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ABSTRACT

Banach’s fixed point theorem for contraction maps has been widely
used to analyze the convergence of iterative methods in non-convex
problems. It is a common experience, however, that iterative maps
fail to be globally contracting under the natural metric in their
domain, making the applicability of Banach’s theorem limited. We
explore how generally we can apply Banach’s fixed point theorem
to establish the convergence of iterative methods when pairing it
with carefully designed metrics.

Our first result is a strong converse of Banach’s theorem, show-
ing that it is a universal analysis tool for establishing global conver-
gence of iterative methods to unique fixed points, and for bounding
their convergence rate. In other words, we show that, whenever
an iterative map globally converges to a unique fixed point, there
exists a metric under which the iterative map is contracting and
which can be used to bound the number of iterations until conver-
gence. We illustrate our approach in the widely used power method,
providing a new way of bounding its convergence rate through
contraction arguments.

We next consider the computational complexity of Banach’s
fixed point theorem. Making the proof of our converse theorem
constructive, we show that computing a fixed point whose existence
is guaranteed by Banach’s fixed point theorem is CLS-complete. We
thus provide the first natural complete problem for the class CLS,
which was defined in [9] to capture the complexity of problems
such as P-matrix LCP, computing KKT-points, and finding mixed
Nash equilibria in congestion and network coordination games.
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• Theory of computation → Problems, reductions and com-

pleteness; Complexity classes; Continuous optimization;
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1 INTRODUCTION

Several widely used computational methods are fixed point itera-
tion methods. These include gradient descent, the power iteration
method, alternating optimization, the expectation-maximization
algorithm, k-means clustering, and others. In several important
applications, we have theoretical guarantees for the convergence of
these methods. For example, convergence to a unique solution can
be guaranteed when the method is explicitly, or can be related to,
gradient descent on a convex function [2, 5, 21]. More broadly, con-
vergence to a stationary point can be guaranteed when the method
is, or can be related to, gradient descent; for some interesting recent
work on the limit points of gradient descent, see [19, 22] and their
references.

Another, more general, style of analysis for proving conver-
gence of fixed point iteration methods is via a potential (a.k.a. Lya-
punov) function. For example, analyzing the power iterationmethod
amounts to showing that, as time progresses, the unit vector main-
tained by the algorithm places more and more of its ℓ2 energy on
the principle eigenvector of the matrix used in the iteration, if it is
unique, or, anyways, on the eigenspace spanned by the principal
eigenvectors. In passing, it should also be noted that the power
iteration method itself is commonly used as a tool for establishing
the convergence of other fixed point iteration methods, such as
alternating optimization; e.g. [15].

Ultimately, all fixed point iteration methods aim at converging
to a fixed point of their iteration map. For global convergence to a
unique solution, it should also be the case that the fixed point of the
iteration map is unique. It is, thus, unsurprising that another widely
used approach for establishing convergence of these methods is
by appealing to Banach’s fixed point theorem. To recall, consider
an iteration map xt+1 ← f (xt ), where f : D → D, and suppose
that there is a distance metric d such that (D,d) is a complete
metric space and f is contracting with respect to d , i.e. for some
constant c < 1, d(f (x), f (y)) ≤ c · d(x ,y), for all x ,y ∈ D. Under
this condition, Banach’s fixed point theorem guarantees that there
is a unique fixed point x∗ = f (x∗). Moreover, iterating f is bound
to converge to x∗. Specifically, the t-fold composition, f [t ], of f
with itself satisfies: d(f [t ](x0),x∗) ≤ ctd(x0,x∗), for any starting
point x0.
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Given Banach’s theorem, if you established that your iteration
method is contracting under some distance metric d , you would
also have immediately proven that your method converges and
that it may only converge to a unique point. Moreover, you can
predict how many steps you need from any starting point x0 to
reach an approximate fixed point x satisfying d(f (x),x) < ϵ for
some accuracy ϵ .1 Alas, several widely used fixed point iteration
methods are not generally contracting, or only contracting in a
small neighborhood around their fixed points and not the entire
domain where they are defined. At least, this is typically the case
for the metric d under which approximate fixed points, d(f (x),x) <
ϵ , are sought. There is also quite an important reason why they
may not be contracting: several of these methods may in fact have
multiple fixed points.

Given the above motivation, our goal in this paper is to investi-

gate the extent to which Banach’s fixed point theorem is a universal
analysis tool for establishing that a fixed point iteration method both

converges and globally converges to a unique fixed point. More pre-
cisely, our question is the following: if an iterative map xt+1 ←
f (xt ) for some f : D → D converges to a unique fixed point x∗
from any starting point, is there always a way to prove this using
Banach’s fixed point theorem? Additionally, can we always use
Banach’s fixed point theorem to compute how many iterations we
would need to find an approximate fixed point x of f satisfying
d(x , f (x)) < ϵ , for some distance metric d and accuracy ϵ > 0?

We study this question from both a mathematical and a compu-
tational perspective. On the mathematical side, we show a strong
converse of Banach’s fixed point theorem, saying the following:
given an iterative map xt+1 ← f (xt ) for some f : D → D, some
distance metric d on D such that (D,d) is a complete and proper
metric space, and some accuracy ϵ > 0, if f has a unique fixed point
that the f -iteration converges to from any starting point, then for
any constant c ∈ (0, 1), there exists a distance metric dc on D such
that:

(1) dc certifies uniqueness and convergence to the fixed point,
by satisfying dc (f (x), f (y)) ≤ c · dc (x ,y), for all x ,y ∈ D;

(2) dc allows an analyst to predict how many iterations of f
would suffice to arrive at an approximate fixed point x satisfy-
ing d(x , f (x)) < ϵ ; notice in particular that we are interested
in finding an approximate fixed point with respect to the
original distance metric d (and not the constructed one dc ).

Our converse theorem is formally stated as Theorem 1 in Section 3.
In the same section we discuss its relationship to other known con-
verses of Banach’s theorem known in the literature, in particular
Bessaga’s and Meyers’s converse theorems. The improvement over
these converses is that our constructed metric dc is such that it
allows us to bound the number of steps requied to reach an ap-
proximate fixed point according to the metric of interest d and not
just dc ; namely Property 2 above holds. We discuss this further
in Section 3.3. Section 3.2 provides a sketch of the proof, and the
complete details can be found in the full version of the paper [10].

While the proof of Theorem 1 is non-constructive, it does imply
that Banach’s fixed point theorem is a universal analysis tool for
establishing global convergence of fixed point iteration methods

1Indeed, it can be easily shown that d (f [t+1](x0), f [t ](x0)) ≤ c td (x1, x0). So t =
log1/c

d (x1,x0)
ϵ steps suffice.

to unique solutions. Namely, it implies that one can always find a
witnessing metric. We illustrate this by studying an important such
method: power iteration. The power iteration method is a widely-
used and well-understood method for computing the eigenvalues
and eigenvectors of a matrix. It is well known that if a matrix A
has a unique principal eigenvector, then the power method starting
from a vector non-perpendicular to the principal eigenvector will
converge to it. This is shown using a potential function argument
outlined above which also pins down the rate of convergence.

Our converse to Banach’s theorem, guarantees that, besides the
potential function argument, there must also exist a distance met-
ric under which the power iteration is a contraction map. Such a
distance metric is not obvious, as contraction under any ℓp -norm
fails; we provide counter-examples in Section 4. To illustrate our
theorem, we identify a new distance metric under which the power
method is indeed contracting at the optimal rate. See Proposition 1.
Our distance metric serves as an alternative proof for establish-
ing that the power iteration converges and for pinning down its
convergence rate.

We close the circle by studying Banach’s fixed point theorem
from a computational standpoint. Recent work of Daskalakis and
Papadimitriou [9] has identified a complexity class, CLS, where
finding a Banach fixed point lies. CLS, defined formally in Section 5,
is a complexity class at the intersection of PLS [17] and PPAD [23].
Roughly speaking, PLS contains total problems whose existence
of solutions is guaranteed by a potential function argument, while
PPAD contains total problems whose existence of solutions is guar-
anteed by Brouwer’s fixed point theorem. Lots of interesting work
has been done on both classes in the past two decades; for a small
sample see e.g. [1, 6, 8, 12, 13, 25, 26] and their references. CLS,
lying in the intersection of PLS and PPAD, contains comptutational
problems whose existence of solutions is guaranteed by both a
potential function and a fixed point argument.2

Unsurprisingly CLS contains several interesting problems, whose
complexity is not known to lie in P, but which also are unlikely
to be complete for PPAD or PLS. One of these problems is finding
a Banach fixed point. Others include the P-matrix Linear Com-
plementarity Problem, finding mixed Nash equilibria of network
coordination and congestion games, computational problems re-
lated to finding KKT points, and solving Simple Stochastic Games;
see [9] for precise definitions of these problems and for references.
Moreover, recent work has provided cryptographic hardness results
for CLS [16] based on obfuscation, extending work which proved
cryptographic hardness results for PPAD [4, 18, 24].

Ultimately, the definition of CLS was inspired by a vast range of
total problems that could not be properly classified as complete in
PPAD or PLS due to the nature of their totality arguments. However,
no natural complete problem for this class has been identified, be-
sides Continuous LocalOpt, through which the class was defined.
By making our converse to Banach’s fixed point theorem construc-
tive, we show that finding a Banach fixed point is CLS-complete.
More precisely, in Section 5 we define problem Banach, whose
input is a continuous function f and a continuous metric d , and
whose goal is to either output an approximate fixed point of f or a
2More precisely, it contains all problems reducible to Continuous LocalOpt, defined
in Section 5, and which doesn’t necessarily capture the whole intersection of PPAD
and PLS.

45



A Converse to Banach’s Fixed Point Theorem and Its CLS-Completeness STOC’18, June 25–29, 2018, Los Angeles, CA, USA

violation of the contraction of f with respect to d . In Theorem 2
we show that Banach is CLS-complete.3

Further Related Work. We note that contemporaneously and in-
dependently from our work, Fearnley et al. [14] have also identified
a CLS-complete problem related to Banach’s fixed point theorem.
Their problem, called MetametricContraction, takes as input a
function f and ametametricd , and asks to find an approximate fixed
point of f , or a violation of the contraction of f with respect to d .
In comparison to our CLS-completeness results, the CLS-hardness
of Banach in our paper is stronger than that of MetametricCon-
traction as the input to Banach is a metric. On the other hand,
the containment ofMetametricContraction into CLS is stronger
than the containment of Banach, as Banach is polynomial-time
reducible to MetametricContraction.

2 NOTATION AND PRELIMINARIES

Basic Notation We use R+ to refer to set of non-negative real
numbers and N1 is the set of natural numbers except 0. We call a
function f selfmap if it maps a domain D to itself, i.e. f : D → D.
For a selfmap f we use f [n] to refer to the n times composition f
with it self, i.e. f (f (. . . f (·)))︸           ︷︷           ︸

n times

.

We use ∥·∥p to refer to the ℓp norm of a vector in Rn . We use
D/∼ to refer to the set of equivalence classes of the equivalence
relation ∼ on a set D. Finally, we use S∗ to refer to the Kleene star
of a set S .

A real valued function д : D2 → R is called symmetric if
д(x ,y) = д(y,x) and anti-symmetric if д(x ,y) = −д(y,x).

Topological Spaces, we define the notion of: topology, topo-
logical spaces, open sets, closed sets, interior of a set A, denoted
Int(A), closure of a set A, denoted Clos(A).

Metric Spaces, we define the notion of: distance metric, metric
space, diameter, bounded metric space, continuous function, open
and closed sets in a metric space, compact set, locally compact
metric space, proper metric space, open and closed balls, Cauchy
sequence, complete metric space, equivalent metrics, continuity,
Lipschitz continuity, contraction property, fixed point.

Because of its importance for the rest of the paper we also give
here the definition of a distance metric and metric space.

Definition 1. Let D be a set and d : D2 → R a function with
the following properties:

(i) d(x ,y) ≥ 0 for all x ,y ∈ D.
(ii) d(x ,y) = 0 if and only if x = y.
(iii) d(x ,y) = d(y,x) for all x ,y ∈ D.
(iv) d(x ,y) ≤ d(x , z) + d(z,x) for all x ,y, z ∈ D. This is called

triangle inequality.
Then we say that d is a metric on D, and (D,d) is a metric space.

3It is worth pointing out that, while some problems in CLS (e.g. Banach fixed points,
simple stochastic games) have unique solutions, most do not. Given that contraction
maps have unique fixed points, the way we bypass the potential oxymoron, is by
accepting as solutions violations of contraction.

Basic Iterative Procedure. If a selfmap f has a fixed point and is
continuous, we can define the following sequence of points xn+1 =
f (xn ) where the starting point x0 can be picked arbitrarily. If (xn )
converges to a point x̄ then

lim
n→∞

xn+1 = lim
n→∞

f (xn ) ⇒ lim
n→∞

xn+1 = f
(
lim
n→∞

xn
)
⇒ x̄ = f (x̄).

This observation implies that a candidate procedure for computing
a fixed point of a selfmap f is to iteratively apply the function f
starting from an arbitrary point x0. If this procedure converges
then the limit is a fixed point x∗ of f . We will refer to this method
of computing fixed points as the Basic Iterative Procedure.

Arithmetic Circuits. In Section 5 we work with functions from
continuous domains to continuous domains represented as arith-
metic circuits. An arithmetic circuit is defined by a directed acyclic
graph (DAG). The inputs to the circuit are in-degree 0 nodes, and the
outputs are out-degree 0 nodes. Each non-input node is a gate from
the set {+,−, ∗,max,min, >}, performing an operation on the out-
puts of its in-neighbors. The meaning of the “>” gate is > (x ,y) = 1
if x > y and 0 otherwise. We also allow “output a rational constant”
gates. These are gates without any inputs, which output a rational
constant.

3 CONVERSE BANACH FIXED POINT

THEOREMS

We start, in Section 3.1, with an overview of known converses to
Banach’s fixed point theorem. We also explain why these converses
are not enough to prove that Banach’s fixed point theorem is a
universal tool for analyzing the convergence of iterative algorithms.
Then, in Section 3.2, we prove a stronger converse theorem that
demonstrates the universality of Banach’s fixed point theorem for
the analysis of iterative algorithms. Before beginning, we formally
state Banach’s fixed Point Theorem. A useful survey of the applica-
tions of this theorem can be found in [7].

Banach’s Fixed Point Theorem. Suppose d is a distance metric

function such that (D,d) is a complete metric space, and suppose that

f : D → D is a contraction map according to d , i.e.

d(f (x), f (y)) ≤ c · d(x ,y),∀x ,y, for some c < 1. (1)

Then f has a unique fixed point x∗ and the convergence rate of the Ba-

sic Iterative Procedure with respect to d is c . That is, d(f [n](x0),x∗) <
cn · d(x0,x∗), for all x0.

3.1 Known Converses to Banach’s Fixed Point

Theorem

The first known converse to Banach’s fixed point theorem is the
following [3].

Bessaga’s Converse Theorem. Let f be a map from D to itself,

and suppose that f [n] has unique fixed point for every n ∈ N1. Then,
for every constant c ∈ (0, 1), there exists a distance metric dc such

that (D,dc ) is a complete metric space and f is a contraction map

with respect to dc with contraction constant c .

The implication of the above theorem is that, if we want to prove
existence and uniqueness of fixed points of f [n] for all n, then
Banach’s fixed point theorem is a universal way to do it. Moreover,
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there is a potential function of the form p(x) = dc (x , f (x)), where
dc is a distance metric, that decreases under successive applications
of f , and successive applications of f starting from any point x0
are bound to converge to the unique fixed point of f .

Unfortunately, dc cannot provide any information about the
number of steps that the Basic Iterative Procedure needs before
computing an approximate fixed point under some metric d of
interest. The reason is that, after logc ε steps of the Basic Iterative
Procedure, we only have dc (xn , f (xn )) ≤ ε . However, dc might not
have any relation to d , hence an approximate fixed point under
dc may not be one for d . So Bessaga’s theorem is not useful for
bounding the running time of iterative methods for approximate
fixed point computation.

Given the above discussion, it is reasonable to expect that a con-
verse to Banach’s theorem that is useful for bounding the running
time of approximate fixed point computation methods should take
into account, besides the function f and its domainD, the distance
metric d under which we are interested in computing approximate
fixed points. One step in this direction has already been made by
Meyers [20].

Meyers’s Converse Theorem. Let (D,d) be a complete metric

space, where D is compact, and suppose that f : D → D is con-

tinuous with respect to d . Suppose further that f has a unique fixed

point x∗, that the Basic Iterative Method converges to x∗ from any

starting point, and that there exists an open neighborhood U of x∗

such that f [n](U ) → {x∗}. Then, for any c ∈ (0, 1), there exists a
distance metric dc , which is topologically equivalent to d , such that

(D,dc ) is a complete metric space and f is a contraction map with

respect to dc with contraction c .

Compared to Bessaga’s theorem, the improvement offered by
Meyer’s Theorem is that, instead of the existence of an arbitrary
metric, it proves the existence of a metric that is topologically
equivalent to themetricd . However, this is still not enough to bound
the number of steps needed by the Basic Iterative Procedure in
order to arrive at a point xn such that d(xn , f (xn )) ≤ ε . Our goal
in the next section is to close this gap. We will also replace the
compactness assumption with the assumption that (D,d) is proper,
so that the converse holds for unbounded spaces.

3.2 A New Converse to Banach’s Fixed Point

Theorem

The main technical idea behind our converse to Banach’s fixed
point theorem is to adapt the proof of Meyers’s theorem to get a
distance metric dc with the property dc (x ,y) ≥ d(x ,y) everywhere,
except maybe for the region d(x ,x∗) ≤ ε . This implies that, if we
guarantee that dc (xn ,x∗) ≤ ε , then d(xn ,x∗) ≤ ε .

Theorem 1. Suppose (D,d) is a complete, proper metric space,

f : D → D is continuous with respect to d and the following hold:

(1) f has a unique fixed point x∗;

(2) for every x ∈ D, the sequence (f [n](x)) converges to x∗ with
respect to d ; moreover there exists an open neighborhood U of

x∗ such that f [n](U ) → {x∗}.
Then, for every c ∈ (0, 1) and ε > 0, there exists a distance metric

function dc,ε that is topologically equivalent to d and is such that

(D,dc,ε ) is a complete metric space and

∀x ,y ∈ D : dc,ε (f (x), f (y)) ≤ c · dc,ε (x ,y); (2a)
∀x ,y ∈ D : dc,ε (x ,y) ≤ ε =⇒ min{d(x∗,x),d(x∗,y),d(x ,y)} ≤ 2ε .

(2b)

Remark. Notice that the continuity of f is a necessary assump-
tion for the above statement to hold, as (2a) implies continuity given
that dc,ε and d are topologically equivalent. Also the condition 2.
of the theorem is implied by the existence of dc,ε and it is not true
even if f [n](x) → x∗ for any n ∈ N, since counter examples exist.
Therefore this assumption is also necessary for our theorem to hold.

The proof of our Theorem 1 adapts the construction of Meyers’s
proof, to ensure that (2b) is satisfied. We give here a proof sketch
postponing the complete details to the full version of the paper [10],
where we repeat also all the technical details proven by Meyers
[20].

Proof Sketch. The construction of the metric dc follows is
done in three steps:

I. Starting from the original metric d , a non-expanding closure
of d is defined as the metric

dM (x ,y) = sup
i≥0

d(f (i)(x), f (i)(y)).

This is topologically equivalent to d , but ensures that the
images of any two points are at least as close in dM as the
original two points (non-expanding property).
Notice that as dM (x ,y) ≥ d(x ,y) for all points x ,y ∈ D, if
we ensure that Property (2b) holds with respect to dM for the
final constructed metric dc,ε , it will also hold with respect
to the original metric d .

II. Given dM , the construction proceeds by defining a function
ρc,ε which satisfies (2a). This function achieves contraction
by a constant c < 1 by counting the number of steps required
to reach an ε-ball close to the fixed point.
While for the original proof of Meyer any such ε-ball suffices,
in order to guarantee Property (2b), our proof requires a set
S of points with small diameter with respect to d such that
performing an iteration of f on any one of them results in a
point still in the set S . In the full version of the paper [10],
we show that such a set always exists. This guarantees that

ρc,ε (x ,y) ≥ dM (x ,y), if max{d(x∗,x),d(x∗,y)} ≥ ε,

and therefore Property (2b) is preserved.
The function ρc,ε satisfies all required properties other than
triangle inequality and thus is not a metric. However, it can
be converted into one.

III. Given ρc,ε , we construct the sought after metric dc,ε by
taking it equal to the ρc,ε -geodesic distance (metric closure
of ρc,ε ). This directly converts ρc,ε into a metric. In the full
version of the paper [10], we show that after this operation
Properties (2a) and (2b).

□

3.3 Corollaries of Theorem 1

Property (2b) of the metric output by Theorem 1 has some interest-
ing corollaries that we would not be able to get using the known
converses to Banach’s theorem discussed in Section 3.1. The first
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one is that we can now compute, from dc,ε , the number of iterations
needed in order to get to within ε of the fixed point x∗ of f from
any starting point x0 ∈ D.

Corollary 1. Under the assumptions of Theorem 1, starting from

a point x0 ∈ D, and for any constant c ∈ (0, 1), the Basic Iterative
Procedure finds a point x such that d(x ,x∗) ≤ ε after

log(dc,ε/2(x0, f (x0))) + log((2 − 2c)/ε)
log(1/c)

iterations, where dc,ε/2 is the metric guaranteed by Theorem 1.

In Corollary 1, for any given ε of interest, we have to identify a
different distance metric dc,ε/2, guaranteed by Theorem 1, to bound
the number of steps required by the Basic Iterative Procedure to get
to within ε from the fixed point. Sometimes we are interested in the
explicit tradeoff between the number of steps required to get to the
proximity of the fixed point and the amount of proximity ε . To find
such a tradeoff we have to make additional assumptions on f . A
mild assumption that is commonly satisfied by iterative procedures
for non-convex problems is that the Basic Iterative Procedure locally
converges to the fixed point x∗. That is, if x0 is appropriately close
to x∗, then the Basic Iterative Procedure converges. A common way
of proving local convergence is to prove that f is a contraction
with respect to d locally for x ,y ∈ B̄(x∗, ε). Theorem 1 provides a
way to extend this local contraction property to the whole domain
D and get an an explicit closed form of the tradeoff between the
number of steps and ε , as implied by the following result.

Corollary 2. Under the assumptions of Theorem 1, and the as-

sumption that there exists 0 < c < 1, δ > 0 such that

d(f (x), f (y)) ≤ c · d(x ,y) for all x ,y ∈ B̄(x∗,δ ),

starting from any point x0 ∈ D, the Basic Iterative Procedure finds a

point x such that d(x ,x∗) ≤ ε after

log(dc,δ/2(x0, f (x0))) + log(1/ε) + log(1 − c) + 1
log(1/c)

+ 1

iterations, where dc,δ/2 is the metric guaranteed by Theorem 1.

4 EXAMPLE: THE POWER ITERATION AS A

CONTRACTION MAP

The results of the previous section imply that Banach’s fixed point
theorem is a universal analysis tool for establishing global conver-
gence of fixed point iteration methods to unique solutions. While
the proof of Theorem 1 is non-constructive, it does imply that one
can always find a witnessing metric under which the iterative map
is contracting.

In this section, we illustrate this possibility by studying an im-
portant iterative method, the power iteration. The power iteration
method is a widely-used and well-understood method for comput-
ing the eigenvalues and eigenvectors of a matrix. For a given matrix
A, it is defined as:

xt+1 =
Axt
∥Axt ∥2

It is well known that if a matrixA has a unique principal eigenvec-
tor, then the powermethod starting from a vector non-perpendicular
to the principal eigenvector will converge to it. This is shown using

a potential function argument which also pins down the rate of
convergence.

Our converse to Banach’s theorem, guarantees that, besides the
potential function argument, there must also exist a distance metric
under which the power iteration is a contraction map. To illustrate
our theorem, we identify a new distance metric under which the
power method is indeed contracting at the optimal rate.

Such a distance metric is not obvious. As the following coun-
terexample shows, contraction under any ℓp -norm fails.

Counterexamples for ∥·∥p . We show a counter example for ℓ2
norm which directly extends to any ℓp norm. In particular, let n = 2,
λ1 = 2, λ2 = 1 and the corresponding eigenvectors be e1 = (1, 0)
and e2 = (0, 1). The power iteration is given by f (x) = (2x1,x2)√

4x 2
1+x

2
2

.

We set x =
(
1√
5
, 2√

5

)
and y =

(
1√
10
, 3√

10

)
. We get that

∥ f (x) − f (y)∥2 =

( 1
√
2
,
1
√
2

)
−

(
2
√
13
,

3
√
13

)
2
≥ 0.19.

and

∥x −y∥2 =

( 1
√
5
,
2
√
5

)
−

(
1
√
10
,

3
√
10

)
2
≤ 0.14

and therefore ∥ f (x) − f (y)∥2 > ∥x −y∥2.
Even though contraction is not achieved under any ℓp -norm, it

is possible to construct a metric under which power iteration is con-
tracting even at the optimal rate which is given by the ratio of the
two largest eigenvalues of matrix A. Our next theorem constructs
such a metric.

Proposition 1. Let A ∈ Rn×n be a matrix with left eigenvector-

eigenvalue pairs (λ1,v1), ..., (λn ,vn ) such that λ1 > λ2 ≥ ... ≥ λn .

Then the power iteration, xt+1 = f (xt ) ≜
Axt
∥Axt ∥

is contracting under

the metric d(x ,y) =
 x
⟨x ,v1 ⟩

−
y

⟨y,v1 ⟩


2
with contraction constant

λ2/λ1, i.e. for all x ,y ∈ Rn :

d(f (x), f (y)) ≤
λ2
λ1

d(x ,y).

Moreover, t =
log(d (x0,v1)/ε )

log(λ1/λ2) iterations suffice to have ∥xt −v1∥2 ≤

d(xt ,v1) ≤ ε .

Proof. For any vector x , it holds that ⟨Ax ,v1⟩ = λ1⟨x ,v1⟩.We
have that

d(f (x), f (y)) =

 Ax

⟨Ax ,v1⟩
−

Ay

⟨Ay,v1⟩


2

=
1
λ1

A (
x

⟨x ,v1⟩
−

y

⟨y,v1⟩

)
2

≤
λ1
λ1

 x

⟨x ,v1⟩
−

y

⟨y,v1⟩


2

=
λ2
λ1

d(x ,y)

where the inequality is true as the vector x
⟨x ,v1 ⟩

−
y

⟨y,v1 ⟩
is per-

pendicular to the principal eigenvector v1. This shows that f is
contracting with respect to d as required.
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To convert a bound on the d metric to a bound on the error
with respect to the ℓ2 norm, we can see that at every step t > 0,
∥xt ∥2 = 1. If at some step t > 0, it holds that d(xt ,v1) ≤ ε , we get

ε2 ≥ d(xt ,v1)
2 =

 xt
⟨xt ,v1⟩

−v1

2
2
= ⟨xt ,v1⟩

−2 − 1⇒

⟨xt ,v1⟩ ≥
(
1 + ε2

)−1/2
.

This implies that

∥xt −v1∥
2
2 = 2(1 − ⟨xt ,v1⟩) ≤ 2

(
1 −

(
1 + ε2

)−1/2)
≤ ε2.

This guarantees that bounding the norm d by ε implies a bound of
ε on the ℓ2 norm between the principal eigenvector and the current
iterate xt .

Using these observations and following the same approach as
in Corollaries 1-2 we get the required bound on the number of
iterations. □

Notice, that the definition of the metric in Proposition 1 depends
on the principal eigenvector but not on any of the other eigenvec-
tors. When applied to show global convergence of Markov chains,
the principal eigenvector corresponds to the stationary distribution.
For a symmetric Markov chain whose stationary distribution is
uniform Proposition 1 implies that the iterations are contracting
directly with respect to the ℓ2 norm.

5 BANACH IS COMPLETE FOR CLS

As discussed in Section 1, the complexity class CLS was defined
in [9] to capture problems in the intersection of PPAD and PLS, such
as P-matrix LCP, mixed Nash equilibria of congestion and multi-
player coordination games, finding KKT points, etc. It also contains
computational variants of finding fixed points whose existence is
guaranteed by Banach’s fixed point theorem. In this section, we
close the circle by proposing two variants of Banach fixed point
computation that are both CLS-complete. Our CLS completeness
results are obtained by making our proof of Theorem 1 constructive.
We start with a formal definition of CLS, which is defined in terms
of the problem Continuous LocalOpt.

Definition 2. Continuous LocalOpt takes as input two func-
tions f : [0, 1]3 → [0, 1]3, p : [0, 1]3 → [0, 1], both represented as
arithmetic circuits, and two rational positive constants ε and λ. The
desired output is any of the following:
(CO1) a point x ∈ [0, 1]3 such that p(f (x)) ≥ p(x) − ε .
(CO2) two points x ,x ′ ∈ [0, 1]3 violating the λ-Lipschitz continuity

of f , i.e.
| f (x) − f (x ′)|1 > λ |x − x ′ |1.

(CO3) two points x ,x ′ violating the λ-Lipschitz continuity of p, i.e.
|p(x) − p(x ′)| > λ |x − x ′ |1.

The class CLS is the set of search problems that can be reduced to
Continuous LocalOpt.

Remark 1. As discussed in [9], both the choice of domain [0, 1]3
and the use of ℓ1 norm in the definition of the above problem are not

crucial, and high-dimensional polytopes as well as other ℓp norms

can also be used in the definition without any essential effect to the

complexity of the problem. Moreover, instead of the functions f and p
being provided in the input as arithmetic circuits there is a canonical

way to provide them in the input as binary circuits that define the

values of f and p on all points of some finite bit complexity, and

(implicitly) extend to the full domain via continuous interpolation.

In this way, we can syntactically guarantee the Lipschitz continuity

of both f and p and can remove (CO2) and (CO3) from the above

definition. For more details, please see [9], [8] and [11]. This remark

applies to all definitions in this section.

The variant of Banach’s theorem that is known to belong to CLS
is Contraction Map, defined as follows:

Definition 3 ([9]). ContractionMap takes as input a function
f : [0, 1]3 → [0, 1]3 represented as an arithmetic circuit and three
rational positive constants ε , λ, c < 1. The desired output is any of
the following (where d represents Euclidean distance):
(Oa) a point x ∈ [0, 1]3 such that d(x , f (x)) ≤ ε
(Ob) two points x ,x ′ ∈ [0, 1]3 disproving the contraction of f

w.r.t. d with constant c , i.e.
d(f (x), f (x ′)) > c · d(x ,x ′)

(Oc) two points x ,x ′ ∈ [0, 1]3 disproving the λ-Lipschitz continu-
ity of f , i.e.
| f (x) − f (x ′)|1 > λ |x − x ′ |1.

Contraction Map targets fixed points whose existence is guar-
anteed by Banach’s fixed point theorem when f is a contraction
map with respect to the Euclidean distance. However, it doesn’t
capture the full generality of Banach’s theorem, since the latter can
be applied to any complete metric space. We thus define a more gen-
eral problem, Banach that: (i) still lies inside CLS, (ii) captures the
generality of Banach’s theorem, (iii) and in fact tightly captures the
complexity of the class CLS, by being CLS-complete. This problem
is defined as follows:

Definition 4. Banach takes as input two functions f : [0, 1]3 →
[0, 1]3 andd : [0, 1]3×[0, 1]3 → R represented as arithmetic circuits,
where d is promised to be a metric that is topologically equivalent
to the Euclidean distance and satisfy that ([0, 1]3,d) is a complete
metric space, and three rational positive constants ε , λ, c < 1. The
desired output is any of the following:
(Oa) a point x ∈ [0, 1]3 such that d(x , f (x)) ≤ ε
(Ob) two points x ,x ′ ∈ [0, 1]3 disproving the contraction of f

w.r.t. d with constant c , i.e.
d(f (x), f (x ′)) > c · d(x ,x ′)

(Oc) two points x ,x ′ ∈ [0, 1]3 disproving the λ-Lipschitz continu-
ity of f , i.e.
| f (x) − f (x ′)|1 > λ |x − x ′ |1.

(Od) four points x1,x2,y1,y2 ∈ [0, 1]3 with x1 , x2 and y1 , y2
disproving the λ-Lipschitz continuity of d(·, ·), i.e.

|d(x1,x2) − d(y1,y2)| > λ
(
|x1 − y1 |1 + |x2 − y2 |1

)
.

Remark 2. We remark that Banach is tightly related to Contrac-
tion Map defined above, with the following differences. First, instead

of Euclidean distance, the metric with respect to which f is purport-

edly contacting is provided as part of the input and it is promised to

be a metric. Second, we need to add an extra type of accepted solution

(Od), which is a violation of the Lipschitz property of that metric.

This is necessary to guarantee that the above problem has a solu-

tion of polynomial length for any possible input, and in particular
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is needed to place the above problem in CLS. (It is not needed for the

CLS-hardness.)

Our main result is the following:

Theorem 2. Banach is CLS-complete.

We give here a sketch of the proof of Theorem 2 and we present
the full proof in the full version of the paper [10].

Proof Sketch. Since the inclusion to CLS is a simple argument
very similar to the argument from [9] that shows thatContraction
Map belongs to CLS, we focus here on the hardness proof.

We are given two functions f : [0, 1]3 → [0, 1]3, p : [0, 1]3 →
[0, 1] and we want to find a contraction d : [0, 1]3 × [0, 1]3 → R
such that f is a contraction map with respect to d and the points
where p(f (x)) ≥ p(x) − ε are approximate fixed points of f with
respect to d .

The inspiration of this proof is to make the proof of Theorem 1
constructive in polynomial time. We therefore follow the steps of
the proof sketch of Theorem 1 as presented in Section 3.

Step I. Since we don’t have the strong requirement of Theorem
1 to output a metric that is topologically equivalent with some
given metric we can use in place of dM any metric d ′ such that f
is non-expanding with respect to d ′. Hence we can easily observe
that the discrete metric can be used as dM .

Step II. The construction of Theorem 1 uses in the definition of
d(x ,y) the number of times n(x), that we have to apply f on x in
order for f [n(x )](x) to come ε-close to the fixed point x∗ of f . Of
course n(x) is not a quantity that can be computed in polynomial
time. Instead we show that it suffices to use an upper bound on
n(x) which we can get using the potential function, namely p(x)/ε .
Of course the operations that we are allowed to use to describe d
as an arithmetic circuit are limited and this step appears to need
more expressive power that the simple arithmetic operations that
we are allowed to use. We give a careful construction that bypasses
these difficulties and completes this step of the proof.

Steps III. This step of Theorem 1 is highly non-constructive and
hence we cannot hope to replicate it in polynomial time. But we
prove that our carefully designed metric already has the triangle
inequality and hence the transitive closure step is not necessary.

The last part of our proof is to show that the constructed circuit of
d is actually Lipschitz with a relatively small Lipschitz constant if
the potential function p is Lipschitz. That is, we have to show that
the circuit of d does not need some time exponentially many bits
with respect to the size of the circuits of p and the magnitude of the
constant 1/ε . Not surprisingly we observe that in order to succeed
to this task we have to set approximately c = 1 − ε . This is natural
to expect, since if we could set a much lower contraction constant
then we could find the approximate fixed point of f in much less
that poly(1/ε) steps which cannot hold given that CLS , FP. □

ACKNOWLEDGMENTS

The authors were supported by NSF CCF-1551875, CCF-1617730,
CCF-1650733, and a Simons Graduate Research Fellowship.

REFERENCES

[1] Omer Angel, Sébastien Bubeck, Yuval Peres, and Fan Wei. 2017. Local max-cut
in smoothed polynomial time. In Symposium on Theory of Computing (STOC).

[2] Aharon Ben-Tal and Arkadi Nemirovski. 2001. Lectures on modern convex opti-

mization: analysis, algorithms, and engineering applications. SIAM.
[3] C. Bessaga. 1959. On the converse of Banach "fixed-point principle". Colloquium

Mathematicae 7, 1 (1959), 41–43.
[4] Nir Bitansky, Omer Paneth, and Alon Rosen. 2015. On the cryptographic hardness

of finding a nash equilibrium. In Foundations of Computer Science (FOCS), 2015

IEEE 56th Annual Symposium on. IEEE, 1480–1498.
[5] Stephen Boyd and Lieven Vandenberghe. 2004. Convex optimization. Cambridge

university press.
[6] Xi Chen, Xiaotie Deng, and Shang-Hua Teng. 2009. Settling the complexity of

computing two-player Nash equilibria. Journal of the ACM (JACM) 56, 3 (2009),
14.

[7] Keith Conrad. 2014. The contraction mapping theorem. Expository paper. Univer-
sity of Connecticut, College of Liberal Arts and Sciences, Department of Mathematics

(2014).
[8] Constantinos Daskalakis, Paul W Goldberg, and Christos H Papadimitriou. 2009.

The complexity of computing a Nash equilibrium. SIAM J. Comput. 39, 1 (2009),
195–259.

[9] Constantinos Daskalakis and Christos H. Papadimitriou. 2011. Continuous Local
Search. In Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on

Discrete Algorithms, SODA 2011, San Francisco, California, USA, January 23-25,

2011. 790–804. https://doi.org/10.1137/1.9781611973082.62
[10] Constantinos Daskalakis, Christos Tzamos, and Manolis Zampetakis. 2017. A

Converse to Banach’s Fixed Point Theorem and its CLS Completeness. arXiv
preprint arXiv:1702.07339 (2017).

[11] Kousha Etessami and Mihalis Yannakakis. 2007. On the Complexity of Nash
Equilibria and Other Fixed Points. In Foundations of Computer Science (FOCS).
IEEE.

[12] Michael Etscheid and Heiko Röglin. 2017. Smoothed analysis of local search for
the maximum-cut problem. ACM Transactions on Algorithms (TALG) (2017).

[13] Alex Fabrikant, Christos Papadimitriou, and Kunal Talwar. 2004. The complexity
of pure Nash equilibria. In Symposium on Theory of Computing (STOC). ACM.

[14] John Fearnley, Spencer Gordon, Ruta Mehta, and Rahul Savani. 2017. CLS: New
Problems and Completeness. arXiv preprint arXiv:1702.06017 (2017).

[15] Moritz Hardt. 2014. Understanding alternating minimization for matrix comple-
tion. In Foundations of Computer Science (FOCS), 2014 IEEE 55th Annual Symposium

on. IEEE, 651–660.
[16] Pavel Hubacek and Eylon Yogev. 2017. Hardness of continuous local search: Query

complexity and cryptographic lower bounds. In Proceedings of the Twenty-Eighth

Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, 1352–1371.
[17] David S. Johnson, Christos H. Papadimitriou, and Mihalis Yannakakis. 1988. How

Easy is Local Search? J. Comput. Syst. Sci. 37, 1 (1988), 79–100.
[18] Ilan Komargodski, Moni Naor, and Eylon Yogev. 2017. White-Box vs. Black-

Box Complexity of Search Problems: Ramsey and Graph Property Testing.. In
Electronic Colloquium on Computational Complexity (ECCC), Vol. 24. 15.

[19] Jason D. Lee, Max Simchowitz, Michael I. Jordan, and Benjamin Recht. 2016.
Gradient Descent Only Converges to Minimizers. In Proceedings of the 29th

Conference on Learning Theory, COLT 2016, New York, USA, June 23-26, 2016.
1246–1257.

[20] Philip R. Meyers. 1967. A converse to Banach’s contraction theorem. Jour-

nal of Research of the National Bureau of Standards Section B Mathematics and

Mathematical Physics 71B, 2 and 3 (apr 1967), 73.
[21] Yurii Nesterov. 2013. Introductory lectures on convex optimization: A basic course.

Vol. 87. Springer Science & Business Media.
[22] Ioannis Panageas and Georgios Piliouras. 2016. Gradient Descent Converges

to Minimizers: The Case of Non-Isolated Critical Points. CoRR abs/1605.00405
(2016).

[23] Christos H. Papadimitriou. 1994. On the Complexity of the Parity Argument and
Other Inefficient Proofs of Existence. J. Comput. Syst. Sci. 48, 3 (1994), 498–532.

[24] Alon Rosen, Gil Segev, and Ido Shahaf. 2016. Can PPAD Hardness be Based on
Standard Cryptographic Assumptions?. In Electronic Colloquium on Computa-

tional Complexity (ECCC), Vol. 23. 59.
[25] Aviad Rubinstein. 2016. Settling the complexity of computing approximate

two-player Nash equilibria. In Foundations of Computer Science (FOCS). IEEE.
[26] Alexander Skopalik and Berthold Vöcking. 2008. Inapproximability of pure Nash

equilibria. In Proceedings of the fortieth annual ACM symposium on Theory of

computing. ACM, 355–364.

50

https://doi.org/10.1137/1.9781611973082.62

	Abstract
	1 Introduction
	2 Notation and Preliminaries
	3 Converse Banach Fixed Point Theorems
	3.1 Known Converses to Banach's Fixed Point Theorem
	3.2 A New Converse to Banach's Fixed Point Theorem
	3.3 Corollaries of Theorem 1

	4 Example: The Power Iteration as a Contraction Map
	5 Banach is Complete for CLS
	References

