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Abstract

We consider model-free reinforcement learning for infinite-horizon discounted
Markov Decision Processes (MDPs) with a continuous state space and unknown
transition kernel, when only a single sample path under an arbitrary policy of
the system is available. We consider the Nearest Neighbor Q-Learning (NNQL)
algorithm to learn the optimal Q function using nearest neighbor regression method.
As the main contribution, we provide tight finite sample analysis of the convergence
rate. In particular, for MDPs with a d-dimensional state space and the discounted
factor � 2 (0, 1), given an arbitrary sample path with “covering time” L, we
establish that the algorithm is guaranteed to output an "-accurate estimate of the
optimal Q-function using eO

�
L/("3(1 � �)7)

�
samples. For instance, for a well-

behaved MDP, the covering time of the sample path under the purely random policy
scales as eO

�
1/"d

�
, so the sample complexity scales as eO

�
1/"d+3

�
. Indeed, we

establish a lower bound that argues that the dependence of e⌦
�
1/"d+2

�
is necessary.

1 Introduction

Markov Decision Processes (MDPs) are natural models for a wide variety of sequential decision-
making problems. It is well-known that the optimal control problem in MDPs can be solved, in
principle, by standard algorithms such as value and policy iterations. These algorithms, however, are
often not directly applicable to many practical MDP problems for several reasons. First, they do not
scale computationally as their complexity grows quickly with the size of the state space and especially
for continuous state space. Second, in problems with complicated dynamics, the transition kernel of
the underlying MDP is often unknown, or an accurate model thereof is lacking. To circumvent these
difficulties, many model-free Reinforcement Learning (RL) algorithms have been proposed, in which
one estimates the relevant quantities of the MDPs (e.g., the value functions or the optimal policies)
from observed data generated by simulating the MDP.

A popular model-free Reinforcement Learning (RL) algorithm is the so called Q-learning [47], which
directly learns the optimal action-value function (or Q function) from the observations of the system
trajectories. A major advantage of Q-learning is that it can be implemented in an online, incremental
fashion, in the sense that Q-learning can be run as data is being sequentially collected from the system
operated/simulated under some policy, and continuously refines its estimates as new observations
become available. The behaviors of standard Q-learning in finite state-action problems have by now
been reasonably understood; in particular, both asymptotic and finite-sample convergence guarantees
have been established [43, 22, 41, 18].

In this paper, we consider the general setting with continuous state spaces. For such problems,
existing algorithms typically make use of a parametric function approximation method, such as a
linear approximation [27], to learn a compact representation of the action-value function. In many of
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the recently popularized applications of Q-learning, much more expressive function approximation
method such as deep neural networks have been utilized. Such approaches have enjoyed recent
empirical success in game playing and robotics problems [38, 29, 14]. Parametric approaches typically
require careful selection of approximation method and parametrization (e.g., the architecture of neural
networks). Further, rigorous convergence guarantees of Q-learning with deep neural networks are
relatively less understood. In comparison, non-parametric approaches are, by design, more flexible
and versatile. However, in the context of model-free RL with continuous state spaces, the convergence
behaviors and finite-sample analysis of non-parametric approaches are less understood.

Summary of results. In this work, we consider a natural combination of the Q-learning with
Kernel-based nearest neighbor regression for continuous state-space MDP problems, denoted as
Nearest-Neighbor based Q-Learning (NNQL). As the main result, we provide finite sample analysis
of NNQL for a single, arbitrary sequence of data for any infinite-horizon discounted-reward MDPs
with continuous state space. In particular, we show that the algorithm outputs an "-accurate (with
respect to supremum norm) estimate of the optimal Q-function with high probability using a number
of observations that depends polynomially on ", the model parameters and the “cover time” of the
sequence of the data or trajectory of the data utilized. For example, if the data was sampled per a
completely random policy, then our generic bound suggests that the number of samples would scale
as eO(1/"d+3) where d is the dimension of the state space. We establish effectively matching lower
bound stating that for any policy to learn optimal Q function within " approximation, the number of
samples required must scale as e⌦(1/"d+2). In that sense, our policy is nearly optimal.

Our analysis consists of viewing our algorithm as a special case of a general biased stochastic
approximation procedure, for which we establish non-asymptotic convergence guarantees. Key to our
analysis is a careful characterization of the bias effect induced by nearest-neighbor approximation
of the population Bellman operator, as well as the statistical estimation error due to the variance of
finite, dependent samples. Specifically, the resulting Bellman nearest neighbor operator allows us
to connect the update rule of NNQL to a class of stochastic approximation algorithms, which have
biased noisy updates. Note that traditional results from stochastic approximation rely on unbiased
updates and asymptotic analysis [35, 43]. A key step in our analysis involves decomposing the update
into two sub-updates, which bears some similarity to the technique used by [22]. Our results make
improvement in characterizing the finite-sample convergence rates of the two sub-updates.

In summary, the salient features of our work are

• Unknown system dynamics: We assume that the transition kernel and reward function of the
MDP is unknown. Consequently, we cannot exactly evaluate the expectation required in standard
dynamic programming algorithms (e.g., value/policy iteration). Instead, we consider a sample-
based approach which learns the optimal value functions/policies by directly observing data
generated by the MDP.

• Single sample path: We are given a single, sequential samples obtained from the MDP operated
under an arbitrary policy. This in particular means that the observations used for learning are
dependent. Existing work often studies the easier settings where samples can be generated at will;
that is, one can sample any number of (independent) transitions from any given state, or reset
the system to any initial state. For example, Parallel Sampling in [23]. We do not assume such
capabilities, but instead deal with the realistic, challenging setting with a single path.

• Online computation: We assume that data arrives sequentially rather than all at once. Estimates
are updated in an online fashion upon observing each new sample. Moreover, as in standard
Q-learning, our approach does not store old data. In particular, our approach differs from other
batch methods, which need to wait for all data to be received before starting computation, and
require multiple passes over the data. Therefore, our approach is space efficient, and hence can
handle the data-rich scenario with a large, increasing number of samples.

• Non-asymptotic, near optimal guarantees: We characterize the finite-sample convergence rate
of our algorithm; that is, how many samples are needed to achieve a given accuracy for estimating
the optimal value function. Our analysis is nearly tight in that we establish a lower bound that
nearly matches our generic upper bound specialized to setting when data is generated per random
policy or more generally any policy with random exploration component to it.

While there is a large and growing literature on Reinforcement Learning for MDPs, to the best of our
knowledge, ours is the first result on Q-learning that simultaneously has all of the above four features.
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Table 1: Summary of relevant work. See Appendix A for details.

Specific work Method Continuous Unknown Single Online Non-asymptotic
state space transition Kernel sample path update guarantees

[10], [36], [37] Finite-state approximation Yes No No Yes Yes

[43], [22], [41] Q-learning No Yes Yes Yes No

[20], [3], [18] Q-learning No Yes Yes Yes Yes

[23] Q-learning No Yes No Yes Yes

[42],[28] Q-learning Yes Yes Yes Yes No

[33], [32] Kernel-based approximation Yes Yes No No No

[19] Value/Policy iteration No Yes No No Yes

[44] Parameterized TD-learning No Yes Yes Yes No

[12] Parameterized TD-learning No Yes No Yes Yes

[8] Parameterized TD-learning No Yes Yes Yes Yes

[9] Non-parametric LP No Yes No No Yes

[30] Fitted value iteration Yes Yes No No Yes

[1] Fitted policy iteration Yes Yes Yes No Yes

Our work Q-learning Yes Yes Yes Yes Yes

We summarize comparison with relevant prior works in Table 1. Detailed discussion can be found in
Appendix A.

2 Setup

In this section, we introduce necessary notations, definitions for the framework of Markov Decision
Processes that will be used throughout the paper. We also precisely define the question of interest.

Notation. For a metric spaceE endowed with metric ⇢, we denote byC(E) the set of all bounded and
measurable functions on E. For each f 2 C(E), let kfk1 := sup

x2E
|f(x)| be the supremum norm,

which turns C(E) into a Banach space B. Let Lip(E,M) denote the set of Lipschitz continuous
functions on E with Lipschitz bound M , i.e.,

Lip(E,M) = {f 2 C(E) | |f(x)� f(y)|  M⇢(x, y), 8x, y 2 E} .

The indicator function is denoted by {·}. For each integer k � 0, let [k] , {1, 2, . . . , k}.

Markov Decision Process. We consider a general setting where an agent interacts with a stochastic
environment. This interaction is modeled as a discrete-time discounted Markov decision process
(MDP). An MDP is described by a five-tuple (X ,A, p, r, �), where X and A are the state space and
action space, respectively. We shall utilize t 2 N to denote time. Let xt 2 X be state at time t. At
time t, the action chosen is denoted as at 2 A. Then the state evolution is Markovian as per some
transition probability kernel with density p (with respect to the Lebesgue measure � on X ). That is,

Pr(xt+1 2 B|xt = x, at = a) =

Z

B

p(y|x, a)�(dy) (1)

for any measurable set B 2 X . The one-stage reward earned at time t is a random variable Rt

with expectation E[Rt|xt = x, at = a] = r(x, a), where r : X ⇥ A ! R is the expected reward
function. Finally, � 2 (0, 1) is the discount factor and the overall reward of interest is

P1
t=0 �

tRt

The goal is to maximize the expected value of this reward. Here we consider a distance function
⇢ : X ⇥ X ! R+ so that (X , ⇢) forms a metric space. For the ease of exposition, we use Z for the
joint state-action space X ⇥A.

We start with the following standard assumptions on the MDP:
Assumption 1 (MDP Regularity). We assume that: (A1.) The continuous state space X is a compact
subset of Rd; (A2.) A is a finite set of cardinality |A|; (A3.) The one-stage reward Rt is non-
negative and uniformly bounded by Rmax, i.e., 0  Rt  Rmax almost surely. For each a 2 A,
r(·, a) 2 Lip(X ,Mr) for someMr > 0. (A4.) The transition probability kernel p satisfies

|p(y|x, a)� p(y|x0, a)|  Wp(y)⇢ (x, x
0) , 8a 2 A, 8x, x0, y 2 X ,

where the function Wp(·) satisfies
R
X Wp(y)�(dy)  Mp.
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The first two assumptions state that the state space is compact and the action space is finite. The third
and forth stipulate that the reward and transition kernel are Lipschitz continuous (as a function of the
current state). Our Lipschitz assumptions are identical to (or less restricted than) those used in the
work of [36], [11], and [17]. In general, this type of Lipschitz continuity assumptions are standard in
the literature on MDPs with continuous state spaces; see, e.g., the work of [15, 16], and [6].

A Markov policy ⇡(·|x) gives the probability of performing action a 2 A given the current state
x. A deterministic policy assigns each state a unique action. The value function for each state x
under policy ⇡, denoted by V ⇡(x), is defined as the expected discounted sum of rewards received
following the policy ⇡ from initial state x, i.e., V ⇡(x) = E⇡ [

P1
t=0 �

tRt|x0 = x]. The action-value
function Q⇡ under policy ⇡ is defined by Q⇡(x, a) = r(x, a) + �

R
y
p(y|x, a)V ⇡(y)�(dy). The

number Q⇡(x, a) is called the Q-value of the pair (x, a), which is the return of initially performing
action a at state s and then following policy ⇡. Define

� , 1/(1� �) and Vmax , �Rmax.

Since all the rewards are bounded by Rmax, it is easy to see that the value function of every policy
is bounded by Vmax [18, 40]. The goal is to find an optimal policy ⇡⇤ that maximizes the value
from any start state. The optimal value function V ⇤is defined as V ⇤(x) = V ⇡

⇤
(x) = sup

⇡
V ⇡(x),

8x 2 X . The optimal action-value function is defined as Q⇤(x, a) = Q⇡
⇤
(x, a) = sup

⇡
Q⇡(x, a).

The Bellman optimality operator F is defined as

(FQ)(x, a) = r(x, a) + �E

max
b2A

Q(x0, b) | x, a
�
= r(x, a) + �

Z

X
p(y|x, a)max

b2A
Q(y, b)�(dy).

It is well known that F is a contraction with factor � on the Banach space C(Z) [7, Chap. 1]. The
optimal action-value function Q⇤ is the unique solution of the Bellman’s equation Q = FQ in
C(X ⇥A). In fact, under our setting, it can be show that Q⇤ is bounded and Lipschitz. This is stated
below and established in Appendix B.
Lemma 1. Under Assumption 1, the function Q⇤ satisfies that kQ⇤k1  Vmax and that Q⇤(·, a) 2
Lip(X ,Mr + �VmaxMp) for each a 2 A.

3 Reinforcement Learning Using Nearest Neighbors

In this section, we present the nearest-neighbor-based reinforcement learning algorithm. The al-
gorithm is based on constructing a finite-state discretization of the original MDP, and combining
Q-learning with nearest neighbor regression to estimate the Q-values over the discretized state space,
which is then interpolated and extended to the original continuous state space. In what follows, we
shall first describe several building blocks for the algorithm in Sections 3.1–3.4, and then summarize
the algorithm in Section 3.5.

3.1 State Space Discretization

Let h > 0 be a pre-specified scalar parameter. Since the state space X is compact, one can find a
finite set Xh , {ci}Nh

i=1 of points in X such that

min
i2[Nh]

⇢(x, ci) < h, 8x 2 X .

The finite grid Xh is called an h-net of X , and its cardinality n ⌘ Nh can be chosen to be the
h-covering number of the metric space (X , ⇢). Define Zh = Xh ⇥ A. Throughout this paper, we
denote by Bi the ball centered at ci with radius h; that is, Bi , {x 2 X : ⇢ (x, ci)  h} .
3.2 Nearest Neighbor Regression

Suppose that we are given estimated Q-values for the finite subset of states Xh = {ci}ni=1, denoted
by q = {q(ci, a), ci 2 Xh, a 2 A}. For each state-action pair (x, a) 2 X ⇥ A, we can predict its
Q-value via a regression method. We focus on nonparametric regression operators that can be written
as nearest neighbors averaging in terms of the data q of the form

(�NNq)(x, a) =
P

n

i=1K(x, ci)q(ci, a), 8x 2 X , a 2 A, (2)

where K(x, ci) � 0 is a weighting kernel function satisfying
P

n

i=1 K(x, ci) = 1, 8x 2 X . Equa-
tion (2) defines the so-called Nearest Neighbor (NN) operator �NN, which maps the space C(Xh⇥A)
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into the set of all bounded function over X ⇥A. Intuitively, in (2) one assesses the Q-value of (x, a)
by looking at the training data where the action a has been applied, and by averaging their values. It
can be easily checked that the operator �NN is non-expansive in the following sense:

k�NNq � �NNq
0k1  kq � q0k1 , 8q, q0 2 C(Xh ⇥A). (3)

This property will be crucially used for establishing our results. K is assumed to satisfy

K(x, y) = 0 if ⇢(x, y) � h, 8x 2 X , y 2 Xh, (4)

where h is the discretization parameter defined in Section 3.1.2 This means that the values of states
located in the neighborhood of x are more influential in the averaging procedure (2). There are many
possible choices for K. In Section C we describe three representative choices that correspond to
k-Nearest Neighbor Regression, Fixed-Radius Near Neighbor Regression and Kernel Regression.

3.3 A Joint Bellman-NN Operator

Now, we define the joint Bellman-NN (Nearest Neighbor) operator. As will become clear subse-
quently, it is this operator that the algorithm aims to approximate, and hence it plays a crucial role in
the subsequent analysis.

For a function q : Zh ! R, we denote by Q̃ , (�NNq) the nearest-neighbor average extension of q
to Z; that is,

Q̃(x, a) = (�NNq)(x, a), 8(x, a) 2 Z.

The joint Bellman-NN operator G on R|Zh| is defined by composing the original Bellman operator F
with the NN operator �NN and then restricting to Zh; that is, for each (ci, a) 2 Zh,

(Gq)(ci, a) , (F�NNq)(ci, a) = (FQ̃)(ci, a) = r(ci, a) + �E

max
b2A

(�NNq)(x
0, b) | ci, a

�
. (5)

It can be shown that G is a contraction operator with modulus � mapping R|Zh| to itself, thus
admitting a unique fixed point, denoted by q⇤

h
; see Appendix E.2.

3.4 Covering Time of Discretized MDP

As detailed in Section 3.5 to follow, our algorithm uses data generated by an abritrary policy ⇡ for
the purpose of learning. The goal of our approach is to estimate the Q-values of every state. For there
to be any hope to learn something about the value of a given state, this state (or its neighbors) must
be visited at least once. Therefore, to study the convergence rate of the algorithm, we need a way to
quantify how often ⇡ samples from different regions of the state-action space Z = X ⇥A.

Following the approach taken by [18] and [3], we introduce the notion of the covering time of MDP
under a policy ⇡. This notion is particularly suitable for our setting as our algorithm is based on
asynchronous Q-learning (that is, we are given a single, sequential trajectory of the MDP, where at
each time step one state-action pair is observed and updated), and the policy ⇡ may be non-stationary.
In our continuous state space setting, the covering time is defined with respect to the discretized space
Zh, as follows:
Definition 1 (Covering time of discretized MDP). For each 1  i  n = Nh and a 2 A, a ball-
action pair (Bi, a) is said to be visited at time t if xt 2 Bi and at = a. The discretized state-action
space Zh is covered by the policy ⇡ if all the ball-action pairs are visited at least once under the
policy ⇡. Define ⌧⇡,h(x, t), the covering time of the MDP under the policy ⇡, as the minimum number
of steps required to visit all ball-action pairs starting from state x 2 X at time-step t � 0. Formally,
⌧⇡,h(x, t) is defined as

min
n
s � 0 : xt=x, 8iNh, a2A, 9ti,a2 [t, t+s], such that xti,a 2Bi and ati,a =a, under ⇡

o
,

with notation that minimum over empty set is1.

We shall assume that there exists a policy ⇡ with bounded expected cover time, which guarantees
that, asymptotically, all the ball-action pairs are visited infinitely many times under the policy ⇡.

2This assumption is not absolutely necessary, but is imposed to simplify subsequent analysis. In general, our
results hold as long asK(x, y) decays sufficiently fast with the distance ⇢(x, y).
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Assumption 2. There exists an integer Lh < 1 such that E[⌧⇡,h(x, t)]  Lh, 8x 2 X , t > 0. Here
the expectation is defined with respect to randomness introduced by Markov kernel of MDP as well
as the policy ⇡.

In general, the covering time can be large in the worst case. In fact, even with a finite state space,
it is easy to find examples where the covering time is exponential in the number of states for every
policy. For instance, consider an MDP with states 1, 2, . . . , N , where at any state i, the chain is reset
to state 1 with probability 1/2 regardless of the action taken. Then, every policy takes exponential
time to reach state N starting from state 1, leading to an exponential covering time.

To avoid the such bad cases, some additional assumptions are needed to ensure that the MDP is
well-behaved. For such MDPs, there are a variety of polices that have a small covering time. Below
we focus on a class of MDPs satisfying a form of the uniform ergodic assumptions, and show that the
standard "-greedy policy (which includes the purely random policy as special case by setting " = 1)
has a small covering time. This is done in the following two Propositions. Proofs can be found in
Appendix D.
Proposition 1. Suppose that the MDP satisfies the following: there exists a probability measure ⌫
on X , a number ' > 0 and an integerm � 1 such that for all x 2 X , all t � 0 and all policies µ,

Prµ (xm+t 2 ·|xt = x) � '⌫(·). (6)

Let ⌫min , mini2[n] ⌫(Bi), where we recall that n ⌘ Nh = |Xh| is the cardinality of the
discretized state space. Then the expected covering time of "-greedy is upper bounded by
Lh = O

⇣
m|A|
"'⌫min

log(n|A|)
⌘
.

Proposition 2. Suppose that the MDP satisfies the following: there exists a probability measure ⌫ on
X , a number ' > 0 and an integer m � 1 such that for all x 2 X , all t � 0, there exists a sequence
of actions â(x) = (â1, . . . , âm) 2 Am,

Pr (xm+t 2 ·|xt = x, at = â1, . . . , at+m�1 = âm) � '⌫(·). (7)

Let ⌫min , mini2[n] ⌫(Bi), where we recall that n ⌘ Nh = |Xh| is the cardinality of the
discretized state space. Then the expected covering time of "-greedy is upper bounded by
Lh = O

⇣
m|A|m+1

"m+1'⌫min
log(n|A|)

⌘
.

3.5 Q-learning using Nearest Neighbor

We describe the nearest-neighbor Q-learning (NNQL) policy. Like Q-learning, it is a model-free
policy for solving MDP. Unlike standard Q-learning, it is (relatively) efficient to implement as it
does not require learning the Q function over entire space X ⇥ A. Instead, we utilize the nearest
neighbor regressed Q function using the learned Q values restricted to Zh. The policy assumes access
to an existing policy ⇡ (which is sometimes called the “exploration policy”, and need not have any
optimality properties) that is used to sample data points for learning.

The pseudo-code of NNQL is described in Policy 1. At each time step t, action at is performed
from state Yt as per the given (potentially non-optimal) policy ⇡, and the next state Yt+1 is generated
according to p(·|Yt, at). Note that the sequence of observed states (Yt) take continuous values in the
state space X .

The policy runs over iteration with each iteration lasting for a number of time steps. Let k denote
iteration count, Tk denote time when iteration k starts for k 2 N. Initially, k = 0, T0 = 0,
and for t 2 [Tk, Tk+1), the policy is in iteration k. The iteration is updated from k to k + 1
when starting with t = Tk, all ball-action (Bi, a) pairs have been visited at least once. That is,
Tk+1 = Tk + ⌧⇡,h(YTk , Tk). In the policy description, the counterNk(ci, a) records how many times
the ball-action pair (Bi, a) has been visited from the beginning of iteration k till the current time t;
that is, Nk(ci, a) =

P
t

s=Tk
{Ys 2 Bi, as = a}. By definition, the iteration k ends at the first time

step for which min(ci,a) Nk(ci, a) > 0.

During each iteration, the policy keeps track of the Q-function over the finite set Zh. Specifically, let
qk denote the approximate Q-values on Zh within iteration k. The policy also maintainsGkqk(ci, at),
which is a biased empirical estimate of the joint Bellman-NN operator G applied to the estimates qk.
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Policy 1 Nearest-Neighbor Q-learning
Input: Exploration policy ⇡, discount factor �, number of steps T , bandwidth parameter h, and
initial state Y0.
Construct discretized state space Xh; initialize t = k = 0, ↵0 = 1, q0 ⌘ 0;
Foreach (ci, a) 2 Zh, set N0(ci, a) = 0; end
repeat

Draw action at ⇠ ⇡(·|Yt) and observe reward Rt; generate the next state Yt+1 ⇠ p(·|Yt, at);
Foreach i such that Yt 2 Bi do

⌘N = 1
Nk(ci,at)+1 ;

if Nk(ci, at) > 0 then

(Gkqk)(ci, at) = (1� ⌘N )(Gkqk)(ci, at) + ⌘N
�
Rt + �maxb2A(�NNqk)(Yt+1, b)

�
;

else (Gkqk)(ci, at) = Rt + �maxb2A(�NNqk)(Yt+1, b);
end

Nk(ci, at) = Nk(ci, at) + 1
end

if min(ci,a)2Zh
Nk(ci, a) > 0 then

Foreach (ci, a) 2 Zh do

qk+1(ci, a) = (1� ↵k)qk(ci, a) + ↵k(Gkqk)(ci, a);
end

k = k + 1;↵k = �

�+k
;

Foreach (ci, a) 2 Zh do Nk(ci, a) = 0; end
end

t = t+ 1;
until t � T ;
return q̂ = qk

At each time step t 2 [Tk, Tk+1) within iteration k, if the current state Yt falls in the ball Bi, then the
corresponding value (Gkqk)(ci, at) is updated as

(Gkqk)(ci, at) = (1� ⌘N )(Gkqk)(ci, at) + ⌘N
⇣
Rt + �max

b2A
(�NNq

k)(Yt+1, b)
⌘
, (8)

where ⌘N = 1
Nk(ci,at)+1 . We notice that the above update rule computes, in an incremental fashion,

an estimate of the joint Bellman-NN operator G applied to the current qk for each discretized state-
action pair (ci, a), using observations Yt that fall into the neighborhoodBi of ci. This nearest-neighbor
approximation causes the estimate to be biased.

At the end of iteration k, i.e., at time step t = Tk+1 � 1, a new qk+1 is generated as follows: for each
(ci, a) 2 Zh,

qk+1(ci, a) = (1� ↵k)q
k(ci, a) + ↵k(G

kqk)(ci, a). (9)

At a high level, this update is similar to standard Q-learning updates — the Q-values are updated
by taking a weighted average of qk, the previous estimate, and Gkqk, an one-step application of
the Bellman operator estimated using newly observed data. There are two main differences from
standard Q-learning: 1) the Q-value of each (ci, a) is estimated using all observations that lie in its
neighborhood — a key ingredient of our approach; 2) we wait until all ball-action pairs are visited to
update their Q-values, all at once.

Given the output q̂ of Policy 1, we obtain an approximate Q-value for each (continuous) state-action
pair (x, a) 2 Z via the nearest-neighbor average operation, i.e., QT

h
(x, a) = (�NNq̂) (x, a); here the

superscript T emphasizes that the algorithm is run for T time steps with a sample size of T .

4 Main Results

As a main result of this paper, we obtain finite-sample analysis of NNQL policy. Specifically, we find
that the NNQL policy converges to an "-accurate estimate of the optimal Q⇤ with time T that has
polynomial dependence on the model parameters. The proof can be found in Appendix E.
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Theorem 1. Suppose that Assumptions 1 and 2 hold. With notation � = 1/(1 � �) and C =
Mr + �VmaxMp, for a given " 2 (0, 4Vmax�), define h⇤ ⌘ h⇤(") = "

4�C . Let Nh⇤ be the h⇤-
covering number of the metric space (X , ⇢). For a universal constant C0 > 0, after at most

T = C0
Lh⇤V 3

max�
4

"3
log

✓
2

�

◆
log

✓
Nh⇤ |A|V 2

max�
4

�"2

◆

steps, with probability at least 1� �, we have
��QT

h⇤ �Q⇤
��
1  ".

The theorem provides sufficient conditions for NNQL to achieve " accuracy (in sup norm) for
estimating the optimal action-value function Q⇤. The conditions involve the bandwidth parameter
h⇤ and the number of time steps T , both of which depend polynomially on the relevant problem
parameters. Here an important parameter is the covering number Nh⇤ : it provides a measure of
the “complexity” of the state space X , replacing the role of the cardinality |X | in the context of
discrete state spaces. For instance, for a unit volume ball in Rd, the corresponding covering number
Nh⇤ scales as O

�
(1/h⇤)d

�
(cf. Proposition 4.2.12 in [46]). We take note of several remarks on the

implications of the theorem.

Sample complexity: The number of time steps T , which also equals the number of samples needed,
scales linearly with the covering time Lh⇤ of the underlying policy ⇡ to sample data for the given
MDP. Note that Lh⇤ depends implicitly on the complexities of the state and action space as measured
by Nh⇤ and |A|. In the best scenario, Lh⇤ , and hence T as well, is linear in Nh⇤ ⇥ |A| (up to
logarithmic factors), in which case we achieve (near) optimal linear sample complexity. The sample
complexity T also depends polynomially on the desired accuracy "�1 and the effective horizon
� = 1/(1� �) of the discounted MDP — optimizing the exponents of the polynomial dependence
remains interesting future work.

Space complexity: The space complexity of NNQL is O(Nh⇤ ⇥ |A|), which is necessary for storing
the values of qk. Note that NNQL is a truly online algorithm, as each data point (Yt, at) is accessed
only once upon observation and then discarded; no storage of them is needed.

Computational complexity: In terms of computational complexity, the algorithm needs to compute
the NN operator �NN and maximization overA in each time step, as well as to update the values of qk
for all ci 2 Xh⇤ and a 2 A in each iteration. Therefore, the worst-case computational complexity per
time step is O(Nh⇤ ⇥ |A|), with an overall complexity of O(T ⇥Nh⇤ ⇥ |A|). The computation can
be potentially sped up by using more efficient data structures and algorithms for finding (approximate)
nearest neighbors, such as k-d trees [5], random projection trees [13], Locality Sensitive Hashing [21]
and boundary trees [26].

Choice of h⇤
: NNQL requires as input a user-specified parameter h, which determines the discretiza-

tion granularity of the state space as well as the bandwidth of the (kernel) nearest neighbor regression.
Theorem 1 provides a desired value h⇤ = "/4�C, where we recall that C is the Lipschitz parameter
of the optimal action-value function Q⇤ (see Lemma 1). Therefore, we need to use a small h⇤ if we
demand a small error ", or if Q⇤ fluctuates a lot with a large C.

4.1 Special Cases and Lower Bounds

Theorem 1, combined with Proposition 1, immediately yield the following bound that quantify the
number of samples required to obtain an "-optimal action-value function with high probability, if the
sample path is generated per the uniformly random policy. The proof is given in Appendix F.
Corollary 1. Suppose that Assumptions 1 and 2 hold, with X = [0, 1]d. Assume that the MDP
satisfies the following: there exists a uniform probability measure ⌫ over X , a number ' > 0 and an
integerm � 1 such that for all x 2 X , all t � 0 and all policies µ, Prµ (xm+t 2 ·|xt = x) � '⌫(·).
After at most

T = 
1

"d+3
log3

✓
1

�"

◆

steps, where  ⌘ (|A|, d,�,m) is a number independent of " and �, we have
��QT

h⇤ �Q⇤
��
1  "

with probability at least 1� �.

Corollary 1 states that the sample complexity of NNQL scales as eO
�

1
"d+3

�
. We will show that this is

effectively necessary by establishing a lower bound on any algorithm under any sampling policy!
The proof of Theorem 2 can be found in Appendix G.
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Theorem 2. For any reinforcement learning algorithm Q̂T and any number � 2 (0, 1), there exists
an MDP problem and some number T� > 0 such that

Pr

��Q̂T �Q⇤��
1 � C

✓
log T

T

◆ 1
2+d

�
� �, for all T � T�,

where C > 0 is a constant. Consequently, for any reinforcement learning algorithm Q̂T and any
sufficiently small " > 0, there exists an MDP problem such that in order to achieve

Pr
h��Q̂T �Q⇤��

1 < "
i
� 1� �,

one must have

T � C 0d

✓
1

"

◆2+d

log

✓
1

"

◆
,

where C 0 > 0 is a constant.

5 Conclusions

In this paper, we considered the reinforcement learning problem for infinite-horizon discounted
MDPs with a continuous state space. We focused on a reinforcement learning algorithm NNQL
that is based on kernelized nearest neighbor regression. We established nearly tight finite-sample
convergence guarantees showing that NNQL can accurately estimate optimal Q function using nearly
optimal number of samples. In particular, our results state that the sample, space and computational
complexities of NNQL scale polynomially (sometimes linearly) with the covering number of the
state space, which is continuous and has uncountably infinite cardinality.

In this work, the sample complexity analysis with respect to the accuracy parameter is nearly optimal.
But its dependence on the other problem parameters is not optimized. This will be an important
direction for future work. It is also interesting to generalize approach to the setting of MDP beyond
infinite horizon discounted problems, such as finite horizon or average-cost problems. Another
possible direction for future work is to combine NNQL with a smart exploration policy, which may
further improve the performance of NNQL. It would also be of much interest to investigate whether
our approach, specifically the idea of using nearest neighbor regression, can be extended to handle
infinite or even continuous action spaces.
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