
Case for Fast FPGA Compilation using Partial

Reconfiguration

Dongjoon Park, Yuanlong Xiao, Nevo Magnezi, and André DeHon

Dept. of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA

Email: dopark@seas.upenn.edu, ylxiao@seas.upenn.edu, magnezin@umd.edu, andre@ieee.org

Abstract—Despite the FPGA’s advantages over other hardware
platforms, long compilation time prevents FPGA engineers from
efficiently exploring the design space and discourages new users
who want to quickly iterate for debugging. To reduce compilation
time, this work adopts a divide-and-conquer approach using Par-
tial Reconfiguration with a Packet-Switched Fat-Tree network.
Partially reconfigured leaves in the packet-switched network are
independent from each other and can be compiled separately
in parallel. Also, when a minor fix is required to a bitstream,
only the corresponding leaves need to be incrementally compiled.
Preliminary experimental evidence from our work-in-progress
effort illustrates how a 30 minute full-chip compile time can be
reduced to 7 minutes.

I. INTRODUCTION

Compilation time for FPGAs is notoriously long. For

large devices, compilation can take hours. For example, post-

synthesis place and route of a 50% utilized ZU9EG MPSoC

FPGA using Vivado 2016.4 can take half an hour on a 2.7 GHz

Intel E5-2680 processor. This is in sharp contrast to compi-

lation for processors and GPUs that typically take seconds

to minutes, especially when only making small changes to the

application. This makes FPGA use unattractive. It forces a long

edit-compile-debug cycle that is inconsistent with modern soft-

ware development idioms. For novices, the long edit-compile-

debug cycle challenges the attention span and frustrates the

developer. For experts, the long cycle limits the design-space

exploration that can be performed within a limited time-to-

market window. Together, this slow compilation is holding

FPGAs and Reconfigurable Computing back form its full

potential—limiting the set of developers who will try to use

it, limiting the rate at which designs can be developed, and

limiting the quality of designs that are deployed.

We believe the time is right for a methodology and tool

chain to support fast compilation of FPGA designs onto

today’s large-scale FPGA parts. We explore a divide-and-

conquer model that allows large FPGA compilation to be

decomposed into a collection of smaller compilation tasks

that can be run in parallel. The small compiled blocks are

assembled using partial reconfiguration and interconnected

using a lightweight, packet-switched overlay network (See

Fig. 1). This model allows designs to be compiled in minutes,

gated only by the time to compile small leaf functions to

regions of the chip. For example, a 2700 LUT leaf block on the

ZU9EG can be implemented (LUT mapping, placement, and

routing) in 7 minutes. During incremental development, a sin-

gle leaf function can be compiled quickly and independently

and reintegrated into the design, just as software compilers

can separately compile only the files that changed and link

them into a complete application. For larger changes, cloud

resources can recompile all the component leaf functions in

parallel. For example, with a cluster of 8 compute servers, each

with two 2.7 GHz Intel E5-2680 CPUs and 128 GB of RAM

(total of 8×2×8=128 cores), we run 31 parallel Vivado post-

synthesis place and route jobs to implement the entire design

for the ZU9EG in 7 minutes.

This methodology deliberately sacrifices routed design qual-

ity and density for low compilation and recompilation latency.

It pays area for an overlay network and sacrifices area to

fragmentation in the partial reconfiguration blocks. Separate

compilation prevents co-optimization of functions. Connectiv-

ity through the overlay network is lower than the raw wiring

provided by the FPGA and increases the latency between leaf

blocks. Given the high capacity FPGA devices that decades

of Moore’s Law scaling has produced, we have long emerged

from the era of poverty [1] and can now afford to spend some

of this capacity to accelerate development, particularly during

the early lifetime of a design.

Current FPGAs and vendor tools are not deliberately de-

signed for this purpose. This work explores how we can make

the most of the existing designs.

Our novel contributions include:

• Strategy for using Partial Reconfiguration to reduce

FPGA post-synthesis place and route time, including both

incremental compilations that allow recompilation of only

the leaf functions that change and parallel compilations

that exploit multi-core and cloud capacity to reduce full-

chip (re)compilation latency (Sec. III)

• A case study that concretely illustrates the potential

benefits and challenges of this strategy when built upon

current Xilinx tools and FPGAs (Sec. V)

II. BACKGROUND AND OPPORTUNITIES

A. Partial Reconfiguration

Partial Reconfiguration (PR) allows portions of the FPGA to

be reconfigured independently at some granularity without the

need to rewrite the configuration bits of the entire FPGA. This

has traditionally allowed portions of the FPGA functionality

to be replaced during runtime without disabling complete

operation [2], [3]. When only small edits are needed to the

logic on the FPGA, this speeds reconfiguration by reducing



the amount of data that must be loaded onto the FPGA through

the limited-bandwidth configuration path.

In order to support PR designs, vendors [4], [5] and recon-

figurable computing developers [6] provide methodologies and

tool flows that allow logic to be constrained to and mapped for

a small region of the FPGA. PR designs are decomposed into

a static region and multiple reconfigurable regions. The static

region refers to the part of the design that is never partially

reconfigured, and the reconfigurable regions refer to the part

that is recompiled and reconfigured by downloading partial

bitstreams. To identify reconfigurable regions, the designer

defines a set of physical resources on the FPGA as a p-block.

Many, independent p-blocks can be defined for the FPGA,

providing many different regions that can be independently

reconfigured. A portion of the logical design can then be

identified as a reconfigurable partition that can be assign to a

particular p-block.

Since implementation time is influenced both by the size of

the logical design (e.g., number of LUTs in the user’s design)

and the physical substrate (e.g., number of CLBs on the target

FPGA or region of the FPGA), to implement a design that

is a tiny fraction of the FPGA capacity to a region that is

a small fraction of the FPGA capacity should be faster than

performing a full-scale FPGA implementation. Nonetheless,

the main use of PR to date has been to reduce the area required

for a design, by loading only the logic needed at a particular

time onto the FPGA, and to reduce the reconfiguration time

when new functions must be loaded onto the FPGA. Previous

research provides methodologies for using PR regions as slots

that are dynamically loaded with hardware modules during

execution [7], [8], [9]. However, this work does not address

compilation time.

B. Out-of-Context Compilation

Vivado provides Out-of-Context (OoC) compilation that

allows developers to compile leaf IP blocks without the

“context” of the entire enclosing design [10]. This allows

groups to divide the work among team members and supports

independent synthesis and implementation runs for IP blocks.

III. STRATEGY

The basic idea is to break the FPGA into a set of separate

p-blocks that can be compiled and recompiled separately.

We assume the user design is a collection of interconnected

components or IP-blocks that we generically call leaf blocks.

Ideally, each leaf block will be mapped to a p-block.

This raises a number of questions:

• how are leaf blocks interconnected?

• how can we deal with leaf blocks that vary in size?

• how do we prepare designs to fit this framework?

A. Interconnecting Leaf Blocks with Overlay Network

The standard PR model with a fixed-logic static-region

would constrain the interconnection between leaf blocks. How-

ever, we want to support arbitrary designs for development.

We could re-compile the static region, but that would be

a long compilation task that would undermine our goal of

fast compilation. To avoid this compilation time, we use a

lightweight, packet-switched overlay network as the top-level

infrastructure for connecting leaf blocks. Once the leaf blocks

are loaded and configured, they are all set to communicate.

We specifically use a Butterfly Fat Tree (BFT) topology [11],

[12] that can be parameterized and tuned to provide different

levels of interconnect according to Rent’s Rule [13].

B. Leaf p-blocks

The PR regions for leaf blocks are a collection of leaf p-

blocks of predefined sizes. As long as a leaf block is smaller

than a p-block, it can be placed in the p-block. This may

waste some logic resources due to internal fragmentation. Leaf

blocks larger than the p-block will need to be decomposed. A

future extension could combine multiple primitive p-blocks

into a larger p-block that will accommodate the logic.

C. Compute Model

We assume computations are composed of operators, which

we call user modules, that are connected through streaming

dataflow links with data presence handshaking in the style of

a Kahn Process Network [14] similar to the Ambric [15] or

SCORE [16]. User modules can be arbitrary logic or memory

functions and can be written in any language (e.g., Verilog,

C, BSV) as long as they follow the stream communication

discipline. Threads running on the embedded, hardcore proces-

sors can also communicate through stream links. Together, the

dataflow streaming model accommodates the variable delay

introduced in the pipelined, packet-switched network and the

delay changes that arise as the implementation or placement

of leaf blocks change.

D. Design Flow

Standard Vivado compilation consists of three main steps:

synthesis, implementation, and bitstream generation. OoC

Synthesis (Sec. II-B) can be used to exploit parallelism when

synthesizing the user modules. We focus on using PR to accel-

erate the implementation process so that the full compilation

process can be accelerated.

The inputs of the system are synthesized user modules. The

user modules are assigned to the appropriate sizes of leaf p-

blocks based on their synthesis utilization reports. Our goal is

to run implementation on each of the user modules indepen-

dently, allowing either a single user module to be changed at a

time or for a set of user modules to be implemented in parallel.

In Fig. 1, six of the configurations are run in parallel, and each

configuration implements only one leaf p-block, leaving other

leaf p-blocks empty. Since the size of the design with a single

user module filled in is smaller than that of the monolithic

approach with all the user modules instantiated, the separate

compilations should be faster than the monolithic compilation.

For the same reason, we put the BFT in its own reconfigurable

p-block so that its resources do not contribute to the size of

the static region and slow down leaf implementation. One leaf

of the BFT is connected to the ARM, and the ARM configures

the network informing the leaves where to send the packets.






