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Abstract layers, trained on ~1.28M labeled images over a period

Transfer learning is a powerful approach that allows
users to quickly build accurate deep-learning (Student)
models by “learning” from centralized (Teacher) mod-
els pretrained with large datasets, e.g. Google’s In-
ceptionV3. We hypothesize that the centralization of
model training increases their vulnerability to misclas-
sification attacks leveraging knowledge of publicly ac-
cessible Teacher models. In this paper, we describe our
efforts to understand and experimentally validate such at-
tacks in the context of image recognition. We identify
techniques that allow attackers to associate Student mod-
els with their Teacher counterparts, and launch highly
effective misclassification attacks on black-box Student
models. We validate this on widely used Teacher mod-
els in the wild. Finally, we propose and evaluate multi-
ple approaches for defense, including a neuron-distance
technique that successfully defends against these attacks
while also obfuscates the link between Teacher and Stu-
dent models.

1 Introduction

Deep learning using neural networks has transformed
computing as we know it. From image and face recog-
nition, to self-driving cars, knowledge extraction and re-
trieval, and natural language processing and translation,
deep learning has produced game-changing applications
in every field it has touched.

While advances in deep learning seem to arrive on a
daily basis, one constraint has remained: deep learning
can only build accurate models by training using large
datasets. This thirst for data severely constrains the num-
ber of different models that can be independently trained.
In addition, the process of training large, accurate mod-
els (often with millions of parameters) requires compu-
tational resources that can be prohibitive for individuals
or small companies. For example, Google’s InceptionV3
model is based on a sophisticated architecture with 48

of 2 weeks on 8 GPUs.

The prevailing consensus is to address the data and
training resource problem using transfer learning, where
a small number of highly tuned and complex centralized
models are shared with the general community, and in-
dividual users or companies further customize the model
for a given application with additional training. By us-
ing the pretrained teacher model as a launching point,
users can generate accurate student models for their ap-
plication using only limited training on their smaller
domain-specific datasets. Today, transfer learning is rec-
ommended by most major deep learning frameworks, in-
cluding Google Cloud ML, Microsoft Cognitive Toolkit,
and PyTorch from Facebook.

Despite its appeal as a solution to the data scarcity
problem, the centralized nature of transfer learning cre-
ates a more attractive and vulnerable target for attackers.
Lack of diversity has amplified the power of targeted at-
tacks in other contexts, i.e. increasing the impact of tar-
geted attacks on network hubs [21], supernodes in over-
lay networks [54], and the impact of software vulnerabil-
ities in popular libraries [71, 22].

In this paper, we study the possible negative implica-
tions of deriving models from a small number of cen-
tralized teacher models. Our hypothesis is that bound-
ary conditions that can be discovered in the white box
teacher models can be used to perform targeted misclas-
sification attacks against its associated student models,
even if the student models themselves are closed, i.e.
black-box. Through detailed experimentation and test-
ing, we find that this vulnerability does in fact exist in
a variety of the most popular image classification con-
texts, including facial and iris recognition, and the iden-
tification of traffic signs and flowers. Unlike prior work
on black-box adversarial attacks, this attack does not re-
quire repeated queries of the student model, and can in-
stead prepare the attack image based on knowledge of
the teacher model and any target image(s).
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Figure 1: Transfer learning. A student model is initial-
ized by copying the first N-1 layers from a teacher model,
with a new dense layer added for classification. The
model is further trained by only updating the last N-K
layers.

This paper describes several key contributions:

e We identify and extensively evaluate the practicality
of misclassification attacks against student models in
multiple transfer-learning applications.

e We identify techniques to reliably identify teacher
models given a student model, and show its effective-
ness using known student models in the wild.

e We perform tests to evaluate and confirm the effective-
ness of these attacks on popular deep learning frame-
works, including Google Cloud ML, Microsoft Cog-
nitive Toolkit (CNTK), and the PyTorch open source
framework initially developed by Facebook.

e We explore and develop multiple defense techniques
against attacks on transfer learning models, including
defenses that alter the student model training process,
that alter inputs prior to classification, and techniques
that introduce redundancy using multiple models.

Transfer learning is a powerful approach that ad-
dresses one of the fundamental challenges facing the
widespread deployment of deep learning. To the best of
our knowledge, our work is the first to extensively study
the inheritance of vulnerabilities between transfer learn-
ing models. Our goal is to bring attention to fundamen-
tal weaknesses in these models, and to advocate for the
evaluation and adoption of defensive measures against
adversarial attacks in the future.

2 Background

We begin by providing some background information on
transfer learning and adversarial attacks on deep learning
frameworks.

2.1 Transfer Learning

The high level idea of transfer learning is to transfer
the “knowledge” from a pre-trained Teacher model to

a new Student model, where the student model’s task
shares significant similarity to the teacher model’s. This
“knowledge” typically includes the model architecture
and weights associated with the layers. Transfer learning
enables organizations without access to massive datasets
or GPU clusters to quickly build accurate models cus-
tomized to their application context.

How Transfer Learning Works.  Figure 1 illustrates
transfer learning at a high level. The student model is ini-
tialized by copying the first N — 1 layers of the Teacher.
A new dense layer is added for classification. Its size
matches the number of classes in the student task. Then
the student model is trained using its own dataset, while
the first K layers are “frozen”, i.e. their weights are fixed,
and only weights in the last N — K layers are updated.

The first K layers (referred to as shallow layers) are
frozen during training because outputs of those layers al-
ready represent meaningful features for the student task.
The student model can reuse these features directly, and
freezing them lowers both training cost and amount of
required training data.

Based on the number of layers being frozen (K) during
the training process, transfer learning is categorized into
the following three approaches.

e Deep-layer Feature Extractor: N — 1 layers are frozen
during training, and only the last classification layer is
updated. This is preferred when the student task is
very similar to the teacher task, and requires minimal
training cost (the cost of training a single-layer DNN).

e Mid-layer Feature Extractor: The first K layers are
frozen, where K < N — 1. Allowing more layers to be
updated helps the student perform more optimization
for its own task. Mid-layer Feature Extractor typically
outperforms Deep-layer Feature Extractor in scenar-
ios where the student task is more dissimilar to the
teacher task, and more training data is available.

e Full Model Fine-tuning: All layers are unfrozen and
fine-tuned during student training (K = 0). This re-
quires more training data, and is appropriate when the
student task differs significantly from the teacher task.
Bootstrapping using pre-trained model weights helps
the student converge faster and potentially achieve bet-
ter performance than training from scratch [23].

We run a simple experiment to demonstrate the impact
of transfer learning. We target facial recognition, where
the student task is to recognize a set of 65 faces, and uses
a well-performing face recognition model called VGG-
Face [11] as teacher model. Using only 10 images per
class to train the student model, we achieve 93.47% clas-
sification accuracy. Training the student with the same
architecture but with random weights (no pre-trained
weights) produces accuracy close to random guessing.
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2.2 Adversarial Attacks in Deep Learning

The goal of adversarial attacks against deep learning net-
works is to modify input images so that they are misclas-
sified in the DNN. Given a source image, the attacker
applies a small perturbation so that it is misclassified by
the victim DNN into either a specific target class, or any
class other than the real class. Existing attacks fall into
two categories, based on their assumptions on how much
information attacker has about the classifier.

White-box Attacks. These attacks assume the at-
tacker knows the full internals of the classifier DNN,
including its architecture and all weights. It allows the
attacker to run unlimited queries on the model, until a
success adversarial sample is found [17, 36, 47, 41, 55].
These attacks often achieve close to 100% success with
minimal perturbations, since full access to the DNN al-
lows them to find the minimal amount of perturbations
required for misclassification. The white-box scenario is
often considered impractical, however, since few systems
reveal internals of their model publicly.

Black-box Attacks. Here attackers do not have
knowledge of the internals of the victim DNN, i.e. it
remains a black-box. The attacker is allowed to query
the victim model as an Oracle [46, 55]. Most black-
box attacks either use queries to test intermediate ad-
versarial samples and improve iteratively [55], or try to
reverse-engineer decision boundaries of the DNN and
build a replica, which can be used to craft adversarial
samples [46]. Black-box attacks often achieve lower suc-
cess than white-box attacks, and require a large number
of queries to the target classifier [55].

Adversarial attacks can also be categorized into far-
geted and non-targeted attacks. A targeted attack aims
to misclassify the adversarial image into a specific tar-
get class, whereas a non-targeted attack focuses on trig-
gering misclassification into any class other than the real
class. We consider and evaluate both targeted and non-
targeted attacks in this paper.

3 Attacks on Transfer Learning

Here, we describe our attack on transfer learning, begin-
ning with the attack model.

Attack Model. In the context of our definitions
in Section 2, our attack assumes white-box access to
teacher models (consistent with common practice today)
and black-box access to student models. We consider a
given attacker looking to trigger a misclassification from
a Student model S, which has been customized through
transfer learning from a Teacher model 7'.

o White-box Teacher Model. We assume that T is a
white-box, meaning the attacker knows its model ar-
chitecture and weights. Most or all popular models
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Figure 2: Illustration of our attack. Given images of a cat
and a dog, attacker computes perturbations that mimic
the internal representation of the dog image at layer K. If
the calculations are perfect, the adversarial sample will
be classified as dog, regardless of unknown layers in
SN_k.

today have been made publicly available to increase
adoption. Even if Teacher models became proprietary
in the future, an attacker targeting a single Teacher
model could obtain it by posing as a Student to gain
access to the Teacher model.

e Black-box Student Model. We assume S is black-box,
and all weights remain hidden from the attacker. We
also assume the attacker does not know the Student
training dataset, and can use only limited queries (e.g.,
1) to S. Apart from a single adversarial sample to trig-
ger misclassification, we expect no additional queries
to be made during the pre-attack process.

o Transfer Learning Parameters. We assume the at-
tacker knows that § was trained using 7" as a Teacher,
and which layers were frozen during the Student train-
ing. This information is not hard to learn, as many ser-
vice providers, e.g., Google Cloud ML, release such
information in their official tutorials. We further relax
this assumption in Sections 4 and 5, and consider sce-
narios where such information is unknown. We will
discuss the impact on performance, and propose tech-
niques to extract such information from the Student
using a few additional queries.

Insight and Attack Methodology. Figure 2 illustrates
the main idea behind our attack. Consider the scenario
where the attacker knows that the first K layers of the
Student model are copied from the Teacher and frozen
during training. Attacker perturbs the source image so
it could be misclassified as the same class of a specific
target image. Using the Teacher model, attacker com-
putes perturbations that mimic the internal representa-
tion of the target image at layer K. Internal representa-
tion is captured by passing the target image as input to
the Teacher, and using the values of the corresponding
neuron outputs at layer K.
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Our key insight: is that (in feedforward networks)
since each layer can only observe what is passed on from
the previous layer, if our adversarial sample’s internal
representation at layer K perfectly matches that of the
target image, it must be misclassified into the same la-
bel as the target image, regardless of the weights of any
layers that follow K.

This means that in the common case of feature ex-
tractor training, if we can mimic a target in the Teacher
model, then misclassification will occur regardless of
how much the Student model trains with local data.
We also note that some models like InceptionV3 and
ResNet50, where “shortcut” layers can skip several lay-
ers, are not strictly feedforward. However, the same prin-
ciple applies, because a block (consisting of several lay-
ers) only takes information from the previous block. Fi-
nally, it is hard in practice to perfectly mimic the internal
representation, since we are limited in our level of pos-
sible perturbation, in order to keep adversarial changes
indistinguishable by humans. The attacker’s goal, there-
fore, is to minimize the dissimilarity between internal
representations, given a fixed level of perturbation.
Targeted vs. Non-targeted Attacks. We consider
both targeted and non-targeted attacks. The goal in tar-
geted attacks is to misclassify a source image x; into the
class of a target image x;. The attacker focuses on a spe-
cific layer K of the Teacher model, and tries to mimic
the target image’s internal representation (neuron values)
at layer K. Let Tk(.) be the function (associated with
Teacher) transforming an input image to the internal rep-
resentation at layer K. A perturbation budget P is used
to control the amount of perturbation added to the source
image. The following optimization problem is solved to
craft an adversarial sample x/.

min  D(Tx(x)), Tx (x;))

1
st d(¥,x) <P )

The above optimization tries to minimize dissimilarity
D(.) between the two internal representations, under a
constraint to limit perturbation within a budget P. We
use L, distance to compute D(.). d(x',x;) is a distance
function measuring the amount of perturbation added to
xs. We discuss d(.) later in this section.

In non-targeted attacks, the goal is to misclassify x;
into any class different from the source class. To do this,
we need to identify a “direction” to push the source im-
age outside its decision boundary. In our case, it is hard
to estimate such a direction without having a target im-
age in hand, as we rely on mimicking hidden represen-
tations. Therefore, we perform a non-targeted attack by
evaluating multiple targeted attacks, and choose the one
that achieves the minimum dissimilarity between the in-
ternal representations. We assume that the attacker has
access to a set of target images I (each belonging to a

distinct class). Note that the source image can be mis-
classified to even classes outside the set /. The set of
images I merely serves as a guide for the optimization
process. Empirically, we find that even small sizes of set
I (just 5 images) can achieve high attack success. The
optimization problem is formulated as follows.

min - minie {D(Tk (x), T (x:i)) } @
st. d(xh,x;) <P
Measuring Adversarial Perturbations. As men-
tioned before, d(x},x;) is the distance function used to
measure the amount of perturbation added to the image.
Most prior work used the L, distance family, e.g., Ly, Lo,
and L., [17]. While a helpful way to quantify perturba-
tion, L, distance fails to capture what humans perceive
as image distortion. Therefore, we use another metric,
called DSSIM, which is an objective image quality as-
sessment metric that closely matches with the perceived
quality of an image (i.e. subjective assessment) [65, 66].
The key idea is that humans are sensitive to structural
changes in an image, which strongly correlates with their
subjective evaluation of image quality. To infer structural
changes, DSSIM captures patterns in pixel intensities, es-
pecially among neighboring pixels. The metric also cap-
tures luminance, and contrast measures of an image, that
would also impact perceived image quality. DSSIM val-
ues fall in the range [0, 1], where 0 means the image is
identical to the original image, and a higher value means
the perceived distortion will be higher. We include the
mathematical formulation of DSSIM in the Appendix.
We also refer interested readers to the original papers for
more details [65, 66].
Solving the Optimization Function. To solve the op-
timization in Equation 1, we use the penalty method [43]
to reformulate the optimization as follows.

min  D(Tx(x.), Ti (x;)) + A - (max (d(x,x,) — P, 0))?

Here A is the penalty coefficient that controls the tight-
ness of the privacy budget constraint. By gradually in-
creasing A, the final optimization result would converge
to that of the original formulation. In our experiment, we
empirically choose a A large enough to ensure the per-
turbation constraint is tightly enforced.

We use Adadelta [69] optimizer to solve the re-
formulated optimization problem. To constrain input
pixel intensity within the correct range ([0,255]), we
transform intensity values into tanh space [17].

4 Experimental Results

Next, we perform experiments across a number of clas-
sification tasks to validate the effectiveness of attacks on
transfer learning. Given their wide adoption in a variety
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of applications, we focus on image classification tasks,
including facial recognition, iris recognition, traffic sign
recognition and flower recognition.

4.1 Experimental Setup

Teacher and Student Models. We use four tasks and
their associated Teacher models and datasets to build our
victim Student models.

e Face Recognition classifies an image of a human face
into a class associated with a unique individual. The
Teacher is the popular 16 layer VGG-Face model [49]
trained on a dataset of 2.6M images to recognize
2,622 faces. The Student model is trained using the
PubFig dataset [8] to recognize a different set of 65
individuals!. The Student training dataset contains 90
faces belonging to each of the 65. The testing dataset
for the Student model contains 650 images (10 images
per class).

e Iris Recognition classifies an image of a human iris
into one of many classes associated with different in-
dividuals. The Teacher model is a 16 layer VGG16
model trained on the ImageNet dataset of 1.3M im-
ages [56]. The Student model is trained on the CASIA
IRIS dataset [2] containing 16,000 iris images asso-
ciated with 1,000 individuals, and the testing dataset
contains 4,000 images.

e Traffic Sign Recognition classifies different types
of traffic signs from images, which can be used
by self-driving cars to automatically recognize traf-
fic signs. The Teacher model is again the 16 layers
VGG16, trained on the ImageNet dataset. The Stu-
dent is trained using the GTSRB dataset [ 1] containing
39,209 images of 43 different traffic signs. It also has
a testing dataset of 12,630 images.

e Flower Recognition classifies images of flowers into
different categories, and is a popular example of multi-
class classification. It is also an example of transfer
learning by Microsoft’s CNTK framework [6]. The
Teacher model is the ResNet50 model (with 50 lay-
ers) [28], trained on the ImageNet dataset. The Stu-
dent is trained on the VGG Flowers dataset [9] con-
taining 6,149 images from 102 classes, and comes
with a testing dataset of 1,020 images.

These tasks represent typical scenarios users may face
during transfer learning. First, the training dataset for
building the Student model is significantly smaller than
that of the Teacher’s training dataset, which is a common
scenario for transfer learning. Second, the Teacher and
Student models either target similar tasks (Face Recog-
nition) or very different tasks (Flowers and Traffic Sign

I'The original dataset contains 83 celebrities. We exclude 18 celebri-
ties that were also used in the Teacher model.

Recognition). Finally, Face, Iris and Traffic sign recog-
nition are security-related tasks. More details of training
the Student models are listed in Table 2 in the Appendix.

Optimizing Student Models. We apply all three
transfer learning approaches (discussed in Section 2)
to each task, and identify the best approach. Table 1
shows the classification accuracy for different transfer
approaches. For Mid-layer Feature Extractor, we show
the result of the best Student model by experimenting
with all possible K values. The results show that Face
Recognition achieves the highest accuracy (98.55%)
when using Deep-layer Feature Extractor. This is ex-
pected as the Student and Teacher tasks are very simi-
lar, leading to significant gains from transferring knowl-
edge directly. The Flower classification task performs
best with Full Model Fine-tuning, since the Student and
Teacher tasks are different and there is less gain from
sharing layers. Lastly, Traffic Sign recognition is a nice
example for transferring knowledge from a middle layer
(layer 10 out of 16).

Based on these results, we build the Student model
for each task using the transfer method that achieves the
highest classification accuracy (marked in bold in Ta-
ble 1). The resulting four Student models cover all three
transfer learning methods.

Attack Configuration. We craft adversarial sam-
ples using correctly classified images in the test dataset.
These are images not seen by the Student model during
its training and matches our attack model, i.e. the ad-
versary has no access to the Student training dataset. To
evaluate targeted attacks, we randomly sample 1K source
and target image pairs to craft adversarial samples, and
measure the attack success rate as the percentage of at-
tack attempts (out of 1K) that misclassify the perturbed
source image as the target. For non-targeted attacks, we
randomly select 1K source images and 5 target images
for each source (to guide the optimization process). Suc-
cess for non-targeted attack is measured as the percent-
age of 1K source images that are successfully misclassi-
fied into any other arbitrary class.

For each source and target image pair, we compute the
adversarial samples by running the Adadelta optimizer
over 2,000 iterations with a learning rate of 1. For all
the Teacher models considered in our experiments, the
entire optimization process for a single image pair takes
roughly 2 minutes on an NVIDIA Titan Xp GPU.

We implement the attack using Keras [19] and Ten-
sorFlow [12], leveraging open-source implementations
of misclassification attacks provided by prior works [44,
17].
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Student Task Transfer Process
Deep-layer Feature Extractor | Mid-layer Feature Extractor | Full Model Fine-tuning
Face 98.55% 98.00% (14/16) 75.85%
Iris 88.27% 88.22% (14/16) 81.72%
Traffic Sign 62.51% 96.16% (10/16) 94.39%
Flower 43.63% 92.45% (10/50) 95.59%

Table 1: Transfer learning performance for different tasks when using different transfer processes. For each task, we
select the model with the highest accuracy as our target Student model in future analysis. Numbers in parenthesis
under Mid-layer Feature Extractor are the number of layers copied to achieve the corresponding accuracy, as well as

the total number of layers of the Teacher.

Figure 3:
Recognition (P = 0.003).
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Figure 4: Attack success rate on Face Recognition with
different perturbation budgets.

4.2 Effectiveness of the Attack

We first evaluate the proposed attacks assuming the at-
tacker knows the exact transfer approach used to pro-
duce the Student model. This allows us to derive the
upper bounds on attack effectiveness, and to explore the
impact of the perturbation budget P, the distance met-
ric d(x},x;), and the underlying transfer method used to
produce the Student model. Later in Section 4.3 we will
relax this assumption.

Consider the Face recognition task which uses Deep-
layer Feature Extractor to produce the Student model.
Here the attacker crafts adversarial samples to target the
N — 1 layer of the Teacher model. Even with a very low
perturbation budget of P = 0.003, our attack is highly
effective, achieving a success rate of 92.6% and 100%
for targeted, and non-targeted attacks respectively. We

also manually examine the perturbations added to adver-
sarial images and find them to be undetectable by visual
inspection. Figure 3 includes 6 randomly selected suc-
cessful targeted attack samples for interested readers to
examine.

It should be noted that an attacker could improve at-
tack success by carefully selecting a source image simi-
lar to a target image. Our attack scenario is much more
challenging, since the source and target images are ran-
domly selected. Figure 3 shows that our attacks often try
to mimic a female actress using a male actor, and vice
versa. We also have image pairs with different lighting
conditions, facial expressions, hair color, and skin tones.
This significantly increases the difficulty of the targeted
attack, given constraints on the perturbation level.

Impact of Perturbation Budget P. A natural question
is how to choose the right perturbation budget, which di-
rectly affects the stealthiness of the attack. By measuring
image distortion via the DSSIM metric, we empirically
find that P = 0.003 is a safe threshold for facial images.
Its corresponding L, norm value is 8.17, which is signif-
icantly smaller than/comparable to values used in prior
work (L, > 20) [38].

Figure 4 shows the attack success rate as we vary the
perturbation budget between 0.0005 and 0.005. As ex-
pected, smaller budget results in lower attack success
rate, as there is less room for the attacker to change
images and mimic the internal representation. Detailed
comparison of images with different perturbation bud-
gets is in Figure 10 in the Appendix.

Impact of Distance Metric d(x},x;).  Recall that we
use DSSIM to measure perturbation added to input im-
ages, instead of the L, distance used by prior works, e.g.,
L,. To compare both metrics, we also implement our at-
tack using L, distance, and analyze the generated images
ourselves. For a fair comparison, we choose an L, dis-
tance budget that produces a targeted attack success rate
similar to using DSSIM with a budget of 0.003. Gener-
ated images are included in Figure 11 in the Appendix.
We find that DSSIM generates imperceptible perturba-
tions, while perturbations using L, are more noticeable.
While DSSIM takes into account the underlying struc-
ture of an image, L, treats every pixel equally, and often
generates noticeable “tattoo-like” patterns on faces.
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Figure 5: Targeted and non-targeted attack success rate on Student models when targeting different layers. X axis
indicates the layer being targeted. Face and Iris freeze the first 15 layers during training; Traffic Sign freezes the first

10 layers; Flower freezes no layers.

Impact of Transfer Method.  We also test out attack
on Iris, Traffic Sign, and Flower recognition tasks. Their
perturbation budgets are set to 0.005 (L,=9.035), 0.01
(Lp=17.7T7), and 0.003 (L,=13.52), respectively. These
values are empirically derived by the authors to produce
unnoticeable image perturbations.

Overall, the attack is effective in Iris, with a targeted
attack success rate of 95.9% and non-targeted success
rate of 100%. Like Face recognition, the Iris student
model was trained via Deep-layer Feature Extractor. On
the other hand, the attack becomes less effective on Traf-
fic Sign recognition, where the success rate of targeted
and non-targeted attacks are 43.7%, and 95.35%, respec-
tively. For Flower recognition, these numbers reduce to
1.1% and 37.25%, respectively. These results suggest
that the attack effectiveness is strongly correlated with
the transfer method: our attack is highly effective for
Deep-layer Feature Extractor, but ineffective for Full
Model Fine-tuning.

4.3 Impact of the Attack Layer

We now consider scenarios where the attacker does not
know the exact transfer method used to train the Student
model. In this case, the attacker needs to first select a
Teacher layer to attack, which can be different from the
deepest layer frozen during the transfer process. To un-
derstand the impact of such mismatch, we evaluate our
attack on each of the Teacher layers in all four Student
models. We organize our results by the transfer method.
Deep-layer Feature Extractor. The corresponding
student models are Face and Iris. We set their pertur-
bation budget P to 0.003, and 0.005, respectively (the
same values used in the previous experiment). We launch
attacks to each of the N-1 Teacher layers (N=16), i.e.
computing adversarial samples that mimic the internal
representation of the target image at layer K where K =
1...N — 1. Figure 5(a) and Figure 5(b) show targeted and
non-targeted success rates when attacking different lay-
ers.

For both Face and Iris, the attack is the most effective
when targeting precisely the N — 1, (15th) layer, which
is as expected since both use Deep-layer Feature Extrac-
tor. As the attacker moves from deeper layers towards

shallow layers (i.e. reducing K), the attack effectiveness
reduces. At layer 13 and above, the attack success rates
are above 88.4% for Face, and 95.9% for Iris. But when
targeting layer 10 and below, the success rates drop to
1.2% for Face recognition, and <40% for Iris recogni-
tion. This is because shallow layers represent basic com-
ponents of an image, e.g., lines and edges, which are
harder to mimic using a limited perturbation budget. In
fact, both Face and Iris models are based on convolu-
tional neural networks, which are known to capture such
representations at shallow layers [70]. Therefore, given
a fixed perturbation budget, the error in mimicking in-
ternal representations is much higher at shallow layers,
resulting in lower attack success rates.

An unexpected result is that for Iris, the success rate
for non-targeted attacks remains close to 100% regard-
less of the attack layer choice. A more detailed analysis
shows that this is because Iris recognition is highly sen-
sitive to input noise. The perturbations introduced by
our attack behave as input noise, thus triggering misclas-
sification into an “unknown’ class. However, this is a
unique property of the Iris recognition task, and does not
apply to the other three tasks.

Mid-layer Feature Extractor. ~We then evaluate attack
on Traffic Sign, where the first 10 layers are transferred
from Teacher and frozen during training. Here the per-
turbation budget is fixed to P = 0.005. Results in Fig-
ure 5(c) show that the attack success rates peak at pre-
cisely the 10, layer, where success rate for targeted at-
tack is 43.7% and 95.35% for non-targeted attack. Sim-
ilarly, the success rates reduce when the attacker targets
shallow layers. Interestingly, the success rates also de-
crease as we target layers deeper than 10. This is be-
cause layers beyond 10 are fine-tuned and more distinct
from the corresponding Teacher layers, leading to higher
error when mimicking the internal representation.

Full Model Fine-tuning. For the Flower task, the
Student model differs largely from the Teacher model,
as all the layers are fine-tuned. Therefore, the attacker
will always use incorrect information (from the Teacher)
to mimic an internal representation of the Student. The
resulting attack success rates are low and flat across the
choice of attack layers (Figure 5(d) with P = 0.003).
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How to Choose the Attack Layer? The above re-
sults suggest that the attacker should always try to iden-
tify if the Student is using Deep-layer Feature Extractor,
as it remains the most vulnerable approach. In Section 5,
we present a technique to determine whether Deep-layer
Feature Extractor is used for transfer and to identify
the Teacher model, using a few queries on the Student
model. In this case, the attacker should focus on the
N — 1" 1ayer to achieve the optimal attack performance.

If the Student is not using Deep-layer Feature Extrac-
tor, the attacker can try to find the optimal attack layer
by iteratively targeting different layers, starting from the
deepest layer. In the case of Mid-layer Feature Extrac-
tor, the attacker can estimate the attack success rate at
each layer, using only a small set of image pairs and very
limited queries. The attacker can observe the attack suc-
cess rate increasing (or decreasing) as she approaches (or
moves away from) the optimal layer.

4.4 Discussion

Feature Extractor vs. Full Model Fine-tuning.  Our
results suggest that Full Model Fine-tuning and Mid-
layer Feature Extractor lead to models that are more ro-
bust against our attacks. However, in practice, these two
approaches are often not applicable, especially when the
Student training data is limited. For example, for Face
recognition, when reducing the training dataset from 90
images per class to 50 per class, pushing back by 2 lay-
ers (i.e. transfer at layer 13) reduces the model classifi-
cation accuracy to 19.1%. Meanwhile, Deep-layer Fea-
ture Extractor still achieves a 97.69% classification ac-
curacy. Apart from performance, these approaches also
incur higher training cost than Deep-layer Feature Ex-
tractor. This is also why many deep learning frameworks
today use Deep-layer Feature Extractor as the default
configuration for transfer learning.

Can white-box attacks on Teacher transfer to student
Models? Prior work identified the transferability of
adversarial samples across different models for the same
task [38]. Thus another potential attack on transfer learn-
ing is to use existing white-box attacks on the Teacher to
craft adversarial samples, which are then transferred to
the Student. We evaluate this attack using the state-of-
the-art white-box attack by Carlini et al. [17]. Since
Teacher and Student models have different class labels,
we can only perform non-targeted attacks.

Our results show that the resulting attack is ineffec-
tive for all four tasks: only < 0.3% adversarial samples
trigger misclassification in the Student models. Thus we
confirm that the white-box attack on the Teacher will not
be transferred to the Student. The failure of the attack
can be attributed to the differences between the Teacher
and Student tasks. The Student model has a different

classification layer (and hence decision boundary) than
the Teacher, so adversarial samples computed using de-
cision boundary analysis (based on classification layer)
of the Teacher model fail on the Student model.

5 Experiments with Real ML Services

So far our misclassification attacks assume that the
teacher model is known to the attacker. Next, we re-
lax this assumption by considering scenarios where the
teacher model is unknown to the attacker. Specifi-
cally, today’s deep learning services (e.g. Google Cloud
ML, Facebook PyTorch, and Microsoft CNTK) already
help customers generate student models from a suite of
teacher models. In this case, a successful attack must
first infer the teacher model given a student model. We
address this challenge by designing a fingerprinting ap-
proach that feeds a few query images on the student
model to identify the teacher model, allowing us to ef-
fectively attack the student models produced by today’s
deep learning services.

5.1 Fingerprinting the Teacher Model

Our design assumes that, given a student model, the at-
tacker has access to the pool of candidate Teacher models
where one of them is used to produce the student model.
This is a practical assumption because for common deep
learning tasks there are only a limited set of high qual-
ity, pre-trained models that are publicly available. For
example, Google Cloud ML provides InceptionV3, Mo-
bileNets and its variants as Teacher models for image
classification. Thus the attacker only needs to identify
the Teacher from a (small) set of known candidates.
Methodology. We take a fingerprinting based ap-
proach. For each candidate Teacher model, the attacker
crafts a fingerprint image that will intentionally “distort”
the output of the student model, if and only if the stu-
dent model is generated by the given Teacher model. By
querying the student model with the fingerprinting im-
ages of all the candidates and comparing the model out-
put, the attacker can quickly narrow down to the true
Teacher model. In the following, we show that such fin-
gerprinting method is highly effective when the student
model is generated via Deep-layer Feature Extractor.
Consider the last layer of a student model (trained
using Deep-layer Feature Extractor), which is a dense
layer for classification. The prediction result (before
softmax) of an input image x can be expressed as,

S(x) =Wy x Ty_1(x) + By 3)

where Wy is the weight matrix of the dense layer, By is
the bias vector, and Ty_ (.) is the function transforming
the input x to neurons at layer N — 1 2.

2There will also be an activation function that further transforms
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Given the knowledge of Ty_(.), our goal is to craft
a fingerprinting image that nullifies the first term in
Equation 3, i.e. an x that produces an all-zero vector
Ty 1(x) = 0 so that the output vector S(x) = By. Since
different Teacher models differ largely in Ty_;(.), a fin-
gerprinting image of a Teacher model A, when fed to a
Student model derived from a different Teacher model B,
is unlikely to produce an all-zero vector Ty_; (x).

To decode the fingerprint, our hypothesis is that, with-
out the contribution from x, the bias vector By (or S(x)
produced by the right fingerprint) will display much
lower dispersion compared to normal S(x) values. Thus
by feeding candidate fingerprinting images into the stu-
dent model and comparing the dispersion value of the
corresponding S(x), we can identify the Teacher model
as the one that produces the minimum dispersion (below
a threshold).

Assuming this hypothesis is true, we can craft finger-
printing images for each Teacher model following the
same optimization process for our misclassification at-
tack (see Section 3). The only difference is here the in-
ternal representation to mimic is a zero-vector.
Validation. To validate our approach, we produce five
additional Student models using multiple popular pub-
lic Teacher models 3. These Student models are trained
using the 17-class VGG Flower dataset %, using Deep-
layer Feature Extractor. Together with the Face and Iris
models used in Section 4, we have a total of 7 Student
models produced from different Teacher models. All of
them achieve > 83.1% classification accuracy.

We measure the dispersion of S(x) using the Gini coef-
ficient, commonly used in economics to measure wealth
distribution [26]. Its value ranges between 0 and 1, with O
representing complete equality and 1 representing com-
plete inequality.

We first measure the Gini coefficient of By, validating
our hypothesis that By’s dispersion level is very low. For
each Student model, we set output neurons of N — 1,
layer as a zero vector, so that only By is fed into the final
prediction. For all seven models, the corresponding Gini
coefficient is below 0.011. We then feed 100 random
test images into each model, where the Gini coefficient
jumps to between 0.648 and 0.999, with a median value
of 0.941. This confirms our hypothesis where By has a
different statistical dispersion than normal S(x).

Next, for each candidate Teacher model, we craft and
feed 10 fingerprinting images to the target student model
and compute the average Gini coefficient of S(x). Fig-

S(x), but we ignore it for the sake of simplicity. Our methodology
holds for any activation function.

30ur choice of Teacher models includes VGG16 [56], VGG19 [56],
ResNet50 [28], InceptionV3 [59], Inception-ResNetV2 [58], and Mo-
bileNet [32].

4This is a smaller version of the full 102-class flower dataset we
used in previous experiments [10].

MobileNet [SUEEERSRTEEE7ZE

1
0576 0572 0508 [
0966 0966 [EIGINN 0.965 0.8
0743 QKM 0741 0720
| oo JETIEN B
0.846 0.058 0.818 0.828 0.824

RESNEGCIM 0967 0975  0.969

Inception-
ResNetV2

InceptionV3 [ RENE:CZS
\clel 0930  0.941 0932 0927 0912 0919 04
VGG16 s 0964 0958 0959 0964 0959 0.2

VGG-Face 0501 0501 0445 0446 0455 0443

0.715 0.717 0.731

Gini Coefficient

Actual Teacher Used

VGG-Face
VGG16
VGG19

InceptionV3
Inception
ResNetV2
ResNet50
MobileNet

Teacher Model Candidate

Figure 6: Gini coefficient of output probabilities of dif-
ferent teacher and student models.

ure 6 shows the average Gini coefficient as a function of
the fingerprinting Teacher model and the Teacher model
used to generate the Student model. The diagonal line in-
dicates scenarios where the two Teacher models match.
As expected, all the coefficients along the diagonal are
small (< 0.058), suggesting that the fingerprinting im-
ages successfully nullify the neuron component in S(x).
All off-diagonal coefficients are significantly higher (>
0.443), since the Teacher model used to generate the fin-
gerprinting image does not match that used to generate
the student model.

It is worth noting that our fingerprinting technique
can also identify different versions of Teacher models
with the same architecture. To demonstrate this, we use
Google’s InceptionV3 model that has two versions (i.e.
with different weights) released at different times.>. Our
technique accurately distinguishes between these two
versions, with a Gini coefficient < 0.075 when there is
a match, and > 0.751 otherwise.

Overall, the above results confirm that our fingerprint-
ing method can identify the Teacher model using a small
set of queries. When crafting the fingerprinting image, a
threshold of 0.1 on the Gini coefficient seems like a good
cut-off to ensure successful fingerprinting.
Effectiveness on Other Transfer Methods.  Our fin-
gerprinting method is based on nullifying neuron con-
tributions to the last layer of the Student model. It is
effective when the student model is generated by Deep-
layer Feature Extractor. The same set of fingerprinting
images, when fed to student models generated by other
transfer methods, will likely lead to higher Gini coeffi-
cients and fail to identify the Teacher model. For exam-
ple, when fed to the Traffic Sign and Flower models, the
Gini coefficient is always higher than 0.839.

On the other hand, when all the fingerprinting images

SVersion 2015-12-05 http://download.tensorflow.
org/models/image/imagenet/inception-2015-
12-05.tgz, Version  2016-08-28  http://download.
tensorflow.org/models/inception_v3_2016_08_28.
tar.gz
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lead to large Gini coefficient values, it means that ei-
ther the Teacher model is unknown (not in the candi-
date pool), or the student model is produced by a trans-
fer method other than Deep-layer Feature Extractor. For
both cases, the misclassification attack will be less effec-
tive. The attacker can use this knowledge to identify and
target student models that are the most vulnerable to the
misclassification attack.

5.2 Attacks on Transfer Learning Services

Today, popular Machine Learning as a service (MLaaS)
platforms [67] (e.g., Google Cloud ML) and deep learn-
ing libraries (e.g., PyTorch, Microsoft CNTK) already
recommend transfer learning to their customers. Many
provide detailed tutorials to guide customers through the
process of transfer learning. We follow these tutorials
to investigate whether the resulting Student models are
vulnerable to our attacks. The adversarial samples gen-
erated on the three services are listed in Figure 13 in the
Appendix.

Google Cloud ML. In this MLaaS platform, users can
train deep learning models in the cloud and maintain it as
a service. The transfer learning tutorial explains the pro-
cess of using Google’s InceptionV3 image classification
model to build a flower classification model [5].

Specifically, the tutorial suggests Deep-layer Feature
Extractor as the default transfer learning method, and the
provided sample code does not offer control parameters
or guidelines to use other transfer approaches or Teacher
models (one has to modify the code to do so). We follow
the tutorial to train a Student model on a 5-class flower
dataset (the example dataset used in the tutorial), which
achieves an 89.3% classification accuracy®.

To launch the attack on the Student model, we first
use the proposed fingerprinting method to identify that
InceptionV3 (2015 version) is used as the Teacher model
(i.e. the corresponding fingerprint image leads to Gini
coefficient of 0.061 while the other fingerprint images
lead to much higher values > 0.4063). The subsequent
misclassification attack achieves a 96.5% success rate
with P =0.001.

Microsoft CNTK. The Microsoft Cognitive Toolkit
(CNTK) is an open source DL library available on Mi-
crosoft’s Azure MLaaS platform. The tutorial describes
a flower classification task and recommends ResNet18
as the Teacher and Full Model Fine-tuning as the default
configuration [6]. This creates a Student model similar
to the Flower model used in Section 4. CNTK also pro-
vides control parameters to switch to Deep-layer Feature
Extractor ( Mid-layer Feature Extractor is unavailable)
and other Teacher models hosted by Microsoft, including

Instead of training the Student in the cloud, we build the model
locally using Google TensorFlow using the same procedure [7].

popular image classification models (e.g., ResNet50, In-
ceptionV3, VGG16) and a few object detection models.
Following this process, we use VGG16 as the Teacher
and Deep-layer Feature Extractor to train a new Student
model using the 102-class VGG flower dataset (the ex-
ample dataset used in tutorial). It achieves a classifica-
tion accuracy of 82.25%.

Again, we were able to launch the misclassification
attack on the Student model: our fingerprinting method
successfully identifies the Teacher model (with a Gini co-
efficient of 0.0045), and the attack success rate is 99.4%
when P = 0.003.

PyTorch. PyTorchis a popular open source DL library
developed by Facebook. Its tutorial describes steps to
build a classifier that can distinguish between images of
ants and bees [3]. The tutorial uses ResNet18 by default
and allows both Deep-layer Feature Extractor and Full
Model Fine-tuning, but indicates that Deep-layer Feature
Extractor provides higher accuracy. There is no mention
of Mid-layer Feature Extractor. PyTorch hosts a reposi-
tory of 6 image classification Teacher models that users
can plug into their transfer process.

Again we follow the tutorial and verify that Student
models trained using Deep-layer Feature Extractor on
PyTorch are vulnerable. Our fingerprinting technique
produces a Gini coefficient of 0.004, and targeted attack
achieves a success rate of 88.0% with P = 0.001. We
also test our attack on a student model trained using Full
Model Fine-tuning. Surprisingly, our targeted attack still
achieves an 87.4% success rate with P = 0.001. This
is likely because the Student model is trained only for a
short number of epochs (25 epochs) at a very low learn-
ing rate of 0.001, and thus the fine-tuning process intro-
duces only small modification to the model weights.

Implications.  Our experiments on the three machine
learning services show that many Student models pro-
duced by these services are vulnerable to our attack. This
is particularly true when users follow the default config-
uration in Google Cloud ML and PyTorch. Our attack
is feasible because each service only hosts a small num-
ber of deep learning Teacher models, making it easy to
get access to the (small) pool of Teacher models. Fi-
nally, by promoting the use of transfer learning, these
platforms often expose their customers to our attack ac-
cidentally. For example, Google Cloud ML advertises
customers who have successfully deployed models using
their transfer learning service [4]. While we refrain from
attacking such customer models for ethical reasons, such
information can help attackers find potential victims and
gain additional knowledge about the victim model. We
discuss our efforts at disclosure in the Appendix.
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6 Developing Robust Defenses

Having identified the practical impact of these attacks,
the ultimate goal of our work is to develop robust de-
fenses against them. Insights gained through our exper-
iments suggest that there are multiple approaches to de-
veloping robust defenses against this attack. First, the
effectiveness of attacks is heavily dependent on the level
of perturbations introduced. Successful misclassifica-
tion seems to be very sensitive to small changes made
to the input image. Therefore, any defense that perturbs
the adversarial sample before classification has a good
chance of disrupting the attack. Second, attack success
requires precise knowledge of the Teacher model used
during transfer learning, i.e. the weights transferred to
the Student model. Thus any deviations from the Teacher
model could render the attack ineffective.

Here, we describe three different potential defenses
that target different pieces of the Student model classifi-
cation process. We discuss the strengths and limitations
of each, and experimentally evaluate their effectiveness
against the attack and impact on classification of non-
adversarial inputs.

6.1 Randomizing Input via Dropout

Our first defense targets the sensitivity of adversarial
samples to small changes. The intuition is that attackers
have identified minimal alterations to the image that push
the Student model over some classification boundary. By
introducing additional random perturbations to the image
before classification, we can disrupt the adversarial sam-
ple. Ideally, small perturbations could effectively disrupt
adversarial attacks while introducing minimal impact on
non-adversarial samples. In prior work, Carlini, er al.
studied different defense mechanisms against attacks on
DNNs [16], and found the most effective approach to be
adding uncertainty to the prediction process [25].
Dropout Randomization. We add randomness to the
prediction process by applying Dropout [57] at the input
layer. This has the effect of dropping a certain fraction of
randomly selected input pixels, before feeding the modi-
fied image to the Student model. We repeat this process
3 times for each image and use the majority vote as the
final prediction result 7, or a random result if all 3 pre-
dictions are different.

We test this defense on all three tasks, Face, Iris, and
Traffic Sign, by applying Dropout on test images as well
as targeted and non-targeted adversarial samples &. The
results for Face and Traffic Sign are highly consistent,
so we only plot the results for Face in Figure 7, includ-
ing classification accuracy on test images, and success

7We tested and found little improvement beyond 3 repetitions.
8We choose adversarial samples from Section 4.3 that achieve the
highest attack success rate.

rate of both targeted and non-targeted attacks. Results
for Traffic Sign is in the Appendix as Figure 14. As the
dropout ratio increases (i.e. more pixels dropped), both
classification accuracy and attack success rate drops. In
general, the defense is effective against targeted misclas-
sification, which drops in success rate much faster than
the corresponding drop in classification accuracy, e.g. at
dropout ratio near 0.4, classification accuracy drops to
91.4% while targeted attack success rate drops to 30.3%.
However, non-targeted attacks are less affected, and at-
tack success consistently remains higher than classifi-
cation accuracy of normal samples, e.g. 92.47% when
the classification accuracy is 91.4%. Finally, as dropout
increases, it eventually disrupts the entire classification
process, reducing classification accuracy while boosting
misclassification errors (non-targeted misclassification).

This defense is ineffective on the Iris task. Recall
that this model is sensitive to noise in general. The in-
herent sensitivity leads classification accuracy to drop at
nearly the same rate as attack success rate. When drop-
ping only 2% pixels, model accuracy already drops to
51.93%, while targeted attack success rate is still 55.5%
and non-targeted attack success rate is 100%. Detailed
results are shown in the Appendix as Figure 14. Clearly,
randomization as defense is limited by the inherent sen-
sitivity of the model. It is unclear whether the situation
could by improved by retraining the Student model to be
more resistant to noise [72].

Strengths and Limitations.  The key benefit of this
approach is that it can be easily deployed, without re-
quiring changes to the underlying Student model. This is
ideal for Student models that are already deployed. How-
ever, this approach has three limitations. First, there is a
non-negligible hit on model accuracy for any significant
reduction in attack success. This may be unacceptable
for some applications (e.g., authentication systems based
on Face recognition). Second, this approach is impracti-
cal for highly sensitive classification tasks like Iris recog-
nition. Finally, this approach is not resistant to counter-
measures by the attacker. An attacker can circumvent
this defense by adding a Dropout layer into the adversar-
ial image crafting pipeline [16]. The generated adversar-
ial samples would then be more robust to Dropout.

6.2 Injecting Neuron Distances

The attack we identified leverages the similarity between
matching layers in the Teacher and Student models to
mimic an internal representation of the Student. Thus, if
we can make the Student’s internal representation deviate
from that of the Teacher for all inputs, the attack would
be less effective. One way to do that is by modifying
weights of different layers of the Student. In this sec-
tion, we present a scheme to modify the Student layers
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Figure 7: Attack success and classi-
fication accuracy on Face using ran-
domization via dropout.

(i.e. weights), without significantly impacting classifica-
tion accuracy.

We start with a Student model trained using Deep-
layer Feature Extractor or Mid-layer Feature Extrac-
tor °. This model lies in some local optimum of the
model classification error surface. Our goal is to update
layer weights and identify a new local optimum that pro-
vides comparable (or better) classification performance,
and also be distant enough (on the error surface) to in-
crease the dissimilarity between the Student and Teacher.

To find such a new local optimum, we unfreeze all
layers of Student and retrain the model using the same
Student training dataset, but with an updated loss func-
tion formulated in the following way. Consider a Stu-
dent model, where the first K layers are copied from the
Teacher. Let Tk(.), and Sk(.) be functions that gener-
ate the internal representation at layer K, for the Teacher,
and Student, respectively. Let / be the set of neurons in
layer K, and |W;| be a vector of absolute sum of outgo-
ing weights from each neuron i € /. Finally, let D;, be
a dissimilarity threshold between two models. Then our
objective is the following,

min  CrossEntropy(Yirue,Ypreda)
Y. Wil (Tk(x) = Sk(x))[l2 > Din

XEXirain

s.t. 4

where o is element-wise multiplication.

Here, we still want to minimize the classification loss,
formulated as cross entropy loss over the prediction re-
sults. But, a constraint term is added to increase the dis-
similarity between the Teacher and Student models. Dis-
similarity is computed as the weighted L, distance be-
tween the internal representations at layer K, and is con-
ditioned to be higher than a threshold D,,. The weight
terms capture the importance of a neuron output for the
next layer 9. This helps make sure that distance be-
tween important neurons contribute more to the total dis-

“Recall that models using Full Model Fine-tuning are generally re-
sistant to the attack.

10The weight terms are not required for layers, where all neuron out-
puts are treated equally, e.g., convolutional layers.

Figure 8: Attack success and classifi-
cation accuracy on Face using neuron
distance thresholds.

Figure 9: Attack success and classi-
fication accuracy on Iris using neuron
distance thresholds.

tance between representations. We solve the above con-
strained optimization problem using the same penalty
method used in Section 3.

Before presenting our evaluation, we note two other
aspects of the optimization process. First, our objective
function only considers dissimilarity at layer K. How-
ever, after training with the new loss function, the inter-
nal representations at the preceding layers also become
dissimilar. Hence, our approach would not only reduce
attack effectiveness at layer K, but also at layers before it.
Second, a high value for D,;, would increase defense per-
formance, but can also negatively impact classification
accuracy. In practice, the provider can incrementally in-
crease Dy, as long as the classification accuracy is above
an acceptable level.

We evaluated this approach on all three classification
tasks. Figure 8 shows how classification accuracy and
attack success vary when we increase Dy, in Face. At-
tacks are targeted at layer N — 1, as Face uses Deep-layer
Feature Extractor. Unlike the Dropout based defense
(Figure 7), this method results in a steadier classification
accuracy, while attack success rate drops. As classifi-
cation accuracy drops from 98.55% to 95.69%, targeted
attack drops significantly, from 92.6% to 30.87%. Non-
targeted attacks are still hard to defend against, drop-
ping from 100% to only 91.45% under the same con-
ditions. We also analyze attack success rates at layers
below N — 1, and observe it to be lower than rates ob-
served in Figure 8. This indicates that our retraining
scheme makes the Student model more distinctive from
the Teacher model across all layers. Result for Traffic
Sign is in the Appendix in Figure 15, and is highly con-
sistent with Face.

We plot the Iris results in Figure 9. Important to note
that this defense works significantly better for the Iris
task than the Dropout scheme. Sensitivity of the Iris
model actually means classification accuracy increased
from 88.27% to 91.0% (retraining found a better local
optimum), while targeted attack success dropped from
100% to 12.6%. Unfortunately, non-targeted attacks re-
main hard to defend against. Attack success rate only
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falls to 94.83% for Iris, and remains consistently above
classification accuracy.

Finally, we note that retrained models are also ro-
bust against the Teacher fingerprinting technique. When
using the true Teacher model as candidate, the finger-
printing attack results in an average Gini coefficient of
> (0.9846 for both Face and Iris models, which effec-
tively obfuscates the true identity of the Teacher model.
Strengths and Limitations. This scheme provides
significant benefits relative to the randomized dropout
scheme. First, we obtain improved defense performance,
i.e. reduce attack success without significantly degrading
classification accuracy. Second, unlike the dropout de-
fense, this scheme has no clear countermeasures. Attack-
ers do not have access to the Student training dataset, and
cannot replicate the updated Student using retraining.
Third, this approach successfully obfuscates the identity
of the Teacher model, making it significantly harder to
launch the attack given a target Student model.

Finally, the only limitation of this method is that all
Student models must be updated using our technique,
incurring additional computational cost. Compared to
normal Student training, which takes several minutes to
complete (for Face), our implementation that trains Stu-
dent models with a fixed neuron distance threshold in-
curs training time that is an order of magnitude larger.
For the example that corresponds to a reduced attack suc-
cess rate of 30.87% on Face, our defense scheme takes 2
hours. As a one time cost, it is a reasonable tradeoff for
significantly improving security against adversarial at-
tacks. Also, we expect that other standard techniques for
speeding-up neural network training (e.g., training over
multiple GPUs), can further reduce the runtime.

6.3 Ensemble of Models as a Defense

Finally, we consider using orthogonal models as a de-
fense for adversarial attacks against transfer learning.
The intuition is to have the provider train multiple Stu-
dent models, each from a separate Teacher model, and
use them together to answer queries (e.g., based on ma-
jority vote). Thus even if an attacker successfully fools
a single Student model in the ensemble, the other mod-
els may be resistant (since the adversarial sample is al-
ways tailored to a specific Student model). This can
be an effective defense, while only incurring an addi-
tional one time computational cost of training multiple
Students. This idea has been explored before in related
contexts [13].

It is unclear whether an adversary with knowledge of
this defense can craft a successful countermeasure, by
modifying the optimization function to trigger misclassi-
fication in all members of the ensemble. One possibility
is to modify the loss term that captures dissimilarity in

internal representations (Equation 1), to account for dis-
similarity in all models by taking a sum. In fact, a recent
work in a non transfer learning setting, and assuming a
white-box victim model shows that it is possible to break
defenses based on ensemble models. He et al. , success-
fully crafted adversarial samples that can fool an ensem-
ble of models, by jointly optimizing misclassification ob-
jectives over all members of the ensemble [29]. We are
investigating this as part of ongoing work.

7 Related Work

Transfer Learning. In a deep learning context,
transfer learning has been shown to be effective in vi-
sion [18, 52, 51, 15], speech [34, 63, 30, 20], and
text [33, 40]. Yosinski et al. compared different trans-
fer learning approaches and studied their impact model
performance [68]. Razavian et al. studied the similar-
ity between Teacher and Student tasks, and analyzed its
correlation with model performance [50].
Adversarial Attacks in Deep Learning. We sum-
marized some prior work on adversarial attacks in Sec-
tion 2. Prior work on white-box attacks formulate mis-
classification as an objective function, and use optimiza-
tion techniques to design perturbation [60, 17]. Good-
fellow et al. further reduced the computational complex-
ity of the crafting process to generate adversarial sam-
ples at scale [36]. Papernot et al. proposed an approach
that modifies the image pixel by pixel to minimize the
amount of perturbation [47]. Similar to our methodol-
ogy, Sabour et al. proposed a method that manipulates
internal representation to trigger misclassification [53].
Still others studied the physical realizability of adversar-
ial samples [55, 24, 35], and attacks that generate adver-
sarial samples that are unrecognizable to humans [42].
Prior work on black box attacks query the victim DNN
to gain feedback on adversarial samples and use re-
sponses to guide the crafting process [55]. Others use
these queries to reverse-engineer the internals of the vic-
tim DNN [46, 62]. Another group of attacks do not rely
on querying the victim DNN, but assume there exists an-
other model which has similar functionalities as the vic-
tim DNN [38, 45, 61]. They rely on the “transferability”
of adversarial samples between similar models.
Defenses.  Defense against adversarial attacks in DL
is still an open research problem. Recent work showed
that state-of-the-art adversarial attacks can adapt and by-
pass most existing defense mechanisms [16, 14]. One ap-
proach is adversarial training, where the victim DNN is
trained to recognize adversarial samples [60, 39]. Others
tried to detect certain characteristics of adversarial sam-
ples, e.g., sensitivity to model uncertainty, neuron value
distribution [64, 31, 27, 37, 25]. Another defense, called
gradient masking, aims to enhance a model by remov-
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ing useful information in gradients, which is critical to
white-box attacks [48]. Most existing defenses have been
bypassed in literature, or shown ineffective against new
attacks.

8 Conclusion

In this paper, we describe our efforts to understand the
vulnerabilities introduced by the transfer learning model.
We identify and experimentally validate a general attack
on black-box Student models leveraging knowledge of
white-box Teacher models, and show that it can be suc-
cessful in identifying and exploiting Teacher models in
the wild. Finally, we explore several defenses, includ-
ing a neuron distance threshold technique that is highly
effective against targeted misclassification attacks while
obfuscating the identity of Teacher models.
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Student Task Dataset ‘ # of Classes Trafnmg ‘ Tes.tmg ‘ Teacher Training Configurations
Size Size Model
Face PubFig83 [8] 65 5,850 650 VGG-Face [11] | epoch=200,batch=32,optimizer=adadelta,lr=1.0
Iris CASIA Iris [2] 1,000 16,000 4,000 VGG16 [56] epoch=100,batch=32,optimizer=adadelta,lr=0.1
Traffic Sign GTSRB [1] 43 39,209 12,630 VGG16 [56] epoch=50,batch=32,optimizer=adadelta,lr=1.0
Flower VGG Flowers [9] 102 6,149 1,020 ResNet50 [28] epoch=150,batch=50,0optimizer=sgd,lr=0.01

Table 2: Detailed information about dataset, Teacher models, and training configurations for each Student task.

Source P=0.001 P=0.003 P=0.005

Target

Figure 10: Adversarial examples generated from the
same source image with different perturbation budgets
(using DSSIM). Lower budget produces less noticeable
perturbations.

A Appendix
Disclosure

While we did not perform any attacks on deployed im-
age recognition systems, we did experiment with pub-
licly available Teacher models from Google, Microsoft
and the open source PyTorch originally started by Face-
book. Following their tutorials, our results showed they
were vulnerable to this class of adversarial attacks. In ad-
vance of the public release of this paper, we reached out
to machine learning and security researchers at Google,
Microsoft and Facebook, and shared our findings with
them.

Definition of DSSIM

DSSIM (Structural Dissimilarity) is a distance metric
derived from SSIM (Structural SIMilarity). Let x =
{x1,..,xn}, and y = {y1,...,yy} be pixel intensity sig-
nals of two images being compared, respectively. The
basic form of SSIM compares three aspects of the two
image samples, luminance (/), contrast (c), and structure
(s). The SSIM score is then described in the following
equation.

Source DSSIM L2

Target

Figure 11: Comparison between adversarial images gen-
erated using DSSIM perturbation budget (P = 0.003) and
L, budget (P = 0.01). Budgets of both metrics are cho-
sen to produce similar targeted attack success rate around
90%.

SSIM(xay) = l(xay)'c(xuy)'s(xay)
:( 2ty + G )
W+ 7+
20,0y +C
'(02+02+C )
X 'y 2
( ny+C3 )
0,0, +C3

5)

u and o are mean and standard deviation of pixel inten-
sities of image samples. Cy, C,, and C; are constants, and
recommendation for choosing these constants is included
in the original paper [65, 66].

DSSIM is calculated as % It ranges from O to
1, where O represents two images are identical, and 1
represents two images are negatively correlated (often
achieved by inverting the image).

In our experiments, we use an improved version of
SSIM, referred as multi-scale SSI/M, which also consid-
ers distortion due to viewing conditions (e.g., display res-
olution). This is achieved by iteratively comparing the
reference and distorted images at different scales (or res-
olutions) by applying a low-pass filter to downsample
images. To compute DSSIM, we use the implementa-
tion of multi-scale SSIM from TensorFlow and follow

the recommended parameter configuration '!.

https://github.com/tensorflow/models/blob/
master/research/compression/image_encoder/
msssim.py
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Source Adversarial Target Source Adversarial Target

(a) Iris (P = 0.005) (c) Flower (P =0.003)

Figure 12: Adversarial images generated in Iris, Traffic Sign, and Flower. Perturbation budgets selected result in
unnoticeable perturbations. Iris attack targets at VGG16 layer 15 (out of 16 layers). Traffic Sign attack targets at
VGG16 layer 10 (out of 16 layers), and Flower attack targets at ResNet50 layer 49 (out of 50 layers).

Source Adversarial Target

Source Adversarial Target

(a) Google Cloud ML (P = 0.001) (b) Microsoft CNTK (P = 0.003) (c¢) PyTorch (P =0.001)

Figure 13: Adversarial images generated for Student models trained on Google Cloud ML, Microsoft CNTK, and
PyTorch. Attacks using these samples achieve targeted success rate of 96.5%, 99.4%, and 88.0% in corresponding
models.
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Figure 14: Performance of applying Dropout as defense with different Dropout ratio in Face, Iris, and Traffic Sign.
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Figure 15: Performance of modifying Student as defense with different distance thresholds in Face, Iris, and Traffic
Sign.
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