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A (2+1)-dimensional fifth-order KdV-like equation is introduced through a generalized bilinear equation with the prime number
p = 5. The new equation possesses the same bilinear form as the standard (2+1)-dimensional fifth-order KdV equation. By Maple
symbolic computation, classes of lump solutions are constructed from a search for quadratic function solutions to the corresponding
generalized bilinear equation. We get a set of free parameters in the resulting lump solutions, of which we can get a nonzero
determinant condition ensuring analyticity and rational localization of the solutions. Particular classes of lump solutions with

special choices of the free parameters are generated and plotted as illustrative examples.

1. Introduction

The (2+1)-dimensional fifth-order KdV equation [1] is

36u, + us, + 15u,u,, + 15uu;, + 45u2ux = Uy

@
- 15uu,, — 15u, J u,dx -5 J u,,dx =0,

which is the (2+1)-dimensional analogue of the Caudrey-
Dodd-Gibbon-Kotera-Sawada (CDGKS) equation [2]. When
u, =0, (1) reduces to the Sawada-Kotera equation

U, + s, + 150, + 15uu,, + 45u°u, = 0. (2)

Konopelchenko and Dubovsky [3] were the first to come up
with (1). Lv et al. [4] obtained the symmetry transformations
for (1) by using its Lax pair. Lii [5] constructed four sets
of bilinear Backlund transformations in order to obtain
multisoliton solutions. Wazwaz [6] derived multiple soliton

solutions and multiple singular soliton solutions for (1).
Equation (1) has a widespread adoption in many physical
branches, such as conserved current of Liouville equation,
two-dimensional quantum gravity gauge field, and conformal
field theory [7-13].

In recent years, there has been a growing interest in
finding exact solutions of nonlinear evolution equations,
such as the rational solutions and the rogue wave solutions,
which are exponentially localized in certain directions. Lump
solutions are a type of rational function solutions, localized
in all directions in the space. Lump solutions have been
studied for many nonlinear partial differential equations
such as the KPI equation [14, 15], the three-dimensional
three-wave resonant interaction equation [16], and the B-
KP equation [17]. Through Hirota bilinear equations, one of
the authors (Ma) [18] introduced a new method to construct
lump solutions to the KP equation. Following Ma’s method,
the lump solutions for more nonlinear evolution equations
have been found, for instance, the dimensionally reduced
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p-gKP and p-gBKP [19], the (2+1)-dimensional Boussinesq
equation [20], the BKP equation [21], the (3+1)-dimensional
Jambo-Miwa [22], and the KdV equation [23]. In addition
to Hirota bilinear forms, generalized bilinear derivatives [24]
are used to find rational function solutions to the generalized
KdV, KP, and Boussinesq equations [25-27].

In this paper, we investigate lump solutions for a fifth-
order KdV-like equation. The organization of the paper is as
follows: In Section 2, we formulate a new fifth-order KdV-
like equation from generalized bilinear differential equations
of KdV type. In Section 3 with the help of Maple, we obtain
lump solutions for the constructed equation and analyze their
dynamics. Then we draw some figures for a particular classes
of lump solutions to show some properties. In the last section,
conclusions and some remarks are given.

2. A New (2+1)-Dimensional Fifth-Order
KdV-Like Equation

Under the dependent variable transformation

=2(In f)xx (3)

with f = f(x, y,t), the (2+1)-dimensional fifth-order KdV
equation (1) becomes the following (2+1)-dimensional Hirota
bilinear equation:

Bsyay = (DS = 5D.D, + 36D,D, — 5D§) ff
=T72fofe = 72fuf + 2foxf — 12 5 S
30 4 frx = 20 f e + 10 fr £ (4)
=30 f xSy + 30 aay fo = 10 f sy S

-10f,,f +10f, =0,

where the Hirota derivatives D,, Dy, and D, are defined in
[28].

Based on a prime number p, a kind of generalized bilinear
operators is introduced as [24, 29]

(DDb,) fif = (0, +a,00)" (0 + a0y )" f (1)
m n j am—i
x'=xt'=t =;)JZO( )( ) P Paxmz

o o o
B S 1) gn=i 7 a¢r0)

f (x’, t’)

(5)
f(x, t)f(x t )

x!'=x,t' =t
n la]am+nl]f(x t)aH—]f(.x t)
T xmid oxit)

where m,n > 0, (x; = (1" s=r »(s) mod p.
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For example, if we assume p = 5, we have

o5 = -1,
(xé =1,
ocg =-1, (6)

With p = 5, we can generalize (4) into

GBsgkay
= (D3,
=30 fu frx = 20 frx = 10 fny [ + 10f i f, (7)
=30 fuxfuy + 30 sy fu ¥ T2f S =721y

-10f,,f +10f; = 0.

3 2
— 5D} Ds, +36D; Ds, - SDS’y) ff

Equation (7) is a generalized bilinear fifth-order KdV equa-
tion. Under the transformations

(8)

which were suggested by the Bell polynomial theories [29-
31], (7) is transformed into the following fifth-order KdV-like
nonlinear differential equation:

11 ¢ 25
GP. =u, + +
Senkay (U) = Uy + S50 et F Taayt

b+ ol - )
972" ¥ 288 % 2592

3 5

5
+ Ul U+ —— U, — ——uvu
54 XX 4327F 432 x

c Dl ot + il
432777 T 4320 O 540

5 1
Uy + —U U+

_ﬁuy x T gy Mt %uubc
1 5

+ —us,——v,=0
36 ° 36

Therefore, if f solves the bilinear equation (4) or (7),
then u = 6(In f),, or u = 6(In f), will solve the nonlinear
equation (1) or (9).
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3. Lump Solutions to the Fifth-Order
KdV-Like Equation

In this section, we are going to generate lump solutions to (9)
by searching for quadratic function solutions to (7) with the
assumption

f=g"+hH +a,
g=ax+ay+ast+ay, (10)

h=asx+agy+a;t+ag

where g;, 1 < i < 9, are real constants to be determined
later. Note that using a sum involving one square, in the two-
dimensional space, will not generate exact solutions which are
rationally localized in all directions in the space.

Substituting (10) into (7) and equating all the coefficients
of different polynomials of x, y, and t to zero using Maple
symbolic computation, we obtain a set of algebraic equations
inag; (1 < i < 9); solving the set of algebraic equations
with the aid of Maple, we attain the following two classes of
solutions.

Case 1.

a, =0,

5a23a9
a5 =——7,

54a;

aza, (11)
g ===

3a;

2 6 22
~ 5a, (—9515 + azag)

= 324a’

>

and g; = a; (i = 2,4,5,8,9) are real free parameters which
need to satisfy a; # 0 to make the corresponding solutions f
to be well defined and a, > 0 to guarantee the positiveness of

f.
The parameters in the sets (11) generate a class of positive
quadratic function solutions to (7):

2
5a3a9t
f= (‘2— +a2y+a4)
54al
2
5a% (—9a8 + aal)t aa (12)
+< (945 +a3a5) L

+asx — ———
324al a2

+ag

and the resulting class of quadratic function solutions, in
turn, yields a few classes of lump solutions to the (2+1)-
dimensional fifth-order KdV-like equation (9) through the
dependent variable transformation:

6(fxxf_fj)
f?
12 (alz - aé) (—g2 + hz) —48a,a;gh + 12 (af + aé) ay
(g2 + 1 +ay)”

u=6(nf) =
(13)

where the function f is defined by (10), and the functions g
and h are given as follows:

3

5a;,dq
=—-———Ft+a,y+ay,
g 5461? LY T ay
2 6 2 2 (14)
5a; (—9a5 + a2a9) a§a9
= 5 t+asx — —=y+ag.
324a; 3a;

Case 2.

2 2
5 (a1a2 —ayag + 2a2a5a6)
a, =
3 2 L 2 >
36 (a? + a?)

2 2
5 (2a1a2a6 —ayas + a5a6)

= > 15
& 36 (@ + al) (15)

2
2, 2
-3 (aya, + asag) (al + as)

a9:

>

(511“6 - a2a5)2

where a,, a,, a,, as, a4, ag are arbitrary constants to be
determined with the following restricted conditions:

a, —a
2 2 1 5
Ay =aj +a; = +0,
as a
a, —as
A, =aa, +asas = <0, (16)
ag 4
a; a4
As=aa, — aya; = #0.
as dg

A | makes the corresponding solutions f well defined and A,
assures that the solution f is positive, while A ; guarantees the
localization of the solutions u in all directions in the (x, y)-
plane.

Since these parameters are arbitrary, the solutions of (9)
are more general. The parameters a,, a5 indicate that the wave
velocity in the x direction is arbitrary and a,, g illustrate
the arbitrariness of the wave velocity in the y direction. The
parameters a,, ag represent the invariance of variables and a;,
a; show the wave frequency which are represented by other
quantities.



This set of parameters, in turn, generates positive
quadratic function solutions to (7):

5 (alag - alaé + 2a2a5a6)

36 (a? + a?)

f= <a1x+a2y+
2

+a4) + <a5x+ agy

5 (2a1a2a6 - a%a5 + asaé)
2 2 tag
36 (a? +a?)

) 17)
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2 2
5 (ala2 —ayag + 2a2a5a6)

36 (a? + a?)

g=ax+ay+ L+ ay,

(19)
5 (2a1a2a6 - afas + asaé

36 (a? + a?)

h=asx+agy+ t + ag.

Choosing a special value for the free parameters in
Cases 1 and 2, we construct specific lump solutions u of
(9). One special pair of positive quadratic function solutions
and lump solutions with specific values of the parameters
in Case 1 is given as follows. First, the selection of the
parameters,

2 a, =4,
-3 (a,a, + asag) (af + ag) ?
=0,
(a,a6 — a2a5)2 .
as =2, (20)
Consequently, a kind of lump solutions to (9) through the a4 =0
transformation u = 6(In f),, and (10) is achieved as follows: 8o
ag =1,
6 _ g2
u=6(Inf)_ = (fxxjj; fx) leads to
34225 370 148 350
., ., ., (18) f=m - oy — - x4
12 (“1 —as)(—g +h )—48a1a5gh+ 12 (“1 +a5)a9 26244 243 9 81
= S - o (21)
(g* +h* +ay) Syt
3
where the functions g and h are given by and lump solution
1259712 (27025¢> — 113400tx + 115560ty + 104976x” ~ 69984xy — 408240y — 26244) o
u=-
(3422512 — 113400tx — 39960ty + 104976x2 — 69984xy + 431568y + 26244)’
If we take a particular choice of the parameters in Case 2 ag =3,
as
ag =0,
(23)
a, =1, then we have
34225 370 148 350
a _ 1 f= - Tty — ) - Ttk + 4x°
2=y 26244 243 9 81
(24)
a, =0, 8
- —xy+1
3
as =0,
and lump solution
248832 (27025 — 113400tx + 115560ty + 104976x — 69984:xy — 408240y” — 26244) 03)
u=-

(3422512 — 113400x — 39960ty + 104976x2 — 69984xy + 431568y + 26244)’
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FIGURE 1: Plots of lump solution in Case 1 with a, =4,a, = 0,a; = 2,43 = 0,a, = 1 att = 0: (a) 3D plot, (b) density plot, and (c) x-curves.

(a)

(c)

FIGURE 2: Plots of lump solution in Case 2 witha, = 1,a, = -1/2,a, = 0,a; = 0, a, = 3,a, = 0 att = 0: (a) 3D plot, (b) density plot, and (c)

X-curves.

Figure 1 shows the profile of lump solutions in Case 1 with the
special choice of the parameters (20) at t = 0, while Figure 2
shows the profile of lump solutions in Case 2 with the special
choice of the parameters (23) at t = 0.

4. Conclusions

In this paper, we studied a new (2+1)-dimensional fifth-
order KdV-like equation, obtained by using the general-
ized Hirota bilinear formulation with p = 5. Through
symbolic computation with Maple we constructed a few
classes of lump solutions. The analyticity and localization of
the resulting lump solutions are guaranteed by a nonzero
determinant condition and a positivity condition. A subclass

of lump solutions under special choices of the parameters
involved covers the lump solutions. Contour plots with small
determinant values are sequentially made to exhibit that
the corresponding lump solution tends to zero when the
determinant tends to zero. Recently, there have been some
systematical studies on lump solutions [32] and interaction
solutions between lumps and solitons for many integrable
equations in (2+1)-dimensions. We refer the reader to [33] for
lump-kink interaction solutions and [34, 35] for lump-soliton
interaction solutions.

Data Availability

All data are included in the article.
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