
This paper is included in the Proceedings of the

13th USENIX Symposium on Operating Systems Design

and Implementation (OSDI ’18).

October 8–10, 2018 • Carlsbad, CA, USA

ISBN 978-1-931971-47-8

Open access to the Proceedings of the

13th USENIX Symposium on Operating Systems

Design and Implementation

is sponsored by USENIX.

Floem: A Programming System for
NIC-Accelerated Network Applications

Phitchaya Mangpo Phothilimthana, University of California, Berkeley; Ming Liu and

Antoine Kaufmann, University of Washington; Simon Peter, The University of Texas at Austin;

Rastislav Bodik and Thomas Anderson, University of Washington

https://www.usenix.org/conference/osdi18/presentation/phothilimthana

Floem: A Programming System for NIC-Accelerated

Network Applications

Phitchaya Mangpo Phothilimthana

University of California, Berkeley

Ming Liu

University of Washington

Antoine Kaufmann

University of Washington

Simon Peter

The University of Texas at Austin

Rastislav Bodik

University of Washington

Thomas Anderson

University of Washington

Abstract
Developing server applications that offload computation

to a NIC accelerator is complex and laborious. De-

velopers have to explore the design space, which in-

cludes semantic changes for different offloading strate-

gies, as well as variations on parallelization, program-

to-resource mapping, and communication strategies for

program components across devices.

We therefore design FLOEM — a language, compiler,

and runtime — for programming NIC-accelerated appli-

cations. FLOEM enables offload design exploration by

providing programming abstractions to assign computa-

tion to hardware resources; control mapping of logical

queues to physical queues; access fields of a packet and

its metadata without manually marshaling a packet; use

a NIC to memoize expensive computation; and interface

with an external application. The compiler infers which

data must be transferred between the CPU and NIC and

generates a complete cache implementation, while the

runtime transparently optimizes DMA throughput. We

use FLOEM to explore NIC-offloading designs of real-

world applications, including a key-value store and a dis-

tributed real-time data analytics system; improve their

throughput by 1.3–3.6× and by 75–96%, respectively,

over a CPU-only implementation.

1 Introduction

Network bandwidth is growing much faster than CPU

performance [5], forcing many data-center applications

to sacrifice application cycles for packet processing [9,

23, 37]. As a result, system developers have started to

offload computation to programmable network interface

controllers (NICs), dramatically improving the perfor-

mance and energy efficiency of many data-center appli-

cations, such as search engines, key-value stores, real-

time data analytics, and intrusion detection [12, 23, 26,

40]. These NICs have a variety of hardware architec-

tures including FPGAs [12, 33, 48], specialized flow

engines [6], and more general-purpose network proces-

sors [3, 32].

However, implementing data-center network applica-

tions in a combined CPU-NIC environment is difficult.

It often requires many design-implement-test iterations

before the accelerated application can outperform its

CPU-only version. These iterations involve non-trivial

changes: programmers may have to move portions of ap-

plication code across the CPU-NIC boundary and manu-

ally refactor the program.

We propose FLOEM, a programming system for

NIC-accelerated applications. Our current prototype

targets a platform with the Cavium LiquidIO [3], a

general-purpose programmable NIC that executes C

code. FLOEM is based on a data-flow language that is

natural for expressing packet processing logic and map-

ping elements (modular program components) onto hard-

ware devices. The language lets developers easily move

an element onto a CPU or a NIC to explore alternative

offloading designs, as well as parallelize program com-

ponents. Application developers can define a FLOEM el-

ement as a Python class that contains a C implementa-

tion of the element. To aid programming productivity,

we provide a library of common elements.

Further examining how developers offload data-center

applications to NICs, we have identified the following

commonly encountered problems, which led us to pro-

pose abstractions and mechanisms amenable to a data-

flow programming model that can solve these problems.

• Different offloading choices require different commu-

nication strategies. We observe that these strategies

can be expressed by a mapping of logical communi-

cation queues to physical queues, so we propose this

mapping as a part of our language.

• Moving computation across the CPU-NIC boundary

may change which parts of a packet must be sent across

the boundary. Marshaling the necessary packet fields

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 663

is tedious and error-prone. Thus, we propose per-

packet state — an abstraction that allows a packet and

its metadata to be accessed anywhere in the program

— while FLOEM automatically transfers only required

packet parts between a NIC and CPU.

• Using an in-network processor to cache application

state or computation is a common pattern for accelerat-

ing data-center applications. However, it is non-trivial

to implement a cache that guarantees the consistency

of data between a CPU and NIC. We propose a caching

construct for memoizing a program region, relieving

programmers from having to implement a complete

cache protocol.

• Developers often want to offload an existing applica-

tion without rewriting the code into a new language.

We let programmers embed C code in elements and

allow a legacy application to interact with FLOEM el-

ements via a simple function call, executing those ele-

ments in the host process of the legacy application.

We demonstrate that without significant programming

effort, FLOEM can help offload parts of real-world ap-

plications — a key-value store and a real-time analytics

system — improving their throughput by 1.3–3.6× and

75–96%, respectively, over a CPU-only configuration.

In summary, this paper makes the following contribu-

tions:

• Identifying challenges in designing of NIC-accelerated

data-center applications (Section 2)

• Introducing programming abstractions to address

these challenges (Sections 3 and 4)

• Developing a programming system that enables ex-

ploration of alternative offloading designs, including

a compiler (Section 5) and a runtime (Section 6) for

efficient data transfer between a CPU and NIC

2 Design Goals and Rationale

We design FLOEM to help programmers explore how

to offload their server network applications to a NIC.

The applications that benefit from FLOEM have compu-

tations that may be more efficient to run on the NIC than

on the CPU because of the NIC’s hardware-accelerated

functions, parallelism, or reduced latency when eliminat-

ing the CPU from fast-path processing. These computa-

tions include packet filtering (e.g., format validation and

classification), packet transformation (e.g., serialization,

compression, and encryption), packet steering (e.g., load

balancing to CPU cores), packet generation, and caching

of application state. This list is not exhaustive. Ulti-

mately, we would like FLOEM to help developers dis-

cover new ways to accelerate their applications.

The main challenge when designing programming ab-

stractions is to realize a small number of constructs that

let programmers express a large variety of implemen-

tation choices. This requires an understanding of com-

mon challenges within the application domain. We build

FLOEM to meet the following design goals.

Goal 1: Expressing Packet Processing

As described above, computations suitable for NIC of-

floading are largely packet processing. Programming ab-

stractions and systems for packet processing have long

been studied, and the Click modular router [34] is widely

used for this task. We adopt its data-flow model to ease

the development of packet processing logic (Section 3).

Goal 2: Exploring Offload Designs

A data-flow model is suitable for mapping computations

to desired hardware devices, as we have seen with many

Click extensions that support offloading [24, 27, 46].

Similarly, FLOEM programmers implement functionality

once, as a data-flow program, after which they can use

code annotations to assign elements to desired devices

and to parallelize the program. However, trivially adopt-

ing a data-flow model is insufficient to meet this design

goal. By inspecting the design of a key-value store and

a TCP stack offloaded with FlexNIC [23], we discover

several challenges that shape the design of our language.

Logical-to-physical queue mapping (Section 4.1).

One major part of designing an offloading strategy is

managing the transfer of data between the host and ac-

celerator. Various offloading strategies require different

communication strategies, such as how to steer packets,

how to share communication resources among different

types of messages, and whether to impose an order of

messages over a communication channel.

By examining hand-optimized offloads, we find that

developers typically express communication in terms of

logical queues and then manually implement them us-

ing the provided hardware communication mechanisms.

A logical queue handles messages sent from one element

to another, while a hardware communication channel im-

plements one physical queue. As part of an offload im-

plementation, developers have to make various mapping

choices among logical and physical queues. The right

mapping depends on the workload and hardware config-

uration and is typically realized via trial-and-error.

To aid this task, we design a queue construct with an

explicit logical-to-physical queue mapping that can be

controlled via parameters and by changing element con-

nections. Existing frameworks [24, 27, 46] do not sup-

port this mapping. To control the number of physical

664 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

queues in these frameworks, programmers have to ex-

plicitly: (1) create more logical queues by demultiplex-

ing the flow into multiple branches and making more el-

ements and connections, or (2) merge logical queues by

multiplexing multiple branches into one.

Per-packet state (Section 4.2). In a well-optimized

program, developers meticulously construct a message

by copying only the necessary parts of a packet to send

between a CPU and NIC; this minimizes the amount of

data transferred over PCIe. When developers move com-

putation between the CPU and NIC, they may need to re-

think which fields must be sent, slowing the exploration

of alternative offloading designs.

Nevertheless, no existing system performs this opti-

mization automatically. ClickNP [27] sends an entire

packet, while NBA [24] and Snap [46] rely on develop-

ers to annotate each element with a packet’s region of

interest, specified as numeric offsets in a packet buffer.

We design FLOEM to automatically infer what data to

send across the CPU-NIC boundary and offer the per-

packet state abstraction as if an entire packet could be ac-

cessed anywhere in the program. This abstraction resem-

bles P4’s per-packet metadata [10] and RPC IDLs (e.g.,

XDR [14] and Google’s protobuf [18]). However, P4 al-

lows per-packet metadata to be carried across multiple

processing pipelines only within a single device, while

RPC IDLs generate marshaling code based on interface

descriptions, rather than automatically inferring.

Caching construct (Section 4.3). Caching application

state or memoizing computation in an in-network pro-

cessor is a common strategy to accelerate server applica-

tions [15, 22, 26, 30]. While the abstractions we have so

far are sufficient to express this strategy, implementing a

cache protocol still requires a significant effort to guar-

antee both data consistency and high performance when

messages between a CPU and NIC may arrive out-of-

order. Thus, we introduce a caching construct, a general

abstraction for caching that integrates well with the data-

flow model. This construct provides a full cache proto-

col that maintains data consistency between the CPU and

NIC. Unlike FLOEM, existing systems support caching

only of flow state [6, 27] — which typically does not re-

quire maintaining consistency between the CPU and NIC

— but not caching of application state.

Goal 3: Integrating with Existing Applica-

tions

Prior frameworks were designed exclusively to imple-

ment network functions and packet processing [13, 16,

24, 27, 34, 36, 46], where computation is mostly state-

less and simpler than in our target domain of server ap-

plications. While parts of typical server applications can

be built by composing pre-defined elements, many parts

cannot. In our target domain, developers often want

to offload an application by reusing existing application

code instead of writing code from scratch. Besides port-

ing existing applications, some developers may prefer to

implement most of their applications in C because a data-

flow programming model may not be ideal for the full

implementation of complex applications.

FLOEM lets developers combine custom and stock el-

ements, embed C code in data-flow elements, and inte-

grate a FLOEM program with an external program. As a

result, developers can port only program parts that may

benefit from offloading into the data-flow model. The

impedance mismatch between the data-flow model and

the external program’s model (e.g., event-driven or im-

perative) raises the issue of interoperability. Our solution

builds on the queue construct to decouple the internal

part from the interface part, which appears to the external

program as a function (Section 4.4). The external pro-

gram can execute the function using its own thread to (1)

retrieve a message from the queue and process it through

elements in the interface part, or (2) process a message

through the interface part and push it to the queue.

3 Core Abstractions

We use a key-value store application as our running ex-

ample. Figure 1 displays several offloading designs for

the applicaton: CPU-only (Figure 1a), split CPU-NIC

(Figure 1b), and NIC as cache (Figure 1c). Figure 1d

illustrates how to create an interface that an external pro-

gram can use to interact with FLOEM. We show how

to implement these offloads using our programming ab-

stractions in this and the next sections.

Elements. FLOEM programs are composed of ele-

ments. Upon receiving inputs from all its input ports, an

element processes the inputs and emits outputs to its out-

put ports. The listing below illustrates how to create the

classify element in our key-value store example, which

classifies incoming requests by type (GET or SET).

class Classify(Element): # Define an element class

def configure(self):

self.inp = Input(pointer(kvs_message))

self.get = Output(pointer(kvs_message))

self.set = Output(pointer(kvs_message))

def impl(self):

self.run_c(r’’’ // C code

kvs_message *p = inp();

uint8_t cmd = p->mcr.request.opcode;

output switch { // switch --> emit one output port

case (cmd == PROTOCOL_BINARY_CMD_GET): get(p);

case (cmd == PROTOCOL_BINARY_CMD_SET): set(p);

}

’’’)

classify = Classify () # Instantiate an element

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 665

1 Q1 = Queue(channel=2, inst =3)

2 Q2 = Queue(channel=2, inst =3)

3

4 class P1(Segment):

5 def impl(self):

6 from_net >> hash >> queue_id >> classify

7 classify.get >> Q1.enq[0] # channel 0

8 classify.set >> create_item >> Q1.enq[1] # chnl 1

9

10 class P2(Segment):

11 def impl(self):

12 self.core_id >> Q1.qid # use core id as queue id

13 Q1.deq[0] >> hasht_get >> Q2.enq[0]

14 Q1.deq[1] >> hasht_put >> Q2.enq[1]

15

16 class P3(Segment):

17 def impl(self):

18 scheduler >> Q2.qid # scheduler produces queue id

19 Q2.deq[0] >> get_resp >> to_net

20 Q2.deq[1] >> set_resp >> to_net

21

22 P1(device=NIC , cores =[0 ,1]) # run on core id 0,1

23 P2(device=CPU , cores =[0,1,2])

24 P3(device=NIC , cores =[2 ,3])

Figure 2: FLOEM program implementing a sharded key-

value store with the CPU-NIC split strategy of Figure 1b

4.1 Logical-to-Physical Queue Mapping

To achieve correctness and maximize performance,

FLOEM gives programmers control over how the

compiler instantiates logical queues for a par-

ticular offloading strategy. The queue construct

Queue(channel=n, inst=m) represents n logical queues

(n channels) using m physical queues (m instances). For

example, Q1 on line 1 of Figure 2 represents two logical

queues — displayed as red channels in Figure 1b —

using three physical queues. Different mappings of log-

ical to physical queues lead to different communication

strategies, as elaborated below.

Packet steering. Developers can easily implement

packet steering by creating a queue with multiple physi-

cal instances. For example, in the split CPU-NIC version

of the key-value store (Figure 1b), we want to shard the

key-value store so that different CPU threads can han-

dle different subsets of keys to avoid lock contention and

CPU cache misses. As a result, we want to represent

queue Q1 by multiple physical queues, with each CPU

thread having a dedicated physical queue to handle re-

quests for its shard. The NIC then steers a packet to the

correct physical queue based on its key. FlexNIC [23]

shows that such key-based steering improves throughput

of the key-value store application by 30–45%.

To implement this strategy, we create Q1 with multiple

physical queues (line 1 in Figure 2). Steering a packet

is controlled by assigning the target queue instance ID

to the qid field of per-packet state in the C code of any

element that precedes the queue. In this example, we set

state.qid = hash(pkt.key) % 3, where state refers to

per-packet state.

Client NIC thread CPU thread

set (k1, v1)

confirm
k1 set k1

set (k2, v2)

confirm
k2 set k2

evict (k1,v1)

set k1

get k1

get k1

miss

miss
no k1

no k1

Figure 3: Inconsistency of a write-back cache if mes-

sages from NIC to CPU are reordered

Resource sharing. Developers may want to map mul-

tiple logical queues to the same physical queue for re-

source sharing, or vice versa for resource isolation. For

example, they may want to consolidate infrequently used

logical queues into one physical queue to obtain a larger

batch of messages per PCIe transfer. In the sharded key-

value store, we want to use the same physical queue to

transport both the GET and SET requests of one shard

so that the receiver’s side processes these requests at the

same rate as the sender’s. To implement this, we use Q1 to

represent two logical queues (line 1 in Figure 2): one for

GET and one for SET. Different degrees of sharing can

vary application performance by up to 16% (Section 7.2).

Packet ordering. For correctness, developers may

want to preserve the order of packets being processed

from one device to another. For example, an alternative

way to offload the key-value store is to use the NIC as

a key-value cache, only forwarding misses to the CPU.

To ensure consistency of the write-back cache, we must

enforce that the CPU handles evictions and misses of the

same key in the same order as the cache. Figure 3 shows

an inconsistent outcome when an eviction and a miss are

reordered. To avoid this problem, developers can map

logical queues for evictions and misses to the same phys-

ical queue, ensuring in-order delivery.

The ability to freely map logical to physical queues

lets programmers express different communication

strategies with minimal effort in a declarative fashion. A

queue can also be parameterized by whether its enqueu-

ing process is lossless or lossy, where a lossless queue

is blocking. Note that programmers are responsible for

correctly handling multiple blocking queues.

4.2 Per-Packet State

FLOEM provides per-packet state, an abstraction that al-

lows access to a packet and its metadata from any el-

ement without explicitly passing the state. To use this

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 667

abstraction, programmers define its format and refer to

it using the keyword state. For our key-value store, we

define the format of the per-packet state as follows:

class MyState(State): # define fields in a state

hash = Field(uint32_t)

pkt = Field(pointer(kvs_message))

key = Field(pointer(void), size=’state.pkt ->keylen ’)

The provided element from_net creates a per-packet state

and stores a packet pointer to state.pkt so that sub-

sequent elements can access the packet fields, such as

state.pkt->keylen. The element hash computes the hash

value of a packet’s key and stores it in state.hash, which

is used later by element hasht_get. To handle a variable-

size field, FLOEM requires programmers to specify its

size, as with the key field above.

4.3 Caching Construct

With only minimal changes to a program, FLOEM of-

fers developers a high-level caching construct for explor-

ing caching on the NIC and storing outputs of expensive

computation to be used in the future. First, program-

mers instantiate the caching construct Cache to create

an instance of a cache storage and elements get_start,

get_end, set_start, and set_end. Programmers then in-

sert get_start right before the get query begins, and

get_end right after the get query ends; a get query is

computation we want to memoize. Programmers must

also specify what to store as a key (input) and a value

(output) in the cache; this can be done by assigning

state.key and state.keylen (key and keylen fields of

per-packet state) before the element get_start, and as-

signing state.val and state.vallen before get_end. If

the application has a corresponding set query, elements

set_start and set_end must be inserted, and those fields

of the per-packet state must be assigned accordingly for

the set query; a set query mutates application state and

must be executed when a cache eviction occurs. Finally,

programmers can use parameters to configure the cache

with the desired table size, cache policy (either write-

through or write-back), and a write-miss policy (either

write-allocate or no-write-allocate).

For our key-value store example, we can use the NIC

to cache outputs from hash table get operations by just

inserting the caching elements, as shown in Figure 1c.

Notice that queues Q1 and Q2 are parts of the expensive

queries (between get_start and get_end and between

set_start and set_end) that can be avoided if outputs

are in the cache.

Requirements. The get and set query regions cannot

contain any callable segment (see Section 4.4). Elements

get_start, get_end, set_start, and set_end must be on

the same device. Paths between get_start and get_end,

and between set_start and set_end, must pass through

the same set of queues (e.g., Figure 1c) to ensure the in-

order delivery of misses and evictions of the same key.

Multiple caches can be used as long as cached regions

are not overlapped. The compiler returns an error if a

program violates these requirements.

4.4 Interfacing with External Code

To help developers offload parts of existing programs

to run on a NIC, we let them: (1) embed C code in

elements, (2) implement elements that call external C

functions available in linkable object files, and (3) ex-

pose segments of FLOEM elements as functions callable

from any C program. The first mechanism is the stan-

dard way to implement an element. The second simply

links FLOEM-generated C code with object files. For the

last mechanism, we introduce a callable segment, which

contains elements between a queue and an endpoint, or

vice versa. An endpoint element may send/receive a

value to/from an external program through its output/in-

put port. A callable segment is exposed as a function

that can be called by an external program to execute the

elements in a segment.

In Figure 1d, we implement simple computation, such

as hashing and response packet construction, in FLOEM,

but we leave complex functionality, including the hash

table and item allocation, in an external C program. The

external program interacts with the FLOEM program to

retrieve a packet, send a get response, and send a set re-

sponse via function obtain_pkt, get_send, and set_send,

respectively. The following listing defines the function

obtain_pkt using a callable segment. This function takes

a physical queue ID as input, pulls the next entry from the

queue with the given ID, executes element retrieve_pkt

on the entry, and returns the output from retrieve_pkt as

the function’s return value.

class ObtainPkt(CallableSegment):

def configure(self):

self.inp = Input(int) # argument is int

self.out = Output(q_entry) # return value is q_entry

def impl(self):

self.inp >> Q1.qid

Q1.deq >> retrieve_pkt >> self.out

ObtainPkt(name=’obtain_pkt ’)

The external program running on the CPU calls

obtain_pkt to retrieve a packet that has been processed

by element hash on the NIC and pushed into queue Q1.

5 The FLOEM Compiler

The FLOEM compiler contains three primary compo-

nents that: (1) translate a data-flow program with el-

ements into C programs, (2) infer minimal data trans-

fers across queues, and (3) expand the high-level caching

construct into primitive elements, as depicted in Figure 4.

668 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

NIC thread Entry on NIC Runtime Controller
PCIe

(status
flag)

(state)

st = reading DMA readinvalid

reading

read completeif NIC own

st = validvalid

access entry

entry

access entry

NULL

access done

CPU own

NIC own

CPU own

local

change
if CPU own

st = modifiedmodified DMA write

st = writingwriting

write complete
st = invalidinvalid

Figure 7: Transitions of a queue entry’s status by a NIC

worker thread and a NIC runtime manager thread

chronous DMA read transitions an entry from invalid to

reading state. Once the read completes, and the entry is

NIC owned (indicated by the status flag), the entry tran-

sitions to valid state. It may transition back to invalid

if it is still CPU owned, for example, when the NIC at-

tempts to dequeue an entry that the CPU has not finished

enqueuing. The runtime uses the status checking func-

tions provided by the queue implementation to check an

entry’s status flag. The program running on the NIC can

access only valid entries; function access_entry returns

the pointer to an entry if it is in valid state; otherwise, it

returns NULL.

An entry transitions from valid to modified once the

queue implementation calls function access_done to in-

dicate that it is finished accessing that entry. An asyn-

chronous DMA write then transitions the entry to invalid

state, based on the assumption that the CPU side will

eventually modify it, and the NIC must read it from the

CPU. This completes a typical cycle of states through

which an entry passes.

Note that the CPU side does not need this sync layer or

track these states because, unlike the NIC, it does not

issue DMA operations.

6.3 I/O Batching

In the actual implementation, we do not track the state of

individual queue entries due to high overhead. Instead,

we use five pointers to divide a circular queue buffer into

five portions with the five states. When a pointer ad-

vances, we effectively change the states of a batch of en-

tries that the pointer has moved past. The runtime has a

dedicated routine to advance each pointer, and executes

these routines in round-robin fashion, overlapping DMA

read/write routines with other routines. To achieve DMA

batching, the DMA read routine issues a DMA read for

the next batch of entries instead of a single entry, as does

the DMA write routine. We use a configurable number

of dedicated NIC cores (manager threads) to execute the

runtime. Each core manages a disjoint subset of queues.

More details about our queue implementation and

queue synchronization layer beyond this section can be

found in Section 3.6 of the first author’s thesis [38].

7 Evaluation

We ran experiments on two small-scale clusters to eval-

uate the benefit of offloading on servers with different

generations of CPUs: 6-core Intel X5650 in our West-

mere cluster, and 12-core Intel E5-2680 v3 in our Sandy

Bridge cluster (more powerful). Each cluster had four

servers; two were equipped with Cavium LiquidIO NICs,

and the others had Intel X710 NICs. All NICs had two

10Gbps ports.

We evaluated CPU-only implementations on the

servers with the Intel X710 NICs, using DPDK [4] to

send and receive packets bypassing the OS networking

stack to minimize overheads. We used the servers with

the Cavium LiquidIO NICs to evaluate implementations

with NIC offloading. The Cavium LiquidIO has a 12-

core 1.20GHz cnMIPS64 processor, a set of on-chip/off-

chip accelerators (e.g., encryption/decryption engines),

and 4GB of on-board memory.

7.1 Programming Abstraction

We implemented in FLOEM two complex applications

(key-value store and real-time data analytics) and three

less complex network functions (encryption, flow classi-

fication, and network sequencer).

Hypothesis 1 FLOEM lets programmers easily explore

offload strategies to improve application performance.

The main purpose of this experiment is to demonstrate

that FLOEM makes it easier to explore alternative of-

floading designs, not to show when or how one should

or should not offload an application to a NIC.

For the complex applications, we started with a CPU-

only solution as a baseline by porting parts of an existing

C implementation into FLOEM. Then, we used FLOEM

to obtain a simple partition of the application between

the CPU and NIC for the first offload design. In both case

studies, we found that the first offloading attempt was un-

successful because an application’s actual performance

can greatly differ from a conceptual estimate. However,

we used FLOEM to redesign the offload strategy to obtain

a more intelligent and higher performing solution, with

minimal code changes, and achieved 1.3–3.6× higher

throughput than the CPU-only version.

For the less complex workloads, FLOEM let us quickly

determine whether we should dedicate a CPU core to

handle the workload or just use the NIC and save

CPU cycles for other applications. By merely chang-

ing FLOEM’s device mapping parameter, we found that

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 671

it was reasonable to offload encryption and flow classifi-

cation to the NIC, but that the network sequencer should

be run on the CPU. The rest of this section describes the

applications in our experiment in greater detail.

Case Study: Key-Value Store

In this case study, we used one server to run the key-

value store and another to run a client generating work-

load, communicating via UDP. The workload consisted

of 100,000 key-value pairs of 32-byte keys and 64-byte

values, with the Zipf distribution (s = 0.9) of 90% GET

requests and 10% SET requests, the same workload used

in FlexNIC [23]. We used a single CPU core with a NIC

offload (potentially with multiple NIC cores); this setup

was reasonable since other CPU cores may be used to ex-

ecute other applications simultaneously. Figure 8 shows

the measured throughput of different offloading strate-

gies, and Table 1 summarizes the implementation effort.

CPU-only (Figure 1a): We ported an existing C im-

plementation, which runs on a CPU using DPDK, into

FLOEM except for the garbage collector of freed key-

value items. This effort involved converting the origi-

nal control-flow logic into the data-flow logic, replacing

538 lines of code with 334 lines. The code reduction

came from using reusable elements (e.g., from_net and

to_net), so we did not have to set up DPDK manually.

Split CPU-NIC (Figure 1b): We tried a simple

CPU-NIC partition, following the offloading design of

FlexKVS [23], by modifying 296 lines of the CPU-only

version; this offload strategy was carefully designed to

minimize computational cycles on a CPU. It required

many changes because the NIC (create_item element)

creates key-value items that reside in CPU memory. Un-

expectedly, this offload strategy lowered performance

(the second bar). Profiling the application revealed a

major bottleneck in the element that prepares a GET re-

sponse on the NIC. The element issued a blocking DMA

read to retrieve the item’s content from host memory.

This DMA read was not part of queue Q2 because that

queue sent only the pointer to the item, not the item it-

self. Therefore, the runtime could not manage this DMA

read; as a result, this strategy suffered from this addi-

tional DMA cost.

NIC caching (Figure 1c): We then used FLOEM to

explore a completely different offload design. Since the

Cavium NIC has a large amount of local memory, we

could cache a signification portion of the key-value store

on the NIC. This offload design, previously explored,

was shown to have high performance [26]. Therefore, we

modified the CPU-only version by inserting the caching

construct (43 lines of code) as well as creating segments

and inserting queues (62 lines of code). For a baseline

comparison, code relevant to communication on the CPU

 0

 1

 2

 3

 4

 5

 6

 7

Westmere Sandy Bridge

T
h
ro

u
g
h
p
u
t

p
e
r

C
P
U

 c
o
re

 (
G

b
it

s
/s

)

CPU-only
Split CPU-NIC
cache-WT-#2
cache-WB-#1
cache-WB-#2

cache-WB-#3
cache-WB-#4
cache-WB-#5
cache-WB-#6

Figure 8: Throughput per CPU core of different imple-

mentations of the key-value store. WB = write-back, WT

= write-through. #N in “cache-WB-#N” is the configu-

ration number. Table 2 shows the cache sizes of the dif-

ferent configurations and their resulting hit rates.

Version Effort Details

(obtained from) (loc)

Existing 1708 Hand-written C program

CPU-only replace 538 Refactor C program into

(Existing) with 334 FLOEM elements.

Split CPU-NIC add 296 Create queues.

(CPU-only) NIC remotely allocates

items on CPU memory.

Caching add 43 Create a cache. Assign

(CPU-only) key, keylen, val, vallen.

NIC caching add 62 Create queues and

(Caching) segments.

Table 1: Effort to implement key-value store. The last

column describes specific modification details other than

creating, modifying, and rewiring elements. As a base-

line, code relevant to communication on the CPU side

alone was 240 lines in a manual C implementation.

side alone was already at 240 lines in a manually-written

C implementation of FlexKVS with a software NIC em-

ulation. This translated to fewer than 15 lines of code in

FLOEM. These numbers show that implementing a NIC-

offload application without FLOEM requires significantly

more effort than with FLOEM.

Regarding performance, the third bar in Figure 8 re-

ports the throughput when using a write-through cache

with 215 buckets and five entries per bucket, resulting

in a 90.3% hit rate. According to the result, the write-

through cache did not provide any benefit over the CPU-

only design, even when the cache hit rate was quite high.

Therefore, we configured the caching construct to use a

write-back policy (by changing the cache policy parame-

ter) because write-back generally yields higher through-

put than write-through. The remaining bars show the

performance when using a write-back cache with differ-

ent cache sizes, resulting in the different hit rates shown

672 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Config. #1 #2 #3 #4 #5 #6 #2 (WT)

of buckets 215 215 215 215 214 214 215

of entries ∞ 5 2 1 1 1 5

hit rate (%) 100 97.2 88.4 75.3 65.0 55.2 90.3

Table 2: The sizes of the cache (# of buckets and # of

entries per bucket) on the NIC and the resulting cache hit

rates when using the cache for the key-value store. All

columns report the hit rates when using write-back policy

except the last column for write-through. ∞ entries mean

a linked list.

in Table 2. This offloading strategy improved through-

put over the CPU-only design by 2.8–3.6× on Westmere

and 28–60% on Sandy Bridge when the hit rate exceeded

88% (configuration #1–3).

Notice that at high cache hit rates, the throughput for

this offload strategy was almost identical on Westmere

and Sandy Bridge regardless of the CPU technology. The

NIC essentially boosted performance on the Westmere

server to be on par with the Sandy Bridge one. In other

words, an effective NIC offload reduced the workload’s

dependency on CPU processing speed.

Case Study: Distributed Real-Time Data Analytics

Distributed real-time analytics is a widely-used applica-

tion for analyzing frequently changing datasets. Apache

Storm [1], a popular framework built for this task, em-

ploys multiple types of workers. Spout workers emit tu-

ples from a data source; other workers consume tuples

and may emit more tuples. A worker thread executes one

worker. De-multiplexing threads route incoming tuples

from the network to local workers. Multiplexing threads

route tuples from local workers to other servers and per-

form simple flow control. Our specific workload ranked

the top n users from a stream of Twitter tweets. In this

case study, we optimized for throughput per CPU core.

Figure 9 and Table 3 summarize the throughput and im-

plementation effort of different strategies, respectively.

CPU-only: We ported demultiplexing, multiplex-

ing, and DCCP flow-control from FlexStorm [23] into

FLOEM but kept the original implementation of the

workers as an external program. We used callable seg-

ments (Section 4.4) to define functions inqueue_get and

outqueue_put for workers (in the external program) to

obtain a task from the demultiplexer and send a task

to the multiplexer (in FLOEM). This porting effort in-

volved replacing 1,192 lines of code with only 350 lines.

The code reduction here was much higher than in the

key-value store application because FlexStorm’s original

implementation required many communication queues,

which were replaced by FLOEM queues. The best CPU-

only configuration that achieved the highest throughput

per core used three cores for three workers (one spout,

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

Westmere Sandy Bridge

T
h
ro

u
g
h
p
u
t

p
e
r

C
P
U

 c
o
re

 (
G

b
it

s
/s

) CPU-only
Spilt CPU-NIC

Redesigned CPU-NIC

Figure 9: Throughput per CPU core of different Storm

implementations

Version Effort Details

(obtained from) (loc)

Existing 2935 Hand-written C program

CPU-only replace 1192 Refactor C program into

(Existing) with 350 FLOEMelements.

Split CPU-NIC modify 1 Change device parameter.

(CPU-only)

Redesigned add 23 Create bypass queues.

(Split CPU-NIC)

Table 3: Effort to implement Storm. The last column de-

scribes specific modification details other than creating,

modifying, and rewiring elements.

one counter, and one ranker), one core for demultiplex-

ing, and two cores for multiplexing.

Split CPU-NIC: As suggested in FlexNIC, we of-

floaded (de-)multiplexing and flow control to the NIC, by

changing the device parameter (one line of code change).

This version, however, lowered throughput slightly com-

pared to the CPU-only version.

Redesigned CPU-NIC: The split CPU-NIC version

can be optimized further. A worker can send its output

tuple to another local worker or a remote worker over

the network. For the former case, a worker sends a tuple

to the multiplexer on the NIC, which in turn forwards it

to the target worker on the CPU. Notice that this CPU-

NIC-CPU round-trip is unnecessary. To eliminate this

communication, we created bypass queues for workers

to send tuples to other local workers without involving

the multiplexer. With this slight modification (23 lines of

code), we achieved 96% and 75% higher throughput than

the CPU-only design on the Westmere and Sandy Bridge

cluster, respectively.

Other Applications

The following three applications are common network

function tasks. Because of their simplicity, we did not

attempt to partition them across the CPU and NIC. Fig-

ure 10 reports throughput when using one CPU core on a

Sandy Bridge server or offloading everything to the Cav-

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 673

 0

 2

 4

 6

 8

 10

AES Flow Seq

To
ta

l
T
h
ro

u
g
h
p
u
t

(G
b
it

s
/s

)

CPU-AES-NI
CPU
NIC

Figure 10: Throughput of AES encryption, flow classifi-

cation, and network sequencer running on one CPU core

and the LiquidIO NIC. ‘CPU-AES-NI’ uses AES-NI.

ium NIC. In our experiment, we used a packet size of

1024 bytes for encryption and network sequencer, and

80 bytes for flow classification.

Encryption is a compute-intensive stateless task, used

for Internet Protocol Security. In particular, we imple-

mented AES-CBC-128. We wrote two CPU versions: (1)

using Intel Advanced Encryption Standard New Instruc-

tions (AES-NI), and (2) without AES-NI, which is avail-

able in only some processors. NIC Offloading improved

throughput by 2.5× and 17.5× with and without AES-NI

on CPU, respectively. Using AES-NI improved perfor-

mance on the CPU but to a lesser degree than utilizing all

encryption co-processors on the NIC. This result would

be difficult to predict without an empirical test.

Flow classification is a stateful task that tracks flow

statistics. We categorized flows using the header 5-

tuple and used a probabilistic data structure (a count-min

sketch) to track the number of bytes per flow. This appli-

cation ran slightly faster on the NIC. Therefore, it seems

reasonable to offload this task to the NIC if we want to

spare CPU cycles for other applications.

Network sequencer orders packets based on prede-

fined rules. It performs simple computation and main-

tains limited in-network state. This function has been

used to accelerate distributed system consensus [29] and

concurrency control [28]. Our network sequencer was

82% faster on the CPU core than on the NIC. Applica-

tion throughput did not scale with the number of cores

because of the group lock’s contention; the number of

locks acquired by each packet was 5 out of 10 on average

in our synthetic workload, making this task inherently se-

quential. Therefore, using one fast CPU core yielded the

best performance. We also tried running this program us-

ing multiple CPU cores, but throughput stayed the same

as we increased the number of cores. On the NIC, using

three cores offered the highest performance.

In summary, even for simple applications, it is not

obvious whether offloading to the NIC improves or de-

grades performance. Using FLOEM lets us answer these

questions quickly and precisely by simply changing the

device parameter of the computation segment to either

CPU or NIC. Comparing cost-performance or power-

performance is beyond the scope of this paper. Never-

theless, one can use FLOEM to experiment with different

configurations for a specific workload to optimize for a

particular performance objective.

7.2 Logical-to-Physical Queue Mapping

Hypothesis 2 Logical-to-physical queue mapping lets

programmers implement packet steering, packet order-

ing, and different degrees of resource sharing.

Packet steering. Storm, the second case study, re-

quired packet steering to the correct input queues, each

dedicated to one worker. This was done by creating a

queue with multiple physical instances and by setting

state.qid according to an incoming tuple’s type.

Packet ordering. The write-back cache implementa-

tion required in-order delivery between CPU and NIC to

guarantee consistency (see Section 4.1).

Resource sharing. For the split NIC-CPU version of

the key-value store, sending both GET and SET requests

on separate physical queues offered 7% higher through-

put than sharing the same queue. This is because we can

use a smaller queue entry’s size to transfer data for GET

requests. In contrast, for our Storm application, shar-

ing the same physical output queue between all workers

yielded 16% higher throughput over separate dedicated

physical queues. Since some workers infrequently pro-

duce output tuples, it was more efficient to combine tu-

ples from all workers to send over one queue. Hence, it is

difficult to predict whether sharing or no sharing is more

efficient, so queue resource sharing must be tunable.

7.3 Inferred Data Transfer

Hypothesis 3 Inferred data transfer improves perfor-

mance relative to sending an entire packet.

In this experiment, we evaluated the benefit of sending

only a packet’s live fields versus sending an entire packet

over a queue. We measured the throughput of transmit-

ting data over queues from the NIC to CPU when varying

the ratio of the live portion to the entire packet’s size (live

ratio), detailed in Table 4. The sizes of live portions and

packets were multiples of 64 bytes because performance

was degraded when a queue entry’s size was not a mul-

tiple of 64 bytes, the size of a CPU cache line. We used

numbers of queues and cores that maximized throughput.

674 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Live ratio 1/5 1/4 1/3 1/2 2/3 3/4 4/5

Live size (B) 64 64 64 64 128 192 256

Total size (B) 320 256 192 128 192 256 320

Speedup 3.1x 2.5x 2x 1.5x 1.3x 1.2x 1.2x

Table 4: Speedup when sending only the live portions

when varying live ratios from a micro-benchmark. Sizes

are in bytes (B).

As shown on the table, sending only live fields improved

throughput by 1.2–3.1×. Additionally, we evaluated the

effect of this optimization on the split CPU-NIC version

of the end-to-end key-value store, whose queues from

NIC to CPU transfer packets with a live ratio of 1/2. The

optimization improved the throughput of this end-to-end

application by 6.5%.

7.4 Queue Synchronization Layer

Hypothesis 4 The queue synchronization layer enables

high-throughput communication queues.

We measured the throughput of three benchmarks.

The first benchmark performed a simple packet forward-

ing from the NIC to CPU with no network activity, so its

performance purely reflects the rate of data transfer over

the PCIe bus rather than the rate of sending and receiving

packets over the network. We used packet sizes of 32, 64,

128, and 256 bytes. The other two benchmarks were the

write-back caching version of the key-value store and the

redesigned CPU-NIC version of Storm.

Figure 11 displays the speedup when using the sync

layer versus using primitive blocking DMA without

batching (labeled “without sync layer”). The sync layer

offered 9–15× speedup for pure data transfers in the

first benchmark. Smaller packet sizes showed a higher

speedup; this is because batching effectiveness increases

with the number of packets in a batch. For end-to-end

applications, we observed a 7.2–14.1× speedup for the

key-value store and a 3.7× speedup for Storm. Note that

the sync layer is always enabled in the other experiments.

Hence, it is crucial for performance of our system.

7.5 Compiler Overhead

Hypothesis 5 The FLOEM compiler has negligible

overhead compared to hand-written code.

We compared the throughput of code generated from

our compiler to hand-optimized programs in C. To mea-

sure the compiler’s overhead on the CPU, we ran a sim-

ple echo program, Storm, and key-value store. The C im-

plementations of Storm and key-value store were taken

from FlexStorm and one of FlexKVS’s baselines [23];

these implementations are highly-optimized and perform

better than the standard public implementations of Storm

and memcached. On the NIC, we compared a simple

 0

 2

 4

 6

 8

 10

 12

 14

Inqueue-32

Inqueue-64

Inqueue-128

Inqueue-256

KVS-cache-#3

KVS-cache-#4

KVS-cache-#5

KVS-cache-#6

Storm

N
o
rm

a
li
z
e
d
 t

h
ro

u
g
h
p
u
t

without sync layer
with sync layer

Figure 11: Effect of the queue synchronization layer.

Throughput is normalized to that without the sync layer.

echo program, encryption, flow classification, and net-

work sequencer. On average, the overhead was 9% and

1% on CPU and NIC, respectively. We hypothesize that

the higher overhead on the CPU was primarily because

we did not implement computation batching [24, 46],

which was used for hand-optimized programs.

8 Discussion and Future Work

Multi-message packets. FLOEM can support a packet

whose payload contains multiple requests via Batcher

and Debatcher elements. Given one input packet,

Debatcher invokes its one output port n times sequen-

tially, where n is the number of requests in the payload.

Batcher stores the first n− 1 packets in its state. Upon

receiving the last token, it sends out n packets as one

value. The Debatcher element can inform the value of n

to the Batcher element via the per-packet state. One can

also take advantage of this feature to support computa-

tion batching, similar to Snap [46].

Multi-packet messages and TCP. Exploring the TCP

offload with FLOEM is future work. FLOEM supports

multi-packet messages via Batcher and Debatcher ele-

ments and could be used together with a TCP offload on

the NIC, but our applications do not use TCP.

Shared data structures. In FLOEM, queues and

caches are the only high-level abstractions for shared

data structures between the NIC and CPU. However, ad-

vanced developers can use FLOEM to allocate a memory

region on the CPU that the NIC can access via DMA op-

erations, but they are responsible for synchronizing data

and managing the memory by themselves.

Automation. Automatic program partitioning was

among our initial goals, but we learned that it cannot be

done entirely automatically. Different offloading strate-

gies often require program refactoring by rewriting the

graph and even graph elements. These program-specific

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 675

changes cannot be done automatically by semantics-

preserving transformation rules. Therefore, we let pro-

grammers control the placement of elements while refac-

toring the program for a particular offload design. How-

ever, FLOEM would benefit from and integrate well with

another layer of automation, like an autotuner or a run-

time scheduler, that could select parameters for low-level

choices (e.g., the number of physical queues, the number

of cores, and the placement of each element) after an ap-

plication has been refactored.

Other SmartNICs. The current FLOEM prototype tar-

gets Cavium LiquidIO but can be extensible to other

SmartNICs that support C-like programming, such as

Mellanox BlueField [32] and Netronome Agilio [6].

However, FPGAs [12, 33, 48] require compilation to

a different execution model and the implementation of

bodies of elements in a language compatible with the

hardware.

9 Related Work

Packet processing frameworks. The FLOEM data-

flow programming model is inspired by the Click

modular router [34], a successful framework for pro-

grammable routers, where a network function is com-

posed from reusable elements [34]. SMP Click [13]

and RouteBricks [16] extend Click to exploit paral-

lelism on a multi-processor system. Snap [46] and

NBA [24] add GPU offloading abstractions to Click,

while ClickNP [27] extends Click to support joint CPU-

FPGA processing. Dragonet, a system for a network

stack design, automatically offloads computations (de-

scribed in data-flow graphs) to a NIC with fixed hardware

functions rather than programmable cores [43, 44].

Other packet processing systems adopt different pro-

gramming models. PacketShader [19] is among the first

to leverage GPUs to accelerate packet processing in soft-

ware routers. APUNet [17] identifies the PCIe bottleneck

between the CPU and GPU and employs an integrated

GPU in an APU platform as a packet processing accel-

erator. Domain-specific languages for data-plane algo-

rithms, including P4 [10] and Domino [45], provide even

more limited operations.

Overall, programming abstractions provided by exist-

ing packing processing frameworks are insufficient for

our target domain, as discussed in Section 2.

Synchronous data-flow languages. Synchronous

data-flow (SDF) is a data-flow programming model in

which computing nodes have statically known input

and output rates [25]. StreamIt [47] adopts SDF for

programming efficient streaming applications on mul-

ticore architectures. Flextream [20] extends StreamIt

with dynamic runtime adaptation for better resource

utilization. More recently, Lime [21] provides a unified

programming language based on SDF for programming

heterogeneous computers that feature GPUs and FPGAs.

Although some variations of these languages support

dynamic input/output rates, they are designed primarily

for static flows. As a result, they are not suitable for

network applications, where the flow of a packet through

a computing graph is highly dynamic.

Systems for heterogeneous computing. Researchers

have extensively explored programming abstractions and

systems for various application domains on various

heterogeneous platforms [8, 11, 31, 35, 39, 41, 42].

FLOEM is unique among these systems because it is de-

signed specifically for data-center network applications

in a CPU-NIC environment. In particular, earlier sys-

tems were intended for non-streaming or large-grained

streaming applications, whose unit of data in a stream

(e.g., a matrix or submatrix) is much larger than a packet.

Furthermore, most of these systems do not support a pro-

cessing task that maintains state throughout a stream of

data, which is necessary for our domain.

10 Conclusions

Developing NIC-accelerated network applications is ex-

ceptionally challenging. FLOEM aims to simplify the

development of these applications by providing a uni-

fied framework to implement an application that is split

across the CPU and NIC. It allows developers to quickly

explore alternative offload designs by providing pro-

gramming abstractions to place computation to devices;

control mapping of logical queues to physical queues;

access fields of a packet without manually marshaling it;

cache application state on a NIC; and interface with an

external program. Our case studies show that FLOEM

simplifies the development of applications that take ad-

vantage of a programmable NIC, improving the key-

value store’s throughput by up to 3.6×.

Acknowledgments

This work is supported in part by MSR Fellowship, NSF

Grants CCF–1337415, NSF ACI–1535191, NSF 16-606,

and NSF 1518702, the CONIX Research Center, one of

six centers in JUMP, a Semiconductor Research Corpo-

ration (SRC) program sponsored by DARPA, grants from

DARPA FA8750–16–2–0032, by the Intel and NSF joint

research center for Computer Assisted Programming for

Heterogeneous Architectures (CAPA) as well as gifts

from Google, Intel, Mozilla, Nokia, Qualcomm, Face-

book, and Huawei.

676 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] Apache Storm. http://storm.apache.org. Ac-

cessed: 2017-11-15.

[2] Cavium Development Kits. http://www.cavium.

com/octeon software develop kit.html. Ac-

cessed: 2017-11-15.

[3] Cavium LiquidIO. http://www.cavium.com/

LiquidIO Adapters.html. Accessed: 2017-11-

14.

[4] DPDK: Data Plane Develepment Kit. http://

dpdk.org/. Accessed: 2017-11-07.

[5] IEEE P802.3bs 400 GbE Task Force. Adopted

Timeline. http://www.ieee802.org/3/bs/

timeline 3bs 0915.pdf. Accessed: 2017-11-16.

[6] Netronome Agilio SmartNICs. https:

//www.netronome.com/products/smartnic/

overview/. Accessed: 2017-11-14.

[7] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ull-

man. Compilers: Principles, Techniques, and Tools

(2nd Edition). Addison-Wesley Longman Publish-

ing Co., Inc., Boston, MA, USA, 2006.

[8] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken.

Legion: Expressing locality and independence with

logical regions. In Proceedings of the International

Conference on High Performance Computing, Net-

working, Storage and Analysis, SC ’12, 2012.

[9] A. Belay, G. Prekas, A. Klimovic, S. Grossman,

C. Kozyrakis, and E. Bugnion. IX: A Protected

Dataplane Operating System for High Through-

put and Low Latency. In Proceedings of the 11th

USENIX Symposium on Operating Systems Design

and Implementation, OSDI ’14, 2014.

[10] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McK-

eown, J. Rexford, C. Schlesinger, D. Talayco,

A. Vahdat, G. Varghese, and D. Walker. P4:

Programming Protocol-independent Packet Proces-

sors. SIGCOMM Computer Communication Re-

view, 44(3):87–95, July 2014.

[11] K. J. Brown, A. K. Sujeeth, H. J. Lee, T. Rompf,

H. Chafi, M. Odersky, and K. Olukotun. A Hetero-

geneous Parallel Framework for Domain-Specific

Languages. In Proceedings of the 2011 Interna-

tional Conference on Parallel Architectures and

Compilation Techniques, PACT ’11, 2011.

[12] A. M. Caulfield, E. S. Chung, A. Putnam,

H. Angepat, J. Fowers, M. Haselman, S. Heil,

M. Humphrey, P. Kaur, J.-Y. Kim, D. Lo, T. Mas-

sengill, K. Ovtcharov, M. Papamichael, L. Woods,

S. Lanka, D. Chiou, and D. Burger. A cloud-scale

acceleration architecture. In Proceedings of the

49th Annual IEEE/ACM International Symposium

on Microarchitecture, MICRO ’16, 2016.

[13] B. Chen and R. Morris. Flexible Control of Paral-

lelism in a Multiprocessor PC Router. In Proceed-

ings of the General Track: 2001 USENIX Annual

Technical Conference, 2001.

[14] Cisco. Introduction To RPC/XDR.

http://www.cisco.com/c/en/us/td/docs/

ios/sw upgrades/interlink/r2 0/rpc pr/

rpintro.html. Accessed: 2018-09-07.

[15] D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin,

J. E. Gonzalez, and I. Stoica. Clipper: A low-

latency online prediction serving system. In

Proceedings of the 14th USENIX Conference on

Networked Systems Design and Implementation,

NSDI’17, 2017.

[16] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun,

K. Fall, G. Iannaccone, A. Knies, M. Manesh, and

S. Ratnasamy. RouteBricks: Exploiting Parallelism

to Scale Software Routers. In Proceedings of the

22nd ACM Symposium on Operating Systems Prin-

ciples, SOSP ’09, 2009.

[17] Y. Go, M. A. Jamshed, Y. Moon, C. Hwang, and

K. Park. APUNet: Revitalizing GPU as Packet

Processing Accelerator. In Proceedings of the 14th

USENIX Symposium on Networked Systems Design

and Implementation, NSDI ’17, 2017.

[18] Google. Protocol Buffers. http://developers.

google.com/protocol-buffers/. Accessed:

2018-09-07.

[19] S. Han, K. Jang, K. Park, and S. Moon. Packet-

Shader: A GPU-accelerated Software Router. In

Proceedings of the 2010 ACM Conference on Spe-

cial Interest Group on Data Communication, SIG-

COMM ’10, 2010.

[20] A. H. Hormati, Y. Choi, M. Kudlur, R. Rabbah,

T. Mudge, and S. Mahlke. Flextream: Adaptive

compilation of streaming applications for hetero-

geneous architectures. In Proceedings of the 2009

International Conference on Parallel Architectures

and Compilation Techniques, PACT ’09, 2009.

[21] S. S. Huang, A. Hormati, D. F. Bacon, and R. Rab-

bah. Liquid Metal: Object-Oriented Program-

ming Across the Hardware/Software Boundary. In

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 677

Proceedings of the 22nd European Conference on

Object-Oriented Programming, ECOOP ’08, 2008.

[22] X. Jin, X. Li, H. Zhang, R. Soule, J. Lee, N. Fos-

ter, C. Kim, and I. Stoica. NetCache: Balancing

Key-Value Stores with Fast In-Network Caching. In

Proceedings of the 26th ACM Symposium on Oper-

ating Systems Principles, SOSP ’17, 2017.

[23] A. Kaufmann, S. Peter, N. K. Sharma, T. Ander-

son, and A. Krishnamurthy. High Performance

Packet Processing with FlexNIC. In Proceedings of

the 21st International Conference on Architectural

Support for Programming Languages and Operat-

ing Systems, ASPLOS ’16, 2016.

[24] J. Kim, K. Jang, K. Lee, S. Ma, J. Shim, and

S. Moon. NBA (Network Balancing Act): A

High-performance Packet Processing Framework

for Heterogeneous Processors. In Proceedings of

the 10th European Conference on Computer Sys-

tems, EuroSys ’15, 2015.

[25] E. A. Lee and D. G. Messerschmitt. Static Schedul-

ing of Synchronous Data Flow Programs for Digital

Signal Processing. IEEE Transactions on Comput-

ers, C-36(1):24–35, Jan 1987.

[26] B. Li, Z. Ruan, W. Xiao, Y. Lu, Y. Xiong, A. Put-

nam, E. Chen, and L. Zhang. KV-Direct: High-

Performance In-Memory Key-Value Store with

Programmable NIC. In Proceedings of the 26th

ACM Symposium on Operating Systems Principles,

SOSP ’17, 2017.

[27] B. Li, K. Tan, L. L. Luo, Y. Peng, R. Luo, N. Xu,

Y. Xiong, P. Cheng, and E. Chen. ClickNP: Highly

Flexible and High Performance Network Process-

ing with Reconfigurable Hardware. In Proceedings

of the 2016 ACM Conference on Special Interest

Group on Data Communication, SIGCOMM ’16,

2016.

[28] J. Li, E. Michael, and D. R. K. Ports. Eris:

Coordination-Free Consistent Transactions Using

In-Network Concurrency Control. In Proceedings

of the 26th ACM Symposium on Operating Systems

Principles, SOSP ’17, 2017.

[29] J. Li, E. Michael, N. K. Sharma, A. Szekeres,

and D. R. K. Ports. Just Say NO to Paxos Over-

head: Replacing Consensus with Network Order-

ing. In Proceedings of the 12th USENIX Sympo-

sium on Operating Systems Design and Implemen-

tation, OSDI ’16, 2016.

[30] M. Liu, L. Luo, J. Nelson, L. Ceze, A. Krishna-

murthy, and K. Atreya. IncBricks: Toward In-

Network Computation with an In-Network Cache.

In Proceedings of the 22nd International Confer-

ence on Architectural Support for Programming

Languages and Operating Systems, ASPLOS ’17,

2017.

[31] C. K. Luk, S. Hong, and H. Kim. Qilin: Exploiting

parallelism on heterogeneous multiprocessors with

adaptive mapping. In Proceedings of the 42nd An-

nual IEEE/ACM International Symposium on Mi-

croarchitecture, MICRO ’09, 2009.

[32] Mellanox Technologies. BlueField Multicore

System on Chip. http://www.mellanox.com/

related-docs/npu-multicore-processors/

PB Bluefield SoC.pdf, 1018. Accessed: 2018-

04-25.

[33] Mellanox Technologies. Innova - 2

Flex Programmable Network Adapter.

http://www.mellanox.com/related-docs/

npu-multicore-processors/PB Bluefield

SoC.pdf, 1018. Accessed: 2018-04-25.

[34] R. Morris, E. Kohler, J. Jannotti, and M. F.

Kaashoek. The Click Modular Router. In Proceed-

ings of the 17th ACM Symposium on Operating Sys-

tems Principles, SOSP ’99, 1999.

[35] E. B. Nightingale, O. Hodson, R. McIlroy, C. Haw-

blitzel, and G. Hunt. Helios: Heterogeneous Mul-

tiprocessing with Satellite Kernels. In Proceedings

of the 22nd ACM Symposium Symposium on Oper-

ating Systems Principles, SOSP ’09, 2009.

[36] A. Panda, S. Han, K. Jang, M. Walls, S. Ratnasamy,

and S. Shenker. NetBricks: Taking the V out of

NFV. In Proceedings of the 12th USENIX Sympo-

sium on Operating Systems Design and Implemen-

tation, OSDI ’16, 2016.

[37] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos,

A. Krishnamurthy, T. Anderson, and T. Roscoe. Ar-

rakis: The Operating System is the Control Plane.

In Proceedings of the 11th USENIX Symposium

on Operating Systems Design and Implementation,

OSDI ’14, 2014.

[38] P. M. Phothilimthana. Programming Abstrac-

tions and Synthesis-Aided Compilation for Emerg-

ing Computing Platforms. PhD thesis, EECS De-

partment, University of California, Berkeley, Sept

2018.

678 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[39] P. M. Phothilimthana, J. Ansel, J. Ragan-Kelley,

and S. Amarasinghe. Portable Performance on

Heterogeneous Architectures. In Proceedings of

the 18th International Conference on Architectural

Support for Programming Languages and Operat-

ing Systems, ASPLOS ’13, 2013.

[40] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou,

K. Constantinides, J. Demme, H. Esmaeilzadeh,

J. Fowers, G. P. Gopal, J. Gray, M. Haselman,

S. Hauck, S. Heil, A. Hormati, J.-Y. Kim, S. Lanka,

J. Larus, E. Peterson, S. Pope, A. Smith, J. Thong,

P. Y. Xiao, and D. Burger. A Reconfigurable Fabric

for Accelerating Large-scale Datacenter Services.

In Proceedings of the 41st Annual International

Symposium on Computer Architecture, ISCA ’14,

2014.

[41] C. J. Rossbach, J. Currey, M. Silberstein, B. Ray,

and E. Witchel. PTask: Operating System Abstrac-

tions to Manage GPUs As Compute Devices. In

Proceedings of the 23rd ACM Symposium on Oper-

ating Systems Principles, SOSP ’11, 2011.

[42] C. J. Rossbach, Y. Yu, J. Currey, J.-P. Martin, and

D. Fetterly. Dandelion: A Compiler and Runtime

for Heterogeneous Systems. In Proceedings of the

24th ACM Symposium on Operating Systems Prin-

ciples, SOSP ’13, 2013.

[43] P. Shinde, A. Kaufmann, K. Kourtis, and T. Roscoe.

Modeling NICs with Unicorn. In Proceedings of

the Seventh Workshop on Programming Languages

and Operating Systems, PLOS ’13, 2013.

[44] P. Shinde, A. Kaufmann, T. Roscoe, and S. Kaes-

tle. We Need to Talk About NICs. In Proceedings

of the 14th USENIX Conference on Hot Topics in

Operating Systems, HotOS ’13, 2013.

[45] A. Sivaraman, A. Cheung, M. Budiu, C. Kim,

M. Alizadeh, H. Balakrishnan, G. Varghese,

N. McKeown, and S. Licking. Packet Transactions:

High-Level Programming for Line-Rate Switches.

In Proceedings of the 2016 ACM Conference on

Special Interest Group on Data Communication,

SIGCOMM ’16, 2016.

[46] W. Sun and R. Ricci. Fast and Flexible: Parallel

Packet Processing with GPUs and Click. In Pro-

ceedings of the Ninth ACM/IEEE Symposium on

Architectures for Networking and Communications

Systems, ANCS ’13, 2013.

[47] W. Thies, M. Karczmarek, and S. P. Amarasinghe.

StreamIt: A Language for Streaming Applications.

In Proceedings of the 11th International Confer-

ence on Compiler Construction, CC ’02, 2002.

[48] N. Zilberman, Y. Audzevich, G. Kalogeridou,

N. Manihatty-Bojan, J. Zhang, and A. Moore.

NetFPGA: Rapid Prototyping of Networking De-

vices in Open Source. In Proceedings of the 2015

ACM Conference on Special Interest Group on

Data Communication, SIGCOMM ’15, 2015.

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 679

