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Abstract

Classical distribution testing assumes access to i.i.d. samples from the distribution that is being
tested. We initiate the study of Markov chain testing, assuming access to a single trajectory of
a Markov Chain. In particular, we observe a single trajectory Xo, ..., X,... of an unknown,
symmetric, and finite state Markov Chain M. We do not control the starting state X, and we
cannot restart the chain. Given our single trajectory, the goal is to test whether M is identical to a
model Markov Chain M, or far from it under an appropriate notion of difference.

We propose a measure of difference between two Markov chains, motivated by the early work
of Kazakos (1978), which captures the scaling behavior of the total variation distance between
trajectories sampled from the Markov chains as the length of these trajectories grows. We provide
efficient testers and information-theoretic lower bounds for testing identity of symmetric Markov
chains under our proposed measure of difference, which are tight up to logarithmic factors if the
hitting times of the model chain M’ is O(n) in the size of the state space n.

1. Introduction

We formulate theories about the laws that govern physical phenomena by making observations
and testing them against our hypotheses. A common scenario is when our observations can be
reasonably modeled as i.i.d. samples from a distribution that we are trying to understand. This is
the setting tackled by most classical work in Statistics. Of course, having access to i.i.d. samples
from a distribution is rare and quite commonly an approximation of reality. We typically only
have access to approximate samples from a stationary distribution, sampled by a stochastic process
whose description is unknown to us. For instance, the stochastic process might be a Markov chain
whose transition matrix/kernel is unknown to us and which can only be observed for some finite
time horizon. In fact, to the best of our knowledge, the underlying Markov chain may not even
be rapidly mixing, so there is no guarantee that we will ever see samples that are approximately
distributed according to the stationary distribution.
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These issues are exacerbated in high-dimensional settings, e.g. when observing the configura-
tions of a deck of cards where the state space consists of 52! permutations, or a weather system,
where it may also be completely impractical to work with the high-dimensional stationary distri-
bution itself. Moreover, several different processes may generate the same stationary distribution.
For all these considerations, it may be both more interesting and more practical to understand the
“mechanics” of the process that generates our observations, namely the transition matrix/kernel of
the Markov chain whose evolution we get to observe.

Motivated by these considerations, in this paper we initiate the study of testing identity of
Markov chains, and as a first step we focus on the case of finite and symmetric' Markov Chains. In
our setting, we are given access to a single trajectory Xg, X1, ..., Xy, ... of some unknown sym-
metric Markov chain M over some finite state space [n], and we want to test the identity of M to
some given symmetric Markov chain M’ over the same state space. Importantly, we do not get to
control the distribution of the starting state X, and we can only observe a single trajectory of M,
i.e. we cannot restart the Markov chain. Such situations are plenty in nature. For instance, consider
Markov models used to study the weather of a city, population growth of a species, the exchange
rate of currencies, or the price of a stock where one cannot control the evolution of the chain and
moreover cannot ask for restarts of the chain. What could we hope to achieve in such a situation?

If there is any difference in the transition matrices of M and M’, one would think that we would
ultimately be able to identify it by observing a sufficiently long trajectory. However, whether we can
identify the difference or not depends on the connectivity properties of the chain. We can certainly
identify the difference (ultimately) if the transition matrices of the two chains differ at a state that
belongs to the essential communicating class (see Definition 2) of M where X lies. However, it
is, in general, not always necessary that one be able to observe such a difference. For instance,
consider the following simple example.

The Two Communicating Classes Example: Suppose that M is a chain on states {1,2,...,7}
whose transition matrix is the random walk matrix on a graph that is the disjoint union of a square on
nodes {1,...,4} and a triangle on nodes {5, 6, 7}, while M"’s transition matrix is the random walk
matrix on a graph that is the disjoint union of a clique on nodes {1, ...,4} and a triangle on nodes
{5,6, 7}. If our observed trajectory of M lies in the strong connected component defined by states
{1,...,4} (which forms an essential communicating class), we will easily identify its difference to
M. On the other hand, if our observed trajectory of M lies in the essential communicating class
defined by states {5, 6, 7}, we will not be able to identify that we are not observing a trajectory of
M, no matter how long the trajectory is.

For some notion of difference, Dist (M, M), between Markov chains, we would like to quan-
tify how long a trajectory Xy, . .., X, from an unknown chain, M, we need to observe to be able to
distinguish, with probability at least 1 — d:

M =M’ versus Dist (M, M) > ¢, (1)

for some given parameters § € (0, 1) and € > 0. Let us call this problem single-sample goodness-of-
fit (or identity) testing for Markov chains. We will study it taking 6 = 1/3, with the understanding
that this probability can be boosted to any small constant at the cost of a O(log(1/4))-multiplicative
factor in the length ¢ of the observed trajectory.

1. We also get a few observations for general asymmetric case that may be used as a foundation for future studies.
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What notion of difference between Markov chains is the right one to use to study the afore-
described goodness-of-fit testing problem? Here are some desiderata for such a notion of difference:

1. First, as our simple example above illustrates, under a worst-case starting state X, we may
not be able to identify that M # M’ from a single trajectory. So, we would like to identify a
notion of difference that takes a value Dist (M, M’) = 0, whenever chains M and M’ are
indistinguishable from a single trajectory starting at a worst-case starting state.” Obviously,
if the chains are irreducible, this constraint is immaterial.

2. Whenever M and M’ are distinguishable from a single trajectory, whose starting state we
do not get to control, i.e. from any starting state, we would like that our difference mea-
sure quantifies how different the chains are. Clearly, our notion of difference could not just
be a combinatorial property of the connectivity of the state space of M and M/, since the
combinatorial structure won’t reflect the magnitude of the differences in the chains.

One of our main contributions is to identify a meaningful measure of difference between Markov
Chains capturing the above properties.

A Difference Measure Between Markov Chains. Total Variation (TV) is a standard distance
between distributions used in the property/distribution testing literature. One reason for this is
that it captures precisely our ability to distinguish two distributions p and ¢ by observing a sin-
gle sample from one of them.? Similarly, given two product measures p®’ and ¢®¢, outputting
a vector of £ i.i.d. samples drawn from p and ¢ respectively, our ability to distinguish between
them using a single sample is captured by d. ., (p®€ , q®€). Unfortunately, it is analytically diffi-
cult to relate d., (p®e , q®€) to d, (p,q) to study how our distinguishing ability improves with
£. For this reason, other distances are often employed when studying high-dimensional distribu-
tions. One such distance which will be of interest to us is the Hellinger distance d,; (p ¢ q®£).4
Generalizing from product measures to Markov Chains, a natural notion of difference between

two chains M and M’ is the total variation distance, d ., ()/Vﬁ4 ) Wﬁ/t ,), between (-step trajecto-

ries (a.k.a. words) Wf/l def XoX1--- Xy and Wf; , def YoYi - - - Yy sampled from the two chains

starting at some state Xy = sp = Y. But due to the analytical difficulties presented by the TV
distance for high-dimensional distributions we look towards the Hellinger distance as noted above.
The usage of Hellinger square distance for capturing the difference between two high-dimensional
distributions, for instance as was proposed in the early work of Kazakos (1978) and the more re-
cent work of Daskalakis and Pan (2017) 3, is well known. Hence, we study the Hellinger distance

dyr (Wﬁ/l ) W/a ,) between two trajectories, which satisfies a precise recurrence formula stated as

Lemma 5 in Section 3. The relation between Hellinger and TV distances allows us to provide upper
and lower bounds on the latter in terms of the former.

2. The worst-case starting state assumption is a choice also made when defining mixing time. It is also worth noting
that in this scenario, since the chains are reducible they will not converge to the stationary distribution and hence the
mixing time is infinite.

3. Formally, consider a guessing game where p or g is chosen uniformly at random (or by an adversary), then one sample
is generated from the chosen distribution, and we must guess which one it is. The optimal error for this guessing
game is precisely 0.5 - (1 — d, (p, q))-

4. Indeed, it enjoys the precise recurrence relation 1 — d?_ (p®*,¢®*) = [1—d?_ (p, q)}é. Moreover, there is

Hel Hel
a tight relationship between TV and Hellinger distances, see (4), so one can derive upper and a lower bound on

dry (pw, q®[) based on d, (p ‘ qw). See Section 2.
5. For more discussion on this, see the related work section.
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A Scale-Free Measure of Difference Between Markov Chains. Both the distance measures
dpy (WﬁA,WfA ,) and d | (WﬁA,WfA /) depend on (1): the length ¢ of the trajectory and (2):
the starting state sg. We would like, instead, a parameter-free and scale-free notion of difference
between Markov Chains satisfying the above desiderata. A popular way of tackling such a parameter
dependency in Markov Chain literature is to study the inverse dependency of the length ¢ of a
trajectory required to achieve a certain threshold value for some quantity, e.g. mixing time is defined
as the minimum number of steps ¢ needed so that the distribution of the ¢-th state of a trajectory
starting at any state so is no more than 1/4 away from the stationary distribution. Similarly, in our
case, we propose to analyze the minimum number of steps ¢ required so that d,_| <Wﬁ4 , Wﬁ/{ ,) is

at least some constant (we choose 0.5):°

. . ¢ ot v _
min ;0 Vsoe ] dy, (W W, | Xo=Yo = 50) 2 6. 2)

The above definition assumes a worst-case starting state sy which reflects our desiderata stated
above that we do not get to control the starting state and we cannot restart the chain. Moreover, it is
the choice made in the definition of mixing time. In Section 3 we show a tight relationship between
the above definition and an appropriate “average-case” version.

Clearly, the answer to (2) depends on the scaling behavior, as £ — oo, of the following quantity:
def . ¢ ¢
6(0) & mind,, (W W, | Xo=Yo = s0) - 3)
Interestingly, as we discuss in Section 2, this scaling behavior is tightly captured by the following

matrix: ot
P.Ql, % VP Qi

where P and () are the transition matrices of the two chains, i.e. P;; and ();; denote the probabilities
of transitioning from state ¢ to state j in the two chains. In Lemma 5, we state a recursive decom-

. )
ij€[nxn]

position that allows us to exactly express the square Hellinger similarity, 1 — diel (Wf/t , WﬁA ,> of
£-length words sampled from the two chains in terms of the ¢-th power of the above matrix, and the
distribution of the starting states X, and Yj in the two words.

To identify a word-length independent measure of difference between the two chains based
on (2), we employ a spectral approach. We show that the scaling behavior (w.r.t. £) of the Hellinger
square distance between Wﬁ/l and W/a , is captured by the largest eigenvalue \; = p([P, Q] \/) of
matrix [P, Q] Y. We show that always A\; < 1 (Claim 1), and that A\; = 1 if and only if the two
chains have an identical essential communicating class (Claim 1), in which case we would be unable
to identify the difference between the two chains from a single trajectory which starts at a state in
the essential communicating class which is identical in the two chains (see the two communicating
classes example above). These statements hold even for asymmetric chains. For symmetric Markov
chains, ¢ in (2) is almost proportional to é ¢ = 5) (%) up to a logn factor, see Claim 2) where
e=1-p([P,Q)] \/).7. The latter estimation on ¢ also holds for the case when initial state in P and
@ is chosen uniformly at random.

6. Note that a trajectory of this length also satisfies d..,, (Wﬁ/[ , wa ,) > 0.25.

7. For non symmetric Markov chains, one can show that the slowest (with respect to the choice of the starting state) that
the square Hellinger similarity (defined as 1 — dicl) of the two chains can drop as a function of the length £ is X%, up
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Given these properties, we propose the use of
Dist (M, M) =1~ p(IP.Q] )

as a scale-free and meaningful measure of difference between Markov chains. Figure 1 illustrates
how Dist (M, M) behaves for different pairs of Markov chains M and M’.

Our Results. Using our proposed measure of difference between Markov chains we provide algo-
rithms for goodness-of-fit testing of Markov chains, namely Problem (1), where Dist (M, M') =
1—p([P, Q] \/), where P and Q are the transition matrices of chains M and M’. We study this prob-

lem when M and M’ are both symmetric, and provide upper and lower bounds for the minimum
length ¢ of a trajectory from the unknown chain M that is needed to determine the correct answer
with probability at least 2/3. In particular, Theorems 9 and 10 combined show that the length of
the required trajectory from M to answer Problem (1) is n/e, where n is the size of the state space,
up to logarithmic factors and an additive term that does not depend on & or M. Our upper bound
is established via an information-efficient reduction from single-sample identity testing for Markov
chains with n states to the classical problem of identity testing of distributions over O(n?) elements,
from i.i.d. samples. A naive attempt to obtain such a reduction is to look at every MixT 5/ -th step
of the trajectory of M, where MixT s is the mixing time of chain M’, pretending that these tran-
sitions are i.i.d. samples from the distribution {%Pw }ije[nQ]' This incurs an unnecessary blow-up
of a factor of MixT , in the required length of the observed trajectory and also requires some
additional work of checking the mixing time of the the unknown Markov chain M’. On the other
hand, we cannot simply wait while we collect a predetermined small number of samples per every
row of the transition matrix and treat them as i.i.d. samples. Indeed, the fact that certain states are
visited can create dependencies among transitions from the other states®. We show how to avoid
these issues via a more subtle approach, which also exchanges the mutliplicative dependence on the
mixing time of M’ with an additive term that is nearly-linear in the hitting time of M’.

Related Work. Testing goodness-of-fit for distributions has a long history in Statistics; for some
old and more recent references see, e.g., Pearson (1900); Fisher (1935); Rao and Scott (1981);
Agresti (2012). In this literature the emphasis has been on the asymptotic analysis of tests, pin-
ning down their error exponents as the number of samples tends to infinity Agresti (2012); Tan
et al. (2010). In the last two decades or so, distribution testing has also piqued the interest of
theoretical computer scientists Batu et al. (2001); Paninski (2008); Levi et al. (2013); Valiant and
Valiant (2014); Chan et al. (2014); Acharya et al. (2015); Canonne et al. (2016); Diakonikolas and
Kane (2016); Daskalakis et al. (2013); Canonne et al. (2014); Rubinfeld (2012); Goldreich (2011);
Canonne (2015), where the emphasis, in contrast, has been on minimizing the number of samples
required to test hypotheses with a strong control for both type I and type II errors. A few recent

to factors that do not depend on Z; this follows from (5) and (7). That is, the slowest that the square Hellinger distance

of the two chains can increase is 1 — O(\{). However, the dependency on the starting state is more significant than

in the symmetric case, and the dependency in the worst-case may be not as smooth as for the symmetric M and M’.

(See Figure 1 for examples of irregular behavior of certain non-symmetric MC.)
8. Consider for example a symmetric Markov chain M with two cliques of size 5 connected by a single edge A — B
(the transition probability of the edge is %). The expected cover time of M is ©(n?), however we can get lucky and
finish the pass over all states early in, say, n\/n steps (then it is also likely that every state was visited Q(y/n) times).
In this case, we know that the bridge A — B was necessarily used, which is actually unlikely event if we make 2/n
ii.d. transition from each of A and B states.
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works have identified tight upper and lower bounds on the sample complexities of various test-
ing problems Paninski (2008); Valiant and Valiant (2014); Acharya et al. (2015); Diakonikolas and
Kane (2016). All of the papers in this vast body of literature assume access to i.i.d. samples from
the underlying distribution.

Some work in Statistics has considered the problem of testing with dependent samples. For
instance, Bartlett (1951); Moore et al. (1982); Gleser et al. (1983); Molina et al. (2002) and the
references therein study goodness-of-fit testing under Markov dependences. These works study
how the classical tests used to perform goodness-of-fit testing with independent samples, perform
when there are Markovian dependencies among the samples. Tavare and Altham (1983) and more
recently Barsotti et al. (2016) study the problem of testing the stationary distribution of Markov
chains. Kazakos (1978) studies the problem of asymptotically perfect detection (APD) between
two Markov chains. All these works focus on the asymptotic regime where the length of the ob-
served trajectories tends to infinity, and study the conditions under which hypothesis testing can be
performed successfully or focus on pinning down the error exponents. In the computer science lit-
erature, Batu et al. (2013) considered the problem of testing whether a Markov chain is fast mixing
or not. They defined a notion of closeness between two random walks starting at different states
of the same chain, which is different in spirit to the distance notion we define in this work. In par-
ticular, their distance is based on the L; norm of the state distributions attained by starting at two
different states v and v and running the chain for ¢ steps. This ignores any differences in trajectory
seen along the way and it is apt for their setting as they focus on mixing time which is a trajectory
independent property of the chain. Moreover, they assume the chain can be restarted any number of
times making it fundamentally different from our setting.

There is a large body of statistical literature on estimating properties and parameters of Markov
chains. Mixing time is one such important and well studied parameter (see, e.g., Hsu et al. (2015)
and the references therein), as it is useful in designing MCMC algorithms. The question of mixing
time estimation is related to but different than the goodness-of-fit kernel testing that we perform
here.

Our notion of distance is derived from Lemma 5 but the work of Kazakos (1978) or more
recent works of Daskalakis and Pan (2017) or Diakonikolas et al. (2016) don’t consider the spectral
behavior as we do in this work.

Organization We start in Section 2 with a description of the notational conventions we use and
provide all necessary formal details for our difference measure in Section 3. In Section 4, we study
the problem of testing identity of symmetric Markov chains and present our tester. We give a sample
complexity lower bound for this problem in Section 5.

2. Preliminaries

We list the general notational conventions used in this paper. We denote vectors by small letters such
as v and matrices by capital letters such as A,B,P,Q. The i*" entry of vector v is denoted by v; or
v[i] and the (i5)*" entry of matrix A (i*" row, j column) is denoted by A;; or A[ij]; e; denotes the
standard basis vector with 1 in its 7" coordinate and 0 elsewhere; 1 denotes the vector of all ones.
The “entrywise” Ly and Ly norms of a matrix A are respectively denoted as [|All; = 3, ; [Aj]

and [|Ally = /> ; A%j; p (A) denotes the spectral radius of matrix A4, i.e., the maximum absolute

eigenvalue of A. The eigenvalues of A are denoted by A1,...,A;, ..., A, and the respective right
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eigenvectors by vy, ..., v;,. .., v, (left eigenvectors by uy, ..., u,)%; for symmetric matrix A we
assume that Ay > --- > \; > --- > A\,

Two popular notions of distance between distributions will be used heavily in this paper. We state
their formal definitions below and also specify the relation between them.

Definition 1 The total variation and Hellinger distances between distributions p,q over [n] are
def def
defined as : d., (p.q) = 3 > |pi—a = 3

2
5 Gatpa) 4 2 (Bi-va) = 1
en SO
> \/Di - Gi; The following relation between these notions of distance is well known (see, e.g.,
i€[n]

Gibbs and Su (2002)):

V2-dy, (p.q) > dyy (p,g) > A2 (D10) - @)

2.1. Markov Chains

A discrete-time Markov chain is a stochastic process {Xt}te{o,L...} over a state space S which
satisfies the Markov property: the probability of being in state s at time ¢ + 1 depends only on the
state at previous time ¢. In this paper, we only consider Markov chains with the finite state space
[n]. Such Markov chains can be completely specified by a n x n transition matrix (kernel) that
contains probabilities of transitioning from state ¢ to state j in the i** row and j** column, and a
description of the distribution of their starting state. The transition matrix has non-negative entries
and is a stochastic matrix. We use capital letters P, (), M to represent Markov chains as well as their
respective transition matrices. The stationary distribution 7 of a Markov chain P is a distribution
over the state space S such that it satisfies 7' - P = 7'. Another important parameter is the
distribution of the starting state so which we denote by p (for the Markov chain P). It may or not
may not be the stationary distribution.

The state space of a Markov chain can be partitioned into communicating classes which are groups
of states reachable from each other with positive probability. The formal definition of essential
communicating classes is as follows.

Definition 2 (Essential Communicating Classes) Given a Markov chain M over the state space
[n], we define x — vy if there exists an integer r > 0 such that M" (x,y) > 0. Similarly, we define
equivalence relation x < y iff t — y and y — x. The equivalence classes under relation <> are
called communicating classes. Any communicating class C with the property that y must be in C

forany x € C and x — y is said to be an essential communicating class'°.

2.1.1. HITTING TIMES AND MIXING TIMES

Two commonly studied random variables associated with Markov chains which are relevant to this
paper are their mixing times and hitting times.

9. If matrix A is not symmetric, we allow \; € C and v;, u; € C". Then, we will only use A\; € R and v1,u; € R".
10. An essential communicating class can be intuitively thought of as a strong connected component of the underlying
directed graph with no outgoing edges.
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Definition 3 (Hitting Time HitT p of a Markov chain P) Given a Markov chain P over a state
space [n), let s; denote the state at time t. The hitting time HitT p is

HitTp = max {E [min{t > 0: s; = r given so = s}|}
r,s€[n]
Definition 4 (Mixing Time MixT p of a Markov chain P) Given a Markov chain P with a sta-
tionary distribution ™ and a starting state distribution p,

MixTp = max min{t > 0: HPtp - 7TH1 <1/4}
2

3. Deriving a Notion of Distance between Markov Chains

Given two Markov chains P and (), we want to come up with a distance notion which captures how
easy it is to distinguish which Markov chain P or () a word w = sg — s1 - - - — sy of certain length
¢ was generated from (while being agnostic to the distribution of sg). This distinguishability is pre-

cisely captured by the TV distance d ., (Wﬁ, Wé) between word distributions Wf, Wé for words
of length ¢ generated by Markov chains P and () respectively. It is more convenient in our setting to
use, instead of total variation distance, the square of the Hellinger distance dfm (Wﬁ, Wé) or the

closely related Bhattacharya coefficient'!, which is useful for studying divergence of non-stationary
and continuous Markov chains as was observed in Kazakos (1978). Kazakos (1978) establishes nice
recurrence relations for the Bhattacharya coefficient of two word distributions, which is captured by

the matrix [P, Q] , def (VP Qis | jepnsen)

Lemma 5 (Kazakos (1978)) Suppose P and Q are Markov Chains over states [n|, p and q are
probability distributions of the initial state. Let Wﬁ, Wé be the distributions denoting a length { tra-

Jjectory of Markov Chains P (resp. Q) starting at a random node sy sampled from p (resp. q). More-
def def

over, define the vector [p, q]\/ = [. /Ds - qs]se[n} and the matrix [P, Q]\/ = [w /Pij - Qij ]i7j€[n><n]'
Then:

1—d? (Wﬁ»Wé) =[p.ql),- ([P, Q]»e 1, 5)

There are two important parameters which affect the expression given by Kazakos (1978). The
first is the distributions of the starting states of the Markov chains (p, q) and the second is the length
of the word (I). We want a notion of distance which is a scale-free non-negative real number. To
achieve this, we study next how to eliminate the dependencies on the starting state distributions
(p, @) and the word length ().

Assumption on the starting state. We study two scenarios for the choice of the starting state:
(i) a worst-case scenario where both P and () begin from the same state ¢ chosen in adversarial
manner to make P and () look as much alike as possible; (ii) an average-case scenario, where the
initial distributions p = q for P and () either are given to us, or are related to P and () in some

11. Hellinger distance is tightly related to the Bhattacharya coefficient between two distributions which is defined as
BC(p,q) = Zie[k] /Pi - G- It captures similarity of two distributions and lies in [0, 1].
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natural way'2. Given the assumption on the starting state we want to answer the question of what ¢
to pick, so that Wf; and Wé are far apart in squared Hellinger distance (say > 0.5). Formally, we
have the following respectively for the worst-case and average-case scenarios listed above:

V4
. . . a2 l ) o T. .
min £: Vi€ [n] 0.5>1—d>, (WP,WQ> = e; ([P, Q]\/> 1. ©6)
l
. . _ 42 il L .
min (: 0.5>1—d2, (WP,WQ> = Ip.ql], ([P,Q]\) 1

Due to the relation between Hellinger and total variation distances, an inequality similar to (6) holds
for1 —d., (Wﬁ, Wé) as well but with a different constant on the left.

We call the minimal / that satisfies d., (Wf,, Wé) > 2 for all starting states i € [n] (or for

fixed starting distributions p = q) the minimal distinguishing length. We note that (6) gives us an
estimate on £ up to a constant factor.
Next we argue that when £ is large, the behavior of the RHS of (6) is governed by the largest

eigenvalue \y = p ([P, Q] \/> of [P, Q] Y. In particular, by Perron-Frobenius theorem, we have
that the largest eigenvalue of [P, Q)] y is non-negative and the corresponding left eigenvector u; :
u{ -[P,Q)] J= A1 -u{ has non-negative coordinates. In particular, if we choose initial distributions
p = q proportional to u, then

p - (PQ),) 1= p 1y = ™

Claim 1 Ir is always true that \y = p ([P, Q]\/> < 1. Moreover, \1 = 1 iff P and Q have an
identical essential communicating class.

Proof of Claim 1 is defered to Appendix B.

We propose the use of the quantity 1 — p ([P, Q] \/> as a distance measure between Markov
chains P and Q.

Definition: Dist (P,Q) & 1 p ([P, 0l ¢).

In particular in (6) if p = q is proportional to u, then £ - In(1 —¢) < In0.5 = ¢ > 1;‘—82
This shows that in the worst-case we need to observe a trajectory of length at least (1/¢) before
we can satisfactorily distinguish the two chains. Note however that, in general, £ might need to be
larger than Q(%) as is illustrated in Example 2. However, we will see that in the case of symmetric
Markov chains we observe a more regular behavior. In the remainder of this section and the fol-
lowing sections we only consider symmetric Markov chains that avoid such irregular behavior and

dependency on the starting state.

12. For example p and g could be respective stationary distributions of P and ). However, we still assume identical
initial distributions for P and @, i.e. p = g, as otherwise there might be a simpler trivial strategy to distinguish
P and @ by observing only one initial sample from p. Example 3 illustrates how two Markov chains can produce
very similar distributions of words Wf; , Wé starting from any state for some large ¢, and yet have vastly different
stationary distributions.
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Word distance between Symmetric Markov Chains. The stationary distribution for any sym-
metric Markov chain is the uniform distribution over all states. In this case the most natural starting
distributions for the average-case part of equation (6) are p = q = %]l. In this setting of symmetric
Markov chains, we can provide sharp bounds on the minimal distinguishing length /.

Claim 2 The necessary and sufficient distinguishing length ¢, which allows to distinguish P vs.
Q with high probability, is 5) (%) (up to a logn factor), where ¢ = 1 — p ([P, Q]\/) under both

worst-case and average-case (we assume p = q = %]1 ) scenarios for the starting state.

Proof of Claim 2 is given in Appendix B.
We note that, if one could pick the starting state instead of working with average-case or worst-
case assumptions of Claim 2, then ¢ can be much smaller (see Example 5). Claim 2 gives a strong

evidence that 1 — p ( [P, Q] \/) is a meaningful and important parameter that captures closeness

between P and (). In the following section we will use it as analytical proxy for the distance

between Markov Chains!3.

4. Identity Testing of Symmetric Markov Chains

After understanding the problem of distinguishing between two given distributions, a next funda-
mental question is the identity testing problem where the goal is to test whether an unknown dis-
tribution p from which we see a stream of samples, coincides with a given hypothesis distribution
q. In this section, we study identity testing of symmetric Markov chains and provide an efficient
algorithm (Theorem 9). We begin by giving below a formal statement of the problem:

Input: £ > 0; explicit description of a symmetric Markov chain @Q); a trajectory si - - - s, of length
m from a symmetric Markov Chain P.

Output:P:Q,orP#Qifl—p([P,Q]\/) > €.

Our approach. Identity testing problem with i.i.d. samples, is a well studied problem in the dis-
tribution testing literature. The problem is quite non trivial'* and to achieve tight sample complexity
one needs to do careful estimations of collisions in observed samples. Markov chain identity testing
appears to be at least as hard as the i.i.d. identity testing problem with the added complication of de-
pendent samples. To avoid involved analysis of collisions among dependent samples we will instead
try to find a black-box reduction of the MC testing problem to identity testing with i.i.d. samples.
A naive attempt at such a reduction proceeds by waiting for a period of mixing time MixT of the
known Markov Chain () to get one (potential) i.i.d. sample from the stationary distribution of P
(in case P has mixed). If the empirical distribution for the number of visits is far from the uniform

13. In general this notion of distance should be used with care. For instance, note that Dist (P, Q) =1 — p ([P7 Q] \/>,
is not a metric. In particular, Dist (P, Q) violates the triangle inequality (Dist (M1, M2) = Dist (M2, M3) = 0,
but Dist (M7, M3) > 0 for some M1, M2, Ms) as is illustrated by Example 1. We note that this problem can only
appear for reducible chains, as is shown in Claim 1. Also it is not always possible to extend the sharp bounds on
£ of Claim 2 from symmetric Markov chains to non-symmetric Markov chains, even if both MC have the uniform
distribution as their stationary distribution (see Example 4)

14. It is studied by a number of works. For instance, see Batu et al. (2001); Paninski (2008); Valiant and Valiant (2014);
Acharya et al. (2015); Diakonikolas and Kane (2016) (This is not an exhaustive list).

10
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distribution, we can immediately reject P (since if P = @, then P is a symmetric chain and will
have the uniform distribution as the stationary) and if it is not, then we would have attained multiple
transitions from a sizeable set of nodes and one could hope they contain sufficient signal to distin-
guish P from ). It is non-trivial to extract this signal as the mere fact that we have seen multiple
samples from a single node within a short length of the trajectory introduces dependencies in our
samples. That is, two samples from the same node are not independent samples from the transition
distribution of that node, if it took only a little time to return to this node. Moreover, this attempt, if
it works, will incur a multiplicative loss of MixT in the sample complexity.

We take a more subtle and involved approach to achieve a successful reduction to the classical
setting with i.i.d. samples. Moreover, our reduction yields an algorithm that suffers only an addi-
tive loss of O (HitT¢ - log (HitT¢)) in sample complexity. We reduce the Markov chain problem
to the classical identity testing problem with respect to squared Hellinger distance of distributions
supported on a domain of size n?. Our result is always as good as the naive approach. Indeed,
for symmetric chains, the hitting time cannot be larger than mixing time by more than a c.n fac-
tor (where c is a constant), but usually it is much smaller (in fact hitting time can be even smaller
than mixing time). We note that many broad classes of graphs and Markov chains have close to
linear hitting times, e.g., expanders, d-dimensional grids (which are not expanders). Below we de-
scribe how we map samples from a Markov chain to i.i.d. samples from the appropriate distribution.

A Mapping From Infinite Words. Consider a mapping Ky, from words of infinite length w € W37

of an irreducible Markov chain M on the state space [n] to [[I_, [n]*, where k = (k1,- -, k)
is a vector of n non negative integers, as follows. For each infinite word w = s1s2--- and each
state ¢ € [n] we look at the first k; visits to state ¢ (i.e., at times t = t1,...,tg, with s; = ¢) and

write down the corresponding transitions in w, i.e., s;4.1. We note that every state is visited almost
surely in w, since M is an irreducible finite-state Markov chain. Therefore, mapping K defines
a probability distribution on [}, [n]*. Now, crucially, this distribution is independent across all
different states and/or independent for a particular state ¢ because of the Markov property of Markov
chains. Furthermore, a specific transition from a copy of the state ¢ is distributed according to the
i-th row of the transition matrix M.
In Lemma 6, we show that even for a finite length trajectory with length m = O (HitT o log (HitTg)

+ 2) 15 and k; = O(E[# visits to i]) = O(2) the mapping Ky, is well defined for all but a small
fraction (in probability) of the words from the distribution WW!". This effectively allows us, with
high probability, to generate a large number of independent samples from the following distribution
supported over [n] x [n]: pick uniformly at random a state i@ € [n]| and then observe a transi-
tion from ¢ according to transition probabilities of row P;. Indeed, to this end, we first simulate

m = © (%) i.i.d. samples from [n]. These samples describe how many visits an inde-
pendent sampler would make to state i € [n]. Let k be the histogram of these m’ samples (note
that max; k; < O(m’logn/n) with high probability). We apply K mapping to our stream of m
consecutive samples of Markov chain P, which is well defined with high probability. Apart from
some small probability events (max; k; is too large, or K is not defined for our choice of m) we

obtain the desired m’ i.i.d. samples.

15. in this paper, O always hides poly log(n/e) factors, but not HitTq.

11
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Lemma 6 Given an irreducible Markov chain M and the mapping from infinite words YW= de-
scribed above, for m = O (log (HitTg) HitTq), then Pr(3 state i s.t. |{t : i = sy € w}| <
o] < £ \where the probability is over the sampling of k and word w.

8enl — n

The proof is deferred to Appendix C.
In the following we present our algorithm for Markov Chain identity testing and provide an
upper bound on its sampling complexity.

Algorithm 1: Independent Edges Sampler.

k <+ Histogram (© m) ii.d. Uniform [n] samples) fort¢ <+ 1tom — 1 do
| if [Samples[s]| < k[s;] then Add (s; — s¢41) to Samples|sy];

end

if 34, s.t., |[Samples]i]| < k]i] then

| return REJECT;
else
Samples «+ Samples[1] U --- U Samples[n] return IdentityTestIID (¢, {g; = * -
Qij}ijen), Samples)
end

Algorithm 1 uses as a black-box the tester of Algorithm 1 of Daskalakis et al. (2017). The
following Lemma follows from Theorem 1 of Daskalakis et al. (2017).

Lemma 7 Given a discrete distribution q supported on [n] and access to i.i.d. samples from a
discrete distribution p on the same support, there is a tester which can distinguish whether p = q

ord,,, (p,q) > e with probability > 2/3 using O (g) samples.

As a corollary of Lemma 7, we get a test that can distinguish whether P = @), or d12{e1 (%P, %Q) >e
using m = O (g) i.i.d samples from %P, which can be viewed as a distribution on a support of
size n?. Lemma 8 shows that the required distance condition for the i.i.d. sampler is implied by our

input guarantee.

Lemma 8 Consider two symmetric Markov chains P and Q) on a finite state space [n]. Denote by
%P the distribution over n* elements obtained by scaling down every entry of the transition matrix
P by a factor 1/n. We have,

2
1 | P;j [Qij 1.1 . e
5 E | < 7] - Cij) :diel (nP7nQ> Z Dist <P7Q)d:f1 _p([P7Q]\/> (8)

i,j€[n

The proof of Lemma 8 is given in Appendix C.

Finally, the following Theorem 9 gives an upper bound on sampling complexity of Algorithm 1.
We note that O (HitT¢q) samples are necessary for a reduction approach to work. Indeed, if we are
to simulate n logn i.i.d. samples (v — u, where v ~ Uniform[n| and u ~ P,), then we shall see
all states v € [n] at least once with high probability. Le., the random walk must visit all the states,
which would require at the very least Hit'T steps in the random walk. On the other hand, our
bound of O (HitTg - log (HitTg) + 2) is always better than a naive bound of MixTq - 2, since
HitTg < n - MixT( and, in fact, for most of the reasonable MC HitTq is much less than that.

12
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Theorem 9 Given the description of a symmetric Markov chain Q) and access to a single trajectory
of length m from another symmetric Markov chain P, Algorithm 1 distinguishes between the cases

P = Qversus1—p ([P, Q] \/) > e with probability at least 23, form = O (HitTg - log (HitTgq) + 2).

Proof In the case P = (@), the probability that Algorithm 1 proceeds to IID tester, i.e., it does not

reject P, because of small number of visits to a state, is at least Pr[Vi € [n] [{t : i = s; € w}| >
] PrVioc gt > ki > (1 - %) : (1 — %) >1- % In the previous estimate, we used

8en

Lemma 6 to bound Pr[Vi € [n] [{t : s; € w,s; = i}| > go-], the fact that Pr[g% < k;] < 2—2

8en 2
(follows from a Chernoff bound), and a union bound. IID tester then correctly accepts P = () with

probability at least 4/5. Hence, the error probability is at most 1/5 + % < 1/3.

For the case P # (), Lemma 8 says thatif 1 — p ([P, Q] \/) > ¢, then distributions passed down

to the IID tester {p : p;; = %Pi]-} and {q : ¢;; = %Qij} are at least ¢ far in Hellinger-squared
distance. A black-box application of Lemma 7 implies a O (2) sampling complexity for the IID
tester in our case. Furthermore, random mapping K : W° — p (where k is a histogram of

m =0 (W) i.i.d. uniform samples from [n]) produces m’ i.i.d. samples from p. Hence, if
Algorithm 1 has sufficient samples from P to define the mapping K, it would be able to distinguish
p and g with probability at least 2/3. On the other hand, if Algorithm 1 gets finite number of samples
which are not sufficient to define the mapping Ky, then it correctly rejects P before even running
the IID tester.

Thus in both cases the probability of error is at most 1/3. |

S. A Lower Bound for Identity Testing of Symmetric Markov Chains

In this section we provide an information theoretic lower bound to the identity testing problem on
Markov chains defined in Section 4.

Theorem 10 There exists a constant ¢ > 0 and an instance of the identity testing problem for
symmetric Markov chains such that any tester on this instance requires a word of length at least ¢
as input to produce the correct output with probability > 0.99.

The full proof of Theorem 10 is given in Appendix D. The high level idea is to construct a Markov
chain () and a family of chains P such that it is hard to distinguish () from a randomly chosen
P € P by only looking at trajectories of length o(n/e). The chain @ and the family P we work
with are described below (we think of symmetric Markov chains as weighted undirected graphs
with multi-edges allowed).

Markov Chain (): complete double graph on n vertices with uniform weights, i.e.,

1
voigs @z e B Q= Qe = 50—y

Family P: for any pair of vertices ¢ # j there are two bidirectional edges (7)1, (ij)2 with weights
randomly (and independently for each pair of (i, j)) chosen to be either

C1F V&

or P(ij)l’P(ijb - 2(n — 1)'

13
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From the construction above it is clear that one needs to observe a number of collisions to distinguish
( from a randomly chosen member of P. The proof proceeds by a careful analysis of these collision
probabilities to bound the TV distance between words of length k& from ) and from a randomly
chosen P € P.

6. Open Questions

In this paper, we proposed a new framework for studying property testing questions on Markov
chains. There seem to be multiple avenues for future research and abundant number of open prob-
lems arising from this framework. We first list some questions which may be of interest here.

1. What is the optimal sample complexity for identity testing on symmetric Markov chains? In
this paper, we show an upper bound of 0] (HitTQ -log (HitTq) + g) samples (Theorem 9).
We conjecture that © ( %) (same as our lower bound) is the right sample complexity for this
problem and an explicit dependence on the hitting time of chain () may not be necessary. It
is implicitly captured to an extent by the guarantee we get from the parameter €.

2. As there is a natural operation of taking a convex combination of Markov chains, it is natural
to ask how our spectral definition of distance 1 — p <[P, Q) \/) between two symmetric chains

changes if we substitute either P or () with a convex combination of P and ). How does the
distance now relate to the original value?

3. Given €2 > €1, and access to words from each of two chains, can we distinguish whether
the two chains are < e1-close or > eo-far? This problem, known as two-sample testing in
literature, is another interesting direction using our framework.
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Appendix A. Examples

M, M, Ms

Figure 1: Dist (M, M) = 1—p ([Ml, My]
0, but Dist (M, M3) > 0.

\/> is not a metric. Dist (M, Ms) = Dist (Ma, M3) =

P Q

Figure 2: To distinguish P vs. () walking from a random state we need (n) steps, but
Dist (P, Q) = 1.
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Figure 4: Dist (P, Q) = 1. Uniform is stationary for both P and ). On average §2(n) steps to tell

TR A

1

P Q

Figure 5: After one step from state 4, we would know if w ~ P, or w ~ Q. If w starts from any
other state sg # 4, it would take many steps.
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Description
Example 1 | Two disjoint connected components.
Example 5 | @ - clique K,,; P — clique K,,_; and disjoint vertex. Eigenvalue of [P, Q)] y
M=/ =1—0(), = /L= = A =0
Example 2 | P - oriented cycle, ) — cycle with one link substituted by a loop.
Example 3 | P — oriented cycle with edge e = (v1v2) substituted by a loop at v1; @ is almost
like P, but e has weight —. N loop at v,, has weight 1 — ﬁ Stationary dis-
.
tributions: p, = (1,0, - ,0)" and qo = (n+%_1, n+\/ﬁ—1’ ce n-h}ﬁ—l) .
- _ 1
p(P.@l) = \/1- %
Example 4 | Two oriented cycles P def 81— 89 — -+ — S, — s1 and ) def $1 —> S3 —
Sq4°+° —> Sp — S2 — S1.

Table 1: Examples.

Appendix B. Missing proofs from Section 3

Proof of Lemma 5:

1—d2, (Wf Wf [Pr [u] Pr v P fu] Pr [u)] 1
w= so .Sg w= 80 -S¢

Se=$ s€[n]

= E \/Pr[r—>s]Pr[r—>5 / -1
P Q
rée(n] W=50.- sf 1

Se-1= s€[n]

T .
= wZSO.Zs“ /f]’}[w]%r[w] i m 1

I P+Q
Proof of Claim 1: Note that —~*

with non-negative entries. Therefore, \; - (w1, 1) = u{ - [P, Q] A <ul - |9 1=wf 1=

Sg—1=T ren) 7,s€[nxn]
T
= Z Pr [w] Pr [w] (PQ] ,-1=I[p Q]T‘([P Q] )E‘]l
e, P Q aaYS TV BV,
Se—1=T re(n]

is a stochastic matrix that entry-wise dominates matrix [P, Q)]

(uq,1), where 1 is vector with all 1 entries. We get \; < 1, smce (ug,1) > 0.

For the case of equality, if P and () have the same essential communicating class C, then matrix
[P, Q)] y has the same transition probabilities as Markov chains P and () restricted to the vertices of
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C. We note that C'is a stochastic matrix and, therefore, its largest positive eigenvalue is one. Hence,
p ([P,Q]\/) >p(C) =1

If p ([P, Q] \/) = 1, we apply Perron-Frobinius theorem to [P, ()] foget that the largest eigen-
value A\ = p ([P, Q] \/) = 1 has corresponding (left) eigenvector w; with non-negative entries. We

observe that u; - (P%Q — [P, Q] \/) -1 = 0, and all entries of the matrix in this expression are non-

negative. This implies that P;; = Q) for every strictly positive coordinates 7 of the eigenvector u;
and any j € [n]. Since u| - [P, Q] = uy , we also have P;; = Q;; = 0 for any positive coordinate

1 and zero coordinate j of elgenvector u1. Therefore, the set of vertices corresponding to positive
coordinates of u; form a component (which might have more than one connected component of P
and ()) such that P = (Q on these vertices. |

Proof of Claim 2: We first consider the average-case model for the starting state. Note that [P, Q)]
is a symmetric matrix. Let vy,..., v, be normalized orthogonal eigenvectors of [P, Q)] ) corre-
sponding to real A\; > --- > )\, eigenvalues. Then for RHS of (6) we have

%]ﬁ-([P,Q]\/)Z- fnT (ZA vz-v:> 11_ZV L o)2=(x)  ©

Now we can write an upper and lower bound on () in terms of )\f (assuming that ¢ is even):

A 2 _ o 1 2 —~ . 1 9 Ny 9 N e ¢
g:;HUlHQS)\l'EH”ﬂh§(*)§ E )\z"EHUiHlS E A llvilly = E PYESEDLE
i1 - —

where in the second inequality we used Perron-Frobenius theorem stating that all coordinates of
v are non negative. Consequently, these bounds imply that / = © (é) up to a logn factor, if

p <[P,Q]\/) =N =1-cle, (=0 (1).
For the worst-case assumption on the starting state, it is sufficient to show an upper bound
L=0 (@) In this case (9) becomes

Z n n n
ez'T'([R Q]\/> A= X (e va)-(1,v5) <N il lloally <D 1AV < nlPAf
i=1 =1 =1

since [lvgll, < v/ llvilly = v/n, and [Jvil| o, < lvill, = 1. u

Appendix C. Missing proofs from Section 4

Proof of Lemma 6: To simplify notations we denote by A% 2H1tTQ By union bound over all
ge] < Z—Q for each fixed state i. We

can make sure that in the first 5 steps state i is visited at least once with probability at least 1 — =5
Once we visited state ¢, instead of hitting time for state ¢ we can analyze the return time Return;

states 1 it is enough to show that Pr[|{t : i = s; € w}| <
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for 7. Note that for symmetric Markov chains %]1 (uniform distribution) is a stationary distribution.
Therefore, every state appears at average once in every n steps in an infinite word from Wgo. In
other terms, the expectation of Return; for each state ¢ is exactly n. By definition of hitting time we
have that in % steps the probability of reaching a particular state ¢ from any other state j is greater
than 1 — 1/e (or any other given constant). It implies that Pr[Return; > % - O] < e~ for any
C € N. Indeed, one can show this by induction on parameter C'. Notice that if the random walk
did not return to i after C' — 1 steps it has stopped at some state j # ¢. Then for any choice of j by
definition of the hitting time the random walk will return to ¢ with probability at least 1/e in the next
% steps. It is not hard to get a similar bound Pr[Return; > A - C] < e~ forany C > 1,C € R.
To simplify notations we use X to denote the random variable Return; and X1, ..., Xy to denote ¢

i.i.d. samples of X. We have

X>0 and VCERs,Pr(X>A-C]<e® and E[X]=n. (10)

We only need to show that Pr[X; +--- + Xy, > m/2] < 2—22 for £ = g-. To this end, we use
a standard technique for large deviations and apply Markov’s inequality to the moment generating
function of X7 + - - - + X,

i) - mga]  ElPOE0] BN
Pr(X;+ -+ X, >m/2] = Pr [60 (X14-4+Xy) > e m/Q} < prETYD = ]2

1D
for any fixed # > 0 is attained at

We note that given restrictions (10) on X maximum of E[e?¥]

T

0 with remaining probability 1 — e =0,

X {A -z x € [Cp,00) with probability density function e~
where constant Cy > 1 is such that E[X*] = n. Indeed, distribution X* maximizes (11) due to
simple variational inequality: € - €@ 4 ¢ - €/ < €. /(979 4 ¢. 0 (0H0) forany b > a > ¢ > 0,
and probability mass ¢ > 0. This inequality allows us to increase E[¢?X] and not change E[X] by
tweaking density function f(z) of X f'(a—c) = f(a—c)+e¢, f'(a) = f(a) —¢, f'(b) = f(b) —e,
f'(b+¢)=f'(b+c)+e (f'(x) = f(x) for all other ), for some ¢ < a. The only time we cannot
apply this incremental change is when X = X™.

We have
E[X*] = A(Cy+1)e 0 =n. (12)

def . . N .
We set § = m in (11). Now we are ready to estimate E[e?X]. To simplify notations we
def 3
denote vy = m

o o0 1
E [ee'X} =1—¢ 0 +/ BT e dy =1 — e 0 —|—/ e v (- 30g5) 4
Co CO
—Co(1—7) Cov
—1_eC & 4 Co (e —1>. (13)
1—7 1—7
. . C,
We notice that vCy < 1, since from (12) we can conclude that C?Oj:l = % — (Cp < 2logA =

1/~. The last implication can be obtained as follows: for Cy > 2.52, we have Cjy — % < (Cy—
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In(14+Cy) = ( ) Now we can estimate €70 < 1+e-~Cj in (13). Furthermore, since y < 1/2

we have the ter (Cp + 1). With this estimate we continue (13)

e-n
E[Q'X]<1 ~C02eq(Co+1) =1+ ———. 14
e <l+e ey(Co+1) +A10gA (14)
We apply estimate (14) and formula 6 = m to (11) to obtain
(1+ shis)’
+ AlogA) em/8A10gA —m &2
PriXy+-+Xy>m/2] < om/iAlog A = gm/iAlogA = esalEs < g,
Alog A

en

where in the second inequality we used the fact (1 + ﬁ) < e, and to get the last in-

equality we used m = Q (Alog A) (where in Q) the hidden dependency is only on log ¢ and log n).
|

Proof of Lemma 8: We note that, as P and () are symmetric matrices, so is [P, Q] v Thus we have

1—5:p([P,Q]\/> = max 'vT-[P,Q]\/-’v. (15)

[vlly=1

If we use a particular v = ﬁ]l in (15), then we get the following inequality.

1 1_1
e zm_ -, (1roa).

which implies d2 (1P, 1Q) >e. |

Appendix D. Proof of the Lower Bound

Here we present the proof of Theorem 10.
Proof of Theorem 10: We use Le Cam’s two point method and construct a symmetric Markov chain
@ and a class of symmetric Markov chains P s.t. (i) every P € P is at least ¢ far from @ for a

given constant . Thatis 1 —p ([P, Q] \/> > ¢ forany P € P; (ii) there is a constant ¢ > 0, s.t. it is

impossible to distinguish a word of length m generated by a randomly chosen Markov chain P ~ P,

from a word of length m produced by @ with probability equal to or greater than - 106 9 form < <. To
prove (ii) we show that the total variation distance between the m-word distributions obtalned from
the two processes, () and P, is small when m < % for some constant c. We denote distribution of
length m words obtained from () by Wg, and from MC P ~ P by W]'. We represent symmetric
MC as undirected weighted graphs G = (V, E). We allow graph to have multi-edges (this is helpful
to provide an intuitive understanding of the lower bound construction and is not essential). We can
ultimately remove all multi-edges and give a construction with only simple edges by doubling the
number of states.
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Markov Chain ): complete double graph on n vertices with uniform weights, i.e.,

. S 1

Vo i#] (ij)1, (ij)2 € E Qujy = Qij), = W — 1)

Family P: for any pair of vertices ¢ # j there are two bidirectional edges (7)1, (ij)2 with weights
randomly (and independently for each pair of (4, j)) chosen to be either

_1+V8e 1F V8

2= ooty O HeoPan = 50Ty

Peijy > Pig)

To make this instance a simple graph with at most one bidirectional edge between any pair of
vertices we apply a standard graph theoretic transformation: we make a copy ¢’ for each vertex 7;
for each pair of double edges e; = (ij)1, ea = (ij)2 construct 4 edges (ij), (ij'), ('7), (i'7") with
weights w(ij) = w(i'j") = w(ey) and w(ij’) = w(i'j) = w(eq).

As all Markov chains ) and P € P are symmetric with respect to the starting state, we can
assume without loss of generality that word w starts from the state ¢ = 1. First, we observe that for
the simple graph 2n-state representation

Lemma 11 Every Markov chain P € P is at least e-far from Q).

Proof For any P € P, it can be seen that

[P.Q] -1 = <\/1+\/g42r\/1_‘/§> 1.

By Perron-Frobenius theorem 1 is the unique eigenvector corresponding to the largest absolute value

eigenvalue. Hence, p ([P, Q]\/) = Y H‘/g;r VI-VBe hich by

1—p([P,Q]\/)26+%52+0(52)25f0rany€<%. n

Taylor series expansion implies

We say that a given word w = sj ... S, from a Markov chain P represented as a multi-edge
graph on n states has a (ij) collision, if any state transition between states ¢ and j (in any direction
along any of the edges (ij)1, (¢7)2) occurs more than once in w. We now state and prove the
following claims about the Markov chain family P.

Lemma 12 Consider a word w of length m drawn from Q). The expected number of collisions in
w is at most O (%;) =0 (6%)

Proof of Lemma 12: Let I,,(t1, t2, (7)) indicate the event that in the multi-edge interpretation of the
Markov chain P, the transition along (i) edge occurs at times ¢; < t2 in w. First, we observe that
Prls, = s|s;,—1 = 2] < -5 and Pr[sy, = s|sy, -1 = 2] < -2 forall zand both s =i or s = j.
Thus for any ¢2 > ¢; +2 by a union bound for all four possible cases of sy, , S¢,+1, Stys Sto+1 € {1, 7}

we have
4

E [1y(t1,t2, (i5))] < CEDL
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Similarly, for the case to = t; + 1 we can obtain

2

B (fu(t1, 12, (9)] < g

Let X denote the random variable which is equal to the total number of collisions in the word w.
Then,

EX]= Y Y E[L(t, b, (if) +ZZE (t1,t1 +1, (i))]

ta>t1+2 i#£j t1=1 i#j

(nfl)zl'nj'n(n_l) 2 .m'n(n—l):0<m2>

IN

2 Tmo1p > 2

We also consider 3-way collisions which are collisions where there was at least 3 different
transition between a pair of states ¢ and j in the word w.

Lemma 13 Consider asword w of length m drawn from Q). The probability of w having a 3-way
collision is at most O("3) = o(1).

Proof of Lemma 13: Similar to the proof of Lemma 12 we can give a sharp upper bound on the

8m3 n(n—1)

expected number of 3-way collisions with the most significant term being Bn_17% ~ 2 , l.e.,

the expected number of 3-way collisions is O ( ) By Markov inequality we obtain the required
bound on the probability of a 3-way collision. |

Now consider a typical word w generated by (). As we know from Lemma 13 it has no 3-
way collisions and by Markov inequality and Lemma 12 has at most O(E%) collisions with high
probability. As we show next a typical word w has similar probabilities under ) or P ~ P models.

Lemma 14 For m = O(2) at least % fraction of words w = s1 - - - Sy, generated by Q) satisfy

1
3 Prg [w] < Prp_p[w] < 2-Prg [w]

Proof of Lemma 14: For each feasible word w in @), i.e., w such that Prg[w] > 0

1\ {(ihew)]  pl{E)seu)|
%r [w] = <2(n — 1)) Pr [w] H Z P(Zj)1 P(Z])2

P~p
>i 5 14+v/8¢
7 Pl =2tnen)

First, if w has only one transition along edge (ij), then the corresponding term in Prp_ 5 [w]

Z P|{ ificw}] | pl{(ij)z€w} _ % (1 + V8e + - \/§> = L

(i) (15)2 2<n _ 1) 2(n — 1) o 2(n — 1)'
P(U)l
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From Lemma 13, we know that probability of a 3-way collision in w is o(1) under ) model. We
observe that for a 2-way collision (ij) (a collision which is not a 3-way collision), the corresponding
term in Prp_p[w] for the case of transition along two different edges (ij); and (ij)2 is

(i) (ig)> 2(n—1) 2(n—1) 4(n—1)%

S plmenl pliten _ LT VBe 1-vBe _ (1-8)
P(ZJ)I

We call this type of collision type I collision. For the other case (fype II collisions) of transition

along the same edges the respective probability is ((HSE)) By Lemma 12 and by Markov inequality

the total number of collisions is 0(5—2) with probability 3 7. We can also make sure that out of
these collisions number of type I and type II collisions is roughly the same. More precisely, the
difference between numbers of type I and type II collisions is at most O(%) with probability of at
least %. Indeed, the choice of edge collision type in w is uniform between type I and type II, and
is independent across all collision edges. Now, for small enough m we can make sure that at least
1 fraction of words w has number of collisions at most &} and the difference between number of
type I and II collisions is at most Z, for some small constants c1, ¢ > 0. Thus the corresponding
density functions can be related as follows.

c: P = €1 c:
2>(1+85)%>M > (1 — 64¢?) 2 22 S(1-8)% >1/2

Prq[w]

Lemma 14 shows that d.,, (Wg”, W;”) < %, which implies that no algorithm can successfully
distinguish () from the family P with probability greater than % for some m = Q(%). |
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