G∑
д=1

φд(sin
(
2πωдt + ϕ

)
)

where φд is Lд-Lipschitz and ωд is rational, admits a representation as in (6). Let xlcm denote the
fundamental period. Then the Lipschitz constant, L, of f Harmonic

(t ) is bounded by

L ≤ 2π ·max

д∈G
(Lд) ·max

д∈G
(ωд) · xlcm.

Proof. That f Harmonic
has a representation as in (6) is immediate. It remains to show the explicit

dependence of L on the parameters of f Harmonic
. Observe that

f Harmonic
(t ) = f Harmonic

(ψ (t ))

whereψ (t ) = t mod xlcm.
By bounding the derivative of f Harmonic

(t ), it is easy to see that

L ≤ 2π ·max

д∈G
(Lд) ·max

д∈G
(ωд) · xlcm

□
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D.4 Proof of Proposition 5.5

Proposition (5.5). Let
����df Trend(t )dt

���� ≤ C∗t
−α for some α ,C∗ > 0. Then for any ϵ ∈ (0,α ),

(i) UnderModel Type 1, f Trend satisfies Property 4.1 with δ1 = C∗

Lϵ /2 , r = Lϵ/α +
L−Lϵ /α
Lϵ /2

(ii) UnderModel Type 2, f Trend satisfies Property 4.2 with δ2 = 2δ1
√
N and Cβ = 1.

Proof. Without loss of generality, we drop the dependence of k on ηk to decrease notational

overload.

Let f (t ) = f Trend. We construct our mapping p : [L] → [L] in two steps:

Step 1: For j < Lϵ/α , with ϵ ∈ (0,α ), let p(j) = j (i.e. j-th row ofM(r ) be equal to the j-th row of

M (k )
).

Step 2: For rows j ≥ Lϵ/α , the mapping we construct is an adaptation of the argument in [19].

Let R and D refer to the set of row and column parameters of the sub-matrix ofM (k )
corresponding

to its last L − j + 1 rows, {θLϵ /α · · · θL} and {ρ1 · · · ρN } respectively.
Through a straightforward application of the Mean Value Theorem, observing that the deriv-

ative is decreasing in t , and the condition

���df (t )dt

��� ≤ C∗t
−α

, we have that for all θ1,θ2 ∈ R (with

appropriately defined constants)

|η(θ1, ρ j ) − η(θ2, ρ j )| ≤ η′(θ3) · |θ1 − θ2 | (45)

≤ f ′(Lϵ/α ) · |θ1 − θ2 | (46)

≤ C∗(L
ϵ/α

)
−α · |θ1 − θ2 | (47)

≤ C∗L
−ϵ · |θ1 − θ2 |, (48)

where η′ and f ′ are the derivatives with respect to θ and t , respectively, and θ3 ∈ (θ1,θ2).
Define a partition, P (ϵ), of R into continuous intervals of length Lϵ/2. Observe that since θi = i ,

for anyA ∈ P (ϵ), whenever θ ,θ
′

∈ A, we have |θ −θ
′

|≤ Lϵ/2. It follows that |P (ϵ)|= (L−Lϵ/α )/Lϵ/2 =

L1−ϵ/2 − Lϵ (
1

α − 1

2
)
.

Let T be a subset of R that is constructed by selecting exactly one element from each partition

in P (ϵ). That is, |T |= |P (ϵ)|. For each θ ∈ R, let p(θ ) be the corresponding element from the same

partition in T . Therefore, it follows that for each θ ∈ R, we can find p(θ ) ∈ T so that θ and p(θ )
belong to the same partition of P (ϵ).
Hence, we can define the (i, j)-th element ofM(r ) in the following way: (1) for all j < Lϵ/α , let

p(θi ) = θi such thatM (r )
i j = η(θi , ρ j ); (2) for j ≥ Lϵ/α , letM (r )

i j = η(p(θi ), ρ j ). Consequently ∀ k ,


M (k ) −M(r )





max

≤ max

i ∈[L]
|η(θi , ρ j ) − η(p(θi ), ρ j )|

≤ max

i ∈[j≥Lϵ /α ]
|η(θi , ρ j ) − η(p(θi ), ρ j )|

≤ max

i ∈[j≥Lϵ /α ]
|θi − p(θi )|L

−ϵC∗

≤ C∗L
−ϵ/2.

Now, if θi and θ j belong to the same element of P (ϵ), then p(θi ) and p(θ j ) are identical. Therefore,

there are at most |P (ϵ)| distinct rows in the last L−Lϵ/α rows ofM(r ) where |P (ϵ)|= L1−ϵ/2−Lϵ (
1

α − 1

2
)
.

Let P(θ ) := {p(θi ) : i ∈ [L]} ⊂ {θ1, . . . ,θL}. By construction, since ϵ ∈ (0,α ), we have that

|P(θ )| = Lϵ/α + |P (ϵ)| = o(L).
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Hence Property D.1 is satisfied with δ1 =
C∗

Lϵ /2 , r = Lϵ/α +
L−Lϵ /α
Lϵ /2 . By Corollary D.1, we have:

under Model Type 1, Property 4.1 is satisfied with δ1 = δ4 and r = r4; under Model Type 2, Property

4.2 is satisfied with δ2 = 2δ1
√
N .This completes the proof. □

Corollary (5.5). UnderModel Type 1, let the conditions of Theorem 4.1 hold. Let N = L1+δ for any
δ > 0. Then for some C > 0 if

T ≥ C

(
1

δ (2(α+1)/α )error

)
2+δ

we haveMSE(
ˆfI , f

LRF
) ≤ δerror.

Proof. By Proposition 5.5, for any ϵ ∈ (0,α ) and some C1,C2,C3, c4 > 0,

MSE( ˆfI , f Trend) ≤ C1

( C∗
√
pLϵ/2

+

1

√
p(L1−ϵ/α + Lϵ/2)1/2

)
+C2

(1 − p)

LNp
+C3e

−c4N .

We require the r.h.s of the term above to be less than δerror. We have,

C1

( C∗
√
pLϵ/2

+

1

√
p(L1−ϵ/α + Lϵ/2)1/2

)
+C2

(1 − p)

LNp
+C3e

−c4N

(a)
≤ C

(
1

Lϵ/2
+

1

(L1−ϵ/α + Lϵ/2)1/2
+

1

LN
+ e−c4N

)
(b)
≤ C

(
1

Lϵ/2
+

1

(L1−ϵ/α + Lϵ/2)1/2

)
≤ C

(
1

Lϵ/2
+

1

(L1−ϵ/α )1/2

)
where (a) follows for appropriately defined C > 0 and by absorbing p into the constant; (b) follows

since
1

LN ≤ 1

Lϵ /2 , e
−c4N ≤ 1

Lϵ /2 for sufficiently large L,N and by redefining C .

Setting
ϵ
2
=

1−ϵ/α
2

, we get ϵ =
α
α+1 < α , hence satisfying the condition that ϵ ∈ (0,α ) in

Proposition 5.5. Hence, it suffices that δerror ≥ CL
α

2(α+1) =⇒ T ≥ C
(

1

δ
2(α+1)

α
error

)
2+δ

.

□

Corollary (5.6). Under Model Type 2, let the conditions of Theorem 4.2 hold.. Let N = L1+δ for any
δ > 0. Then for some C > 0 and for any ϵ ∈ (0,α ) if

T ≥ C

(
σ 2

δerror −
(

1

Lϵ /2 + δ3
)
2

) 2+δ
δ

we haveMSE(
ˆfF , f

LRF
) ≤ δerror.

Proof. By Proposition 5.5, for any ϵ ∈ (0,α ),

MSE( ˆfF , f Trend) ≤
1

N − 1

(
(

C∗

Lϵ/2
+ δ3)

2N + 2σ 2r̂
)
.

We require the r.h.s of the term above to be less than δerror. Since
1

N σ
2r̂ ≤ 1

Lδ σ
2
, it suffices that

δerror
(a)
≥ C

((
1

Lϵ/2
+ δ3

)
2

+

1

Lδ
σ 2

)
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=⇒ Lδ
(b)
≥ C

σ 2

δerror −
(

1

Lϵ /2 + δ3
)
2

=⇒ T ≥ C

(
σ 2

δerror −
(

1

Lϵ /2 + δ3
)
2

) 2+δ
δ

where (a) and (b) follow for appropriately defined C > 0. □

Proposition (5.6). For t ∈ Z with αb < 1 for b ∈ [B],

f Trend(t ) =
B∑
b=1

γbt
αb

+

Q∑
q=1

log

(
γqt

)
.

admits a representation as in (7).

Proof. The proof is immediate from the definition of f Trend. □

D.5 Proof of Proposition 5.7

Proposition (5.7). Under Model Type 1, f Mixture satisfies Property 4.1 with δ1 =

∑Q
q=1 ρqδq and

r =
∑Q
q=1 rq .

Proof. LetM (1)

д refer to the underlying mean matrix induced by each Xд(t ). Similarly, as defined

in Property 4.1, letMд, (r ) be the low rank matrix associated withM (1)

д . We have

M (1)
=

G∑
д
αдM

(1)

д .

Let us defineM(r ) in the following way,

M(r ) =
G∑
д
αдMд, (r ).

We then have rank(M(r )) ≤
∑G
д rд , and


M (1) −M(r )





max

=






 G∑
д
αдM

(1)

д −
G∑
д
αдMд, (r )







max

≤
G∑
д
αд




M (1)

д −Mд, (r )





max

=

G∑
д
αдδд .

This completes the proof. □
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