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Multiscale model for pedestrian and infection dynamics during air travel
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In this paper we develop a multiscale model combining social-force-based pedestrian movement with a
population level stochastic infection transmission dynamics framework. The model is then applied to study
the infection transmission within airplanes and the transmission of the Ebola virus through casual contacts.
Drastic limitations on air-travel during epidemics, such as during the 2014 Ebola outbreak in West Africa, carry
considerable economic and human costs. We use the computational model to evaluate the effects of passenger
movement within airplanes and air-travel policies on the geospatial spread of infectious diseases. We find that
boarding policy by an airline is more critical for infection propagation compared to deplaning policy. Enplaning
in two sections resulted in fewer infections than the currently followed strategy with multiple zones. In addition,
we found that small commercial airplanes are better than larger ones at reducing the number of new infections
in a flight. Aggregated results indicate that passenger movement strategies and airplane size predicted through
these network models can have significant impact on an event like the 2014 Ebola epidemic. The methodology
developed here is generic and can be readily modified to incorporate the impact from the outbreak of other

directly transmitted infectious diseases.

DOI: 10.1103/PhysRevE.00.002300

I. INTRODUCTION

Commercial air travel enables rapid transmission of in-
fectious diseases across the globe. Travelers are in close
proximity to each other and are susceptible to infection spread
in common spaces such as airport boarding areas, lounges,
security lines, and within commercial airplanes. In addition, air
travel brings together people from different geographic regions
with different levels of vulnerability and receptivity due to
variations in immunity, ethnic background, and intervention
usage across geographic areas [1]. There is direct evidence
for the spread of infection within commercial airplanes for
many infectious diseases including influenza [2], SARS [3],
tuberculosis [4], measles [5], and norovirus [6].

Several factors affect the infection transmission in the high-
occupancy enclosed environment of aircraft cabins, including
cabin air quality, exposure time, flight duration, and passenger
contact due to inflight movement. The high-efficiency particu-
late filters used in current airplanes are effective in reducing a
contagion in the recirculated air [7]; however, virus shedding
from infected passengers before the air can pass through filters
can lead to other passengers becoming infected. In this context,
passenger location and movement resulting in close contact
between infective and susceptible populations is a critical
component in infection spread aboard airplanes. Passengers
move during boarding (ingress), deplaning (egress), and within
the cabin. Susceptible passengers otherwise not exposed to
the contagion may come into contact with it when they are
in close proximity to infected passengers or contaminated
surfaces during the high-mobility phases of passenger entry
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and exit. There is a strong correlation between contact rates
and infection rates in a number of disease epidemics including
SARS [8] and Ebola [9]. The probability of infectious disease
transmission when the host and agent come into contact is
inherently stochastic and depends on variations in multiple
factors including infectivity (virus content in bodily fluids
and rate of shedding), age, and demographic characteristics.
Stochastic infection models such as the susceptible-exposed-
infectious (SEI) model have been effectively used in studying
such infectious disease spread [10]. In this paper we develop a
hybrid model that combines a social-force-based pedestrian
dynamical model with a stochastic infection transmission
framework to study the effect of pedestrian dynamics on the
infection spread.

Often there are limitations in modeling quantities related to
real systems. Therefore, stochasticity is naturally inherent in
systems, that is, there is uncertainty in its constituents. In order
to address distinct types of uncertainty present in the system,
we use scenario analyses into the aforementioned stochastic
process based on the SEI framework to allow for variance in
projections of output parameters. We quantify the uncertainty
in the input parameters as well as structural uncertainty in the
model itself by simulating over the design space.

As a case study, we utilize the model to assess the prop-
agation of Ebola aboard an airplane. During the 2014-2015
Ebola epidemic, despite travel restrictions, there have been a
few instances of Ebola-infected travelers using commercial
airplanes in the USA and Nigeria [11-13]. Models have
suggested that 7.17 infected travelers per month would have
been transported through commercial airlines without air-
travel restrictions [14]. Detailed pedestrian dynamics enables
tracking the trajectories of passengers that is needed to assess
passenger contact rates due to different air-travel policies.

©2017 American Physical Society

54
55
58
57
58
59
80
61
62
63
64
65
66
67
68
69
70
71
72
78
74
75

76

78
78
80
81
82
83
84
85

86



87
88
89
90
91
92
93
94
95
96
o7
98
99

100

101

102

103
104
108
106
107
108

109

110

111

112

113

114

115

116

"7

118

19

120

121

123
124
125
126

127

128
129
130
181
132
133
134
135

136

NAMILAE, DERJANY, MUBAYI, SCOTCH, AND SRINIVASAN

While all in-plane passenger movement (e.g., movement of
airplane staff and passenger movement to restrooms) can
contribute to infection spread, the discretionary nature of
such activities requires additional uncertainty considerations
and difficulty in modeling; therefore, we focus on high
pedestrian density and mobility phases of airplane boarding
and deplaning in this paper. Through the modeling framework
developed in this paper, we assess the air-travel and passenger
movement strategies that can reduce the infectious disease
spread. The pedestrian movement component can be used to
model different crowded locations such as airports and the
stochastic infection dynamics component can be used for other
directly transmitted diseases. The integrated model developed
here is therefore general and can be applied to other infection
studies.

1II. MODEL FORMULATION

‘We model the motion of pedestrians using a molecular-
dynamics-based social-force model [15]. Considering a pedes-
trian as a particle in motion, the pedestrian particle is subjected
to competing forces of a person’s desire to travel to a
destination while impeded by obstructions (e.g., walls, chairs,
and other pedestrians). The total force experienced by a
pedestrian

Fi=Y fi=f"+f=ma, 1)

where F; is the resulting force, fi™ is the force exerted by

the pedestrian in the intention to reach his or her terminus,
7P is the resisting forces obstructing the motion, m; is the
body mass, and 7; and &; are the instantaneous velocity and
acceleration at time ¢, respectively.

The intention force relates the desired velocity of pedestrian
i moving towards a destination 7; to the actual speed v; and

is defined by

= @

Here 7 is a time step. We modify the equations of motion
by introducing a local neighbor dependence to the desired
velocity i(#). In line-forming applications like in an airplane
entry or exit, the self-propelling intention force and desired
velocity of the ith pedestrian is dependent on the position of
the nearest pedestrian in the direction of motion, i.e., in front
of the pedestrian particle in the line. To model the slowing of
pedestrian particles as they approach other particles in a line,
the desired velocity of the ith pedestrian Dj(t) in direction &
is modified as follows:

2 0 (r) — 30)).

T

wea =it yn(1- ) O
ri€) —ri€y

Here &, is the direction of desired motion. For example, for
a passenger boarding an airplane, this could be the direction
along the aisle. The term v4 + y;vp provides a distribution
of desired speed for all pedestrians in the system, vy is
the deterministic component of the pedestrian speed, y; is
a random number, and y;vp is the component of pedestrian
speed that varies for each pedestrian, enabling a distribution
of speeds that accounts for differences due to factors such as
age and sex. In addition, 7; and 7; denote the positions of ith
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and kth pedestrians, where the kth pedestrian is the nearest
in the &, direction and 7;é; — F,é; would be the separation
between them in direction ;. Further, § is the critical distance
between two pedestrians in a line at which the rear pedestrian
becomes stationary. Equation (3) ensures that the attractive
force toward the destination is reduced when a pedestrian
encounters another particle and the desired speed reduces to
zero when the distance between them is 8.

The second part of the particle dynamics in Eq. (1) considers
the repulsive-social-force term f7** that inhibits the motion
of pedestrian particles. The repulsive force is essential to
ensure impenetrability of particles. For this purpose, we use
the repulsive term [16] of the Lennard-Jones potential given
by

12
= D fii=) Vel = ZV[E (ri) :l @
iJ

i i

where € and o are constants and r;; is the distance between
the ith and jth pedestrians. The equation of motion in (1) is
numerically integrated to obtain the velocities and positions in
the subsequent time steps. We apply this approach to pedestrian
movement in airplanes to obtain the trajectories of pedestrian
movement for different boarding and deplaning methods. Note
that Eqs. (1)—(4) are in two-dimensional space in the plane of
pedestrian movement.

There are several parameters in the pedestrian dynamics
model, such as maximum walking speed v4 + vp, random
variation y;, distance parameter §, two parameters for the
Lennard-Jones repulsive-force terms (e and o), and aisle delay
for luggage. There is experimental data available for some of
the parameters such as the range of walking speed [17,18].
Also, the observed exit times and passenger flow rate for some
commercial airplanes are available in the literature [19,20]. To
obtain the estimates of other model parameters that represent
realistic model behavior of an outbreak, we vary the parameters
over a large design space. In our earlier study [21] we used
a parameter sweep on 60000 processors to determine the
parameters that match the available observed data of deplaning
[19,20]. We have been able to match the pedestrian dynamics
model with experimental data on flow rates and exit times
for five different airplane seating configurations for which
test data are available. In addition, we have also been able to
capture qualitative features such as front to back unloading and
hallway congestion [21]. The pedestrian dynamics parameters
obtained through our earlier work [21] are used in the model
and are tabulated in Table 1.

The pedestrian trajectory information from the above model
(1)~(4) is integrated with a discrete-time stochastic SEI model
for infection transmission described below [Egs. (5) and (6)].
Note that in the context of air travel of a few hours, newly
exposed (and infected) passengers do not become infectious.
The schematic in Fig. 1 depicts the overall approach of this
modeling study.

From a population of N passengers, if i? represents the
number of infective passengers at a given time with age of
infection of ¢, then the number of susceptible individuals at
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TABLE 1. Parameters and data ranges used in the computational models.

Parameters Definition Estimate or range Reference or notes

Vo; walking speed (no obstructions) 1.07-1.55m/s [18,21]

Vi random number 0-1 [21]

8 distance parameter (distance between people in a stationary line) 0.405 m [21]

€ repulsive-force field parameter 16 [21]

g repulsive-force field parameter 0.86 m [21]

De infectivity of individual as a function of age of infection (¢ days). 0.01-0.098 based on [23] (see Fig. 2)

D maximum number of days for virus incubation 1-21d [23]

i number of infectives with an age of infection of ¢ days 1 only one infective per plane assumed

time f, S(1), is given by

d
S =N-)il=N-10), (5)

c=1

where ¢ varies between 1 and a maximum of d days of
infection and I(¢) is the total number of infected individuals
in the modeled population. In the current model, we consider
that there is one infective individual with Ebola in a given
population that fills an airplane; however, this number can be
higher for more common infectious diseases like influenza.
We also assume that the initial number of exposed individuals
in the system is zero.

When these 0 infective individuals come into contact
with m; susceptible individuals estimated by the pedestrian
movement model, the newly infected and the probability of
their infection can be estimated using a binomial distribution.
In the context of air travel, the model population is relatively
small (a few hundred passengers), hence, contacts are few.
We assume that probability of an individual infecting each
susceptible individual is small and the number of susceptible
individuals as compared to the number of infected (or exposed)
individuals is larger. Under this assumption, we approximated
a binomial distribution using a Poisson distribution. The newly
infected individuals at time ¢ and the probability of their

infection is

d i . _
10 ~P| > pz(f_ﬂ_%t@__ll)

c=1 i=1

©®

Here an infective individual with infectivity p. placed in a
susceptible population would expose m; p. members at time 7.
In addition, s,, represents the number of susceptible individuals
within the radius r; of the infectious individual where infection
is possible. The use of the Poisson distribution P accounts for
demographic stochasticity and variations in susceptibility of
the population.

The probability distribution of infection transmission varies
depending on the incubation periods and transmission rates for
specific diseases and is a primary input datum required for the
stochastic infection transmission model. For example, for the
Ebola virus the mean incubation period is 12.7 days [22],
with a logarithmic increase in virus levels in blood during
acute illness phase [23]. The RNA virus copies in the serum
are indicative of the transmission probability and we used
the corresponding Center for Disease Control and Prevention
(CDC) data [23] to obtain the infectivity profile shown in
Fig. 2. Since there is no possibility of mortality by infection
in the short time scale of the model, we used the weighted (by
sample size) average of both fatal and nonfatal data from [23]
to compute the probabilities in Fig. 2.

Number of
Contacts

¥ ofindection
.

.
00
@ @

S,EH{t)

Frshabiuty
3

Time steps

FIG. 1. Schematic depiction of the overall modeling approach.
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Infection probabiiity (%)

9 10 11 1z 13 14 15 16 17 18 18 20 21
Age of infection {days)

FIG. 2. Distribution of the probability of infection vs days since
the onset of symptoms for the Ebola virus, modified and distribution
generated using CDC data for RNA copies in serum [23].

The overall model can be adapted to other directly transmit-
ted infectious diseases as well as other crowded locations (e.g.,
airport security lines) by modifying the infectivity input and
the control parameters in Table I. Here we used the integrated
model to study infection transmission inside an airplane.
Inherent uncertainties in human behavior and stochasticity
in infection spread make precise prediction of the number of
infections difficult. Instead, we identify policies and passenger
movement strategies that generally lead to reducing the spread
of infectious diseases.

III. RESULTS AND DISCUSSION

We consider the situation with one infected individual
with Ebola traveling on a commercial airplane. The infective
passenger onboard is not identifiable; therefore, we varied
the seating position of the infected individual through all the
seats in the airplane. At each seating location of the infective
individual, we obtained the mean number of newly infected

0.20 « .

0.18 - —&—Random
5 0.16 ~ —6—Two section
§ 0.14 - ——Three section
&
E 0.12 - —8— Columnwise
S 010 -
z
] 0.08 -
£ 006 -
g
o. 0.04 -

0.02 P

0.00 T T Y5 8 0

0 2 4 6 8 10 12 14 16 18 20 22

(a) Number of newly infected passengers
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members and corresponding discrete Poisson distribution
using the above formulation. We combined these distributions
to evaluate the probability of k newly infected passengers when
an infected individual is on the airplane at any possible seating
position. The mean number of newly infected individuals is
the key measure we use in comparing the infection spread
using different boarding and deplaning strategies. We used
this approach to evaluate air-travel policies such as boarding
strategies and airplane seating capacity that impact infectious
disease spread.

The boarding and exiting strategies have been investigated
in earlier studies with respect to minimizing the turn-around
time of airplanes at boarding gates (see, e.g., [19,20]). Several
passenger ingress strategies such as random, outside-in, back-
to-front, columnwise, zone or section style enplanement have
been studied. We compare a few of the boarding strategies
with respect to the spread of infections. In Fig. 3 we show
that the three-section boarding method has the highest mean
and thus represents the worst strategy for reducing spread
of infection. Interestingly, many current airlines use such
a strategy with multiple zones or sections. In this method
passengers sitting in the front of the aircraft (e.g., first class)
board first followed by a middle zone and then the back section
of the airplane. Because of this pattern, the passageway is
filled with passengers waiting to get to their seats, resulting
in clustering and increased exposure with infected passenger
and therefore resulting in a higher number of newly infected
passengers. The columnwise method, used here, is the same
as the outside-inside strategy in a front-to-back manner. This
scheme also results in more infected members. For the random
and two-section boarding, passengers close together in a queue
may be seated in seats that are wide apart. This leads to
arbitrary movement of passengers along the cabin, preventing
clustering of a group of travelers around the infected passenger,
which in turn reduces infection transmission. The two-section
and random boarding have the same mean value of two
newly infected, although the infection transmission for the

Probability of infection

0.05 -4C

0.00

0 2 4 6 8 10 12 14
(b) Number of newly infected passengers

FIG. 3. Infection distribution profile for different boarding strategies for (a) a Boeing 757-200 capable of seating 182 passengers and (b) an
Airbus A320 capable of seating 144 passengers. The pictures on the bottom show the corresponding aircraft seating configurations with seats

(blue dots) and pedestrians (green dots).
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0.35 -
—5-- Sectionwise
0.30
c —3—alternate columns
S 0.25
S —#— Alternate rows
g
f=
:.g 0.20 - —&— Baseline
S
£ 0.15 -
=
2
o 0.10 -
a
0.05 -
0.00 SRR ,

0 1 2 3 4 5 6
Number of newly infected passengers

FIG. 4. Infection distribution profile for different deplaning
strategies for a 182-seat Boeing 757.

two-section strategy results in a lower probability of infection
at the mean. A two-section strategy involves dividing the plane
into two sections and the passengers are randomly boarded
within these sections. Our model suggests that this approach
may be a good choice to reduce infection transmissions during
boarding. We find a similar pattern of results for the 144-seat
Airbus A320 seating configuration as well as the 182-seat
Boeing 757-200 seating configuration [see Figs. 3(a) and 3(b)].
In these simulations (Figs. 3-5) the airplanes contain a single
Ebola-infected passenger with infectivity, corresponding to
one day of infection in an unidentified seating location with a
contact radius of 1.2 m.

We followed a similar approach for the deplaning strategies.
We found that deplaning had a smaller impact on infection
dynamics because of the lower number of new contacts and
lower time of exposure during the comparatively faster pro-
cess. In Fig. 4 we show a comparison of deplaning strategies for
the 182-seat Boeing 757 seating configuration. The different
deplaning strategies such as alternating columns, alternating
rows, zonewise, and baseline (closest to exit are out first)
result in a similar number of mean infective individuals. When
we compare the probabilities, alternate rows and baseline

0.20 -
—&— Random

0.18 - )
£ 0.16 - —&— Two sections
'§ 0.14 —©O— Three sections
€012 4 —&— Columnwise
5 .
> 0.10 - ---%--- Worst case scenario
F 0.08 -
2 006 -
<4
a 0.04 -

0.02 -4

0.00 g O

0 2 4 6 8 10 12 22 24
Number on newly infected passengers

FIG. 5. Infection distribution profile for combined baseline egress
with different boarding strategies for a 182-seat Boeing 757.
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g —*—day7
2
E’ 0.20 - —6—day 9
©
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€ "

of newly i p gers

FIG. 6. Infection distribution profile varying the days of infection
for the index case. A three-zone boarding strategy for a 182-
passenger-seating configuration is used for these simulations.

strategies are marginally better. In Fig. 5 we compute the
mean infective individuals by combining the egress, ingress,
and in-plane movement. It is apparent that other pedestrian
movement strategies can be better than the boarding using
multiple zones. We show the worst case situation where an
infected individual with peak infectivity is seated at a location
that results in the highest number of contacts.

There is an inherent uncertainty in the human movement be-
havior as well as the stochasticity in the infection model. Many
parameters affect the simulations, including airplane size and
seating arrangement, the number of infective passengers, the
infectivity characterized by days post onset of symptoms, the
radius of infection, which in turn depends on transmission
mechanics (e.g., coughing and talking), and the susceptibility
of population. It is necessary to assign values for some of these
parameters for deterministic analysis, however the uncertainty
in these parameters needs to be quantified to assess effective
air-travel policies under a broad set of conditions. We have
studied the variations in some of those parameters.

According to the CDC, data on nonfatal Ebola infection
lasts for 21 days post onset of symptoms, with highest virus
shedding rates and correspondingly highest infectivity in days
3-5 of disease development [23]. The three-zone-boarding
simulations are repeated by varying the number of days
of infection for an infective person as we show in Fig. 6.
The number of mean newly infected passengers clearly
varies with the infectivity of the index passenger. During
a known outbreak, reported infected passengers will most
likely be grounded for further monitoring, but there have been
three cases of potentially newly infected passengers travel-
ing through commercial airplanes from the 2014 epidemic
[11-13]. A medical professional traveled in two commercial
airplanes on October 10 and October 13, 2014 within the
United States [11]. The index case was tested and confirmed
to be infected on October 15; however, it is uncertain if the
person was infectious and exhibiting symptoms during the
travel dates. Contact tracing indicated no further infections.
According to our simulations, the probability of zero new
infected cases is about 7% with a fully loaded flight. Note that
there was a large number of vacant seats in one of the flights,
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FIG. 7. Infection distribution profile varying the contact radius
for infection transmission. A three-zone boarding strategy for a 182-
passenger-seating configuration is used for these simulations.

which would have increased this probability. We cannot make
a direct comparison because it is not known if the index case
was infectious [11].

Another critical model parameter is the contact radius,
which is the minimum distance at which a susceptible
passenger in the proximity of the infective individual can
be potentially infected. The distance to which particles travel
depends on the particle size and associated fluid mechanics
in expiratory events such as coughing and talking [24].
Experimental investigations measure particle size in these
expiratory events to be in the range of 0.1-10 pm [25-27].
Droplets emanating from cough of 30 pm and smaller have
been estimated to travel over 2 m [24,27]. The transmission
distance also depends on specific disease, for example, SARS
has been transmitted by short-range droplet-based as well as
longer-range airborne mechanisms [28]. The primary mode of
transmission for Ebola is through contact droplets, but studies
with monkeys indicate possible transfer through aerosols
[29]. Mangili and Gendreau [30] indicate large-droplet and
airborne mechanisms are possibly highest risk transmission
mechanisms during air travel.

We account for the effect of environmental variation and
transmission methods on the contact radius by varying it from
0.6 m (24 in.) to 2.1 m (84 in.), as we show in Fig. 7. The
typical seat width on airplanes is 18 in. (0.45 m). We consider
a distance between passenger particles of 24 in. (0.61 m) as
a touching distance. The lower end of the range in Fig. 7
signifies a contact-based and large-droplet mechanism, while
a larger contact radius may be more relevant for aerosol-based
mechanisms. As expected, the number of newly infected
passengers is lower when the contact radius is lower.

Next we considered the size and the seating capacity of
the airplane. In Fig. 8 we show the effect of airplane size
with a random boarding strategy. Smaller airplanes such
as CRJ-200 are better in reducing the spread of infection
compared to larger capacity airplanes; however, the advantage
with smaller seating capacity of airplanes quickly vanishes as
the number of seats increase beyond 150. The smaller size of
the susceptible population, the lower number of susceptible

PHYSICAL REVIEW E 00, 002300 (2017)

03 -
@ CRj 200 {50 seats}

0.25 —&— Airbus 320 (144 seats)

—A— Boeing 757-200 (182 seats)
02 - % Boenig 757-200 {200 seats)

—&— Boeing 757-300 {243 seats)

Probability of infection

0.05 -

0 1 2 3 4 5 6 7 8
Number of newly infetced passengers

FIG. 8. Infection distribution profile for random boarding strat-
egy, varying the airplane size.

individuals within a given contact radius, and the reduced time
of in-plane movement are some of the factors that benefit
smaller airplanes.

The improvements obtained for individual flights by these
policy changes can benefit substantially over the course of
an epidemic. For example, consider the case of the 2014
Ebola epidemic: Bogoch et al. [14] estimate that without travel
restrictions, 41 750 would have used air travel for international
destinations in a given month from the highly affected
countries of Liberia, Sierra-Leone, and Guinea. This is based
on data from September to December 2013. They estimate
that under these conditions, without travel restrictions, 7.17
infected travelers per month would travel outbound from
these countries. Note that travel restrictions have resulted in
very few cases of Ebola-infected travelers using commercial
airplanes. We aggregate our model results based on the data
from [14]. We assume that all the passengers traveling are
divided equally between the A320 and Boeing 757 seating
configurations considered in Fig. 3 and move according to
strategies discussed earlier (Figs. 3-5). The mean number
of infective individuals and the probability of infection is
computed as described earlier and aggregated per month. Our
model suggests that there is a 67% probability of generating
more than 20 new air-travel-related infections per month
using the default boarding strategies with these 144- and
182-seat-configuration airplanes. This can be reduced to less
than 40% by using the better pedestrian movement strategies
suggested in Figs. 3 and 4. In addition, exclusive use of small
50-seat airplanes further reduces the probability of generating
20 infected individuals to 13% probability.

IV. SUMMARY

A multiscale model combining social-force-based pedes-
trian dynamics and the metapopulation stochastic infection
dynamics model has been formulated. The model is used
to study the dynamics of Ebola virus infection on airplanes
specifically during pedestrian movement related to boarding
and disembarkation. Specific air-travel-related policies that
potentially mitigate diseases spread are identified. The mod-
eling approach developed here is generic and can be readily
modified to other directly transmitted infectious diseases and
dense pedestrian spaces.
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