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Abstract

The direct-sum question is a classical question that asks whether performing a task on
m independent inputs is m times harder than performing it on a single input. In order to study
this question, Beimel et al [BBKW14] introduced the following related problems:

• The choice problem: Given m distinct instances, choose one of them and solve it.

• The agreement problem: Given m distinct instances, output a solution that is correct
for at least one of them.

It is easy to see that these problems are no harder than performing the original task on a single
instance, and it is natural to ask whether it is strictly easier or not. In particular, proving that
the choice problem is not easier is necessary for proving a direct-sum theorem, and is also related
to the KRW composition conjecture [KRW95].

In this note, we observe that in a variety of computational models, if f is a random function
then with high probability its corresponding choice and agreement problem are not much easier
than computing f on a single instance (as long as m is noticeably smaller than 2n).

1 Introduction

The direct-sum question is a classical question that asks whether performing a task on m indepen-
dent inputs is m times harder than performing it on a single input. More generally, one may ask
whether performing multiple independent tasks in parallel is as hard as performing each of them
separately. It will be convenient to use the following notation.

Definition 1. Let T1, . . . , Tm be computational tasks. The direct-sum problem sumT1,...,Tm is the
following task: given m inputs x1, . . . , xm for T1, . . . , Tm respectively, output a vector (y1, . . . , ym)
such that yi is a correct solution for Ti on xi for every i.

The direct-sum question asks whether the complexity of sumT1,...,Tm is the sum of the individual
complexities of T1, . . . , Tm. This natural question was studied in a variety of computational models
(see, e.g., [Uhl74, Pau76, GF81, Sto86, Bsh89, Bsh98, FKNN95, JKS10, BBCR10]), and the answer
turns out to be positive in some models and negative in others. In order to study this question,
Beimel et al. [BBKW14] (following Ambainis et al. [ABG+01]) considered the following related
problems.

Definition 2 ([BBKW14]). Let T1, . . . , Tm be computational tasks.
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• The choice problem chooseT1,...,Tm is the following task: Given m inputs x1, . . . , xm for
T1, . . . , Tm respectively, output a pair (i, y) such that y is a correct solution for Ti on xi.

• The agreement problem agreeT1,...,Tm
is the following task: Given m inputs x1, . . . , xm for

T1, . . . , Tm respectively, output a value y such that y is a correct solution for Ti on xi for
some i ∈ [m].

It is easy to see that the agreement task is not harder than the choice task, and that both tasks
are not harder than performing the easiest task Ti on a single input. [BBKW14] asked whether we
can prove that the choice and agreement problem are not strictly easier than the easiest task Ti. In
addition to being interesting in its own right, this question has the following motivations:

• Proving that the choice problem chooseT1,...,Tm is not strictly easier than the easiest task Ti

is necessary for proving a direct-sum theorem: To see it, observe that if the choice prob-
lem chooseT1,...,Tm is strictly easier than the easiest task Ti, then the complexity of sumT1,...,Tm

is strictly less than the sum of the individual complexities of T1, . . . , Tm (since one can solve
one of the tasks using the best algorithm for chooseT1,...,Tm , and then solve each of the re-
maining tasks individually).

• Since the agreement problem agreeT1,...,Tm
is not harder than the choice problem chooseT1,...,Tm ,

one can prove lower bounds for chooseT1,...,Tm by proving lower bounds for agreeT1,...,Tm
.

In this note, we consider the special case where all the tasks T1, . . . , Tm are the same task T .
Observe that in this case special case, it is trivial to prove that the choice and agreement problems
are not strictly easier than solving T for the following reason: Solving T on an input x reduces to
solving chooseT,...,T and agreeT,...,T on m copies of x. In order to avoid this trivial case, we require
the m inputs to be distinct, resulting in the following definition.

Definition 3. Let T be a computational task.

• The m-fold choice problem choosemT is the following task: Given m distinct inputs x1, . . . , xm
for T , output a pair (i, y) such that y is a correct solution for T on xi.

• Them-fold agreement problem agreemT is the following task: Givenm distinct inputs x1, . . . , xm
for T , output a value y such that y is a correct solution for T on xi for some i ∈ [m].

It is again natural to ask whether choosemT and agreemT are strictly easier than T on its own.
In particular, note that the foregoing motivation still holds: proving that choosemT is not easier
than T is necessary for proving a direct-sum theorem for T (i.e., that the complexity of sumT,...,T

is m times the complexity of T ).
In this note, we observe that in a variety of computational models, the answer to this question

is negative when T is the task of computing a random function f , with high probability over f .
Intuitively, this result holds in every model in which the hardness of a random function can be
proved using a counting argument, including Boolean circuits, formulas, decision trees, etc.

In order to make this intuition more precise, consider a computational model that comes with
some size measure (e.g., number of wires for circuits, depth for decision trees, etc.). We use the
term computer to refer to a specific instantiation of this model (e.g. a specific circuit, a specific
decision tree, etc.). Let N(s, n) denote the number of distinct Boolean functions over n bits that
are computed by a computer of size at most s. Then, the standard counting argument says the
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probability that a random function over n bits can be computed by a computer of size at most s is
at most

N(s, n)

22n
.

We prove the following observation.

Theorem 4. Fix a computational model that comes with some size measure, and let N(s, n) be
defined as above. Let n,m, s ∈ N, and let f : {0, 1}n → {0, 1} be a uniformly distributed function.
Then, the probability that choosemf or agreemf can be decided by a computer of size at most s is at
most

N(s,m · n) ·
(

2n

≤2m−2

)

22n

where
(

a
≤b

) def
=

(

a
0

)

+
(

a
1

)

+
(

a
2

)

+ . . .+
(

a
b

)

for non-negative integers a ≥ b.

Observe that the expression
(

2n

≤2m−2

)

in the latter probability is negligible compared to 22
n

unless
m is very close to 2n. Thus, as long as m is not too large, this factor will not affect the probability
significantly. On the other hand, the fact that we count the number of computers overm·n variables
rather than n variables can affect the probability signficantly, depending on the function N(s, n),
and this is the bottleneck in the following application.

The following corollary lists the immediate consequences of Theorem 4 for some important
computational models. Essentially, it says that for Boolean circuits, choosemf and agreemf are as
hard as a random function when m < ε ·2n. For other models (formulas, depth complexity, decision
trees), we get a slightly worse lower bound (although we could have gotten the “right” lower bound
when m = poly(n)).

Corollary 5. There exists a universal constant ε > 0 such that the following holds. Let f :
{0, 1}n → {0, 1} be a uniformly distributed function and let m ≤ ε · 2n. Then, each of the following
events occurs with probability 1− o(1) (where the o(1) is a decreasing function of n):

• The circuit-size complexity of choosemf and agreemf is Ω(2
n

n
).

• The formula-size complexity of choosemf and agreemf is Ω(2
n

n
).

• The circuit-depth complexity of choosemf and agreemf is n − log n − O(1) (for circuits with
fan-in 2).

• The decision-tree-depth complexity of choosemf and agreemf is n− log n−O(1).

We note that the above result for decision tree complexity also follows from the direct-sum
theorem for decision tree complexity due to Jain et al. [JKS10]. On the other hand, for circuit
complexity a direct-sum theorem does not hold for a random function [Uhl74], and yet Corollary 5
says that the corresponding choice and agreement problems are not easier than a single instance.
For formula complexity, it is easy to prove a direct-sum theorem, but curiously in this model this
does not imply the result of Corollary 5 for formulas. Finally, we mention that for communication
complexity, Chattopadhyay et al. [CDK+17] have recently proved a lower bound on the related
“elimination problem” of [ABG+01] for functions based on their discrepancy, and this implies an
analog of Corollary 5 for (randomized and deterministic) communication complexity.
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Proof of Corollary 5. Let ε > 0 be some sufficiently small constant which will be determined
such that the various inequalities in this proof hold. For 0 < p < 1

2 , we denote by

H(p) = p · log
1

p
+ (1− p) · log

1

1− p

the binary entropy function. We use the following well-known upper bound on the binomial coeffi-
cients, which holds for every sufficiently large N , every 0 < p ≤ 1

2 , and every K ≤ p ·N (see, e.g.,
[GRS, Chapter 3, Section 3.3.1]):

(

N

≤ K

)

≤ 2H(p)·N .

For circuit-size complexity, it is known that N(s, n) = (s+ n)O(s) (see, e.g., [Weg87]). Hence, for
m ≤ ε · 2n and s ≤ ε · 2n

n
it holds that

N(s,m · n) =

(

ε ·
2n

n
+ ε · 2n · n

)O
(

ε· 2
n

n

)

= 2O(ε·2n),

and therefore
N(s,m · n) ·

(

2n

≤2m−2

)

22n
≤

2O(ε·2n).2H(2ε)·2n

22n
= o(1),

where the equality holds for a sufficiently small choice of ε. Hence, for suchm and s, with probability
at least 1− o(1) the circuit-size complexity of choosemf and agreemf is at least s.

For formula-size complexity, it is known that N(s, n) = nO(s). Therefore, for m ≤ ε · 2n and
s ≤ ε · 2n

n
it holds that

N(s,m · n) = (ε · 2n · n)
O
(

ε· 2
n

n

)

= 2O(ε·2n).

Using the same argument as before, we obtain that for suchm and s, with probability at least 1−o(1)
the formula-size complexity of choosemf and agreemf is at least s.

In order to prove a lower bound on the circuit-depth complexity, we recall that if a function
has circuit-depth complexity d then it has a formula of size at most 2d (see, e.g., [Weg87]). Since
we know the formula-size complexity of choosemf and agreemf is at least ε · 2n

n
with probability at

least 1 − o(1), it follows that the circuit-depth complexity of these problems is n − log n − O(1)
with the same probability.

The argument for decision-tree-depth complexity is similar to the argument for circuit-depth
complexity. It is obvious that every decision tree of depth d has at most 2d leaves. The number
of decision trees over n variables with s leaves is at most nO(s) (this can be proved using the same
argument that shows this upper bound for formulas, as in [Weg87]). This means that the number

of decision trees of depth d over n variables is at most N(d, n) = nO(2d). From here the argument
proceeds as before. �

The rest of this note is organized as follows: In Section 2, we prove Theorem 4. Then, in
Section 3, we discuss a connection of this result to the KRW conjecture [KRW95], which provides
an additional motivation for our result.

Remark 6. As noted above, when m is super-polynomial in n, our lower bounds for the three last
models do not match the bounds for a random function. It is an interesting question whether our
bounds could be improved.
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2 Proof of the Theorem 4

In this section we prove Theorem 4. We first observe that it suffices to prove the theorem for the
agreement problem agreemf , since the choice problem choosemf is not easier than agreemf . Follow-
ing [BBKW14], we also observe that when the task T is a Boolean function f : {0, 1}n → {0, 1},
the agreement problem can be rephrased as follows:

• Given x1, . . . , xm ∈ {0, 1}n that satisfy the promise that f(x1), . . . , f(xm) are all equal, decide
whether they are equal to 0 or 1.

The reason is that if f(x1), . . . , f(xm) are not all equal, then both 0 and 1 are correct outputs
of agreemf . This observation is the reason for the name “agreement problem”.

Fix a computational model with some associated size measure, and let N(s, n) denote the
number of distinct functions that are computed by a computer of size at most s. Let m,n, s ∈ N.
We would like to prove that if f : {0, 1}n → {0, 1} is a uniformly distributed function, then the
probability that its agreement problem agreemf is decided by a computer of size at most s is at most

N(s,m · n) ·
(

2n

≤2m−2

)

22n
.

To this end, it suffice to prove the following result.

Proposition 7. Every computer decides the m-fold agreement problem of at most
(

2n

≤2m−2

)

func-

tions from {0, 1}n → {0, 1}.

The rest of this section is devoted to proving the latter proposition. Let C be a computer, and
let F be the family of functions from {0, 1}n to {0, 1} whose agreement problem is decided by C.
We wish to upper bound |F|. The crux of the proof is the following observation.

Claim 8. Every two functions f, g ∈ F differ on at most 2m− 2 inputs.

Proof. We prove the contrapositive. Suppose that f and g differ on more than 2m−2 inputs, and
let C be a computer. We will prove that the computer C fails to solve either agreemf or agreemg .

Our assumption implies that there must be at least m inputs x1, . . . xm and some bit b ∈ {0, 1}
such that f(x1) = · · · = f(xm) = b and g(x1) = · · · = g(xm) = 1 − b — this follows from
the pigeonhole principle, by mapping each input x on which f and g differ to the pigeonhole
(f(x), g(x)). Thus, the output of agreemf on x1, . . . , xm is b and the output of agreemg on x1, . . . , xm
is 1 − b. Now, suppose we give x1, . . . , xm to the computer C. If C outputs b, then it errs with
respect to agreemg , and otherwise it errs with respect to agreemf . Either way, it fails to solve one of
these problems. �

We turn to upper bound the size of F . We start by fixing an arbitrary function f ∈ F . Then,
in order to choose any function g ∈ F , we only have to choose on which inputs it disagrees with f .
There are at most

(

2n

0

)

+

(

2n

1

)

+

(

2n

2

)

+ . . .+

(

2n

2m− 2

)

=

(

2n

≤ 2m− 2

)

such possibilities, as required.
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3 Connection to the KRW composition conjecture

The KRW conjecture. One of the major challenges in the quest for proving circuit lower
bounds is to find an explicit function that requires circuits of super-logarithmic depth (here, we
consider Boolean circuits with fan-in 2). Karchmer, Raz, and Wigderson [KRW95] proposed to
attack this question by considering the composition of Boolean functions: given two functions
f : {0, 1}m → {0, 1}, g : {0, 1}n → {0, 1}, their composition f � g : ({0, 1}n)m → {0, 1} is defined by

(f � g)(x1, . . . , xm) = f(g(x1), . . . , g(xm)).

The KRW conjecture says that the depth complexity of f � g is roughly the sum of the depth
complexities of f and g, provided that f and g are non-constant functions. [KRW95] showed that
if proved, this conjecture will imply the desired super-logarithmic depth lower-bounds. In fact,
the conclusion will follow even if the conjecture is proved only for the case where f is a random
function, or for the case where g is a random function. We will see that the question of whether
the KRW conjecture holds for a random g is related to the complexity of agreemg ,

Karchmer-Wigderson relations. [KRW95] suggested to study their conjecture using the frame-
work of Karchmer-Wigderson relations: Karchmer and Wigderson [KW90] observed that for every
Boolean function f there is a related communication problemKWf , called theKarchmer-Wigderson
relation of f , whose (deterministic) communication complexity is exactly equal to the depth com-
plexity of f . Hence, one can prove depth lower-bounds for f by proving communication-complexity
lower-bounds for KWf . In particular, an equivalent formulation of the KRW conjecture says that
the communication complexity of KWf�g is roughly equal to the sum of the communication com-
plexities of KWf and KWg.

The relation KWf is defined as follows: Alice gets an input x ∈ f−1(0), and Bob gets as input
y ∈ f−1(1). Clearly, it holds that x 6= y. The goal of Alice and Bob is to find a coordinate i such
that xi 6= yi. Note that there may be more than one possible choice for i, which means that KWf

is a relation rather than a function.

The Karchmer-Wigderson relation of f � g. In the relation KWf�g, Alice and Bob’s inputs
are conveniently viewed as m× n matrices X,Y respectively, such that g(X) ∈ f−1(0) and g(Y ) ∈
f−1(1), where g(X) ∈ {0, 1}m is obtained by applying g to each row of X and similarly g(Y ). Their
goal is to find an entry (i, j) such that Xi,j 6= Yi,j . A naive protocol for Alice and Bob is as follows.
Alice computes a = g(X) and Bob computes b = g(Y ). In the first stage they solve KWf on a, b

and find an index i ∈ [m] where ai 6= bi. Then, in the second stage, they solve KWg on inputs
Xi, Yi to find j as required. Note that the communication complexity of this protocol is indeed the
sum of the communication complexities of KWf and KWg, so the KRW conjecture says that this
protocol is essentially optimal.

The intuition for why the above protocol should be optimal1 is the following: It appears that
Alice and Bob must solve KWg on some row in order to find an entry on which X and Y differ,
and it seems that the only way to find a row on which they can solve KWg is to solve KWf on
a and b.

1More precisely, close to the optimal protocol, since there are functions for which some savings is possible. One
such example is the function T

n
2 , the threshold function checking if there are at least 2 ones in an input string of

length n. The communication complexity of Tn
2 � T

n
2 is strictly smaller than twice the communication complexity of

T
n
2 , but the saving is rather small (an additive O(log log n) saving). See [KRW95] for more details.
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The choice problem of KWg. Dinur and Meir [DM16] pointed out one potential weakness in
this intuition: when Alice and Bob solve KWf , they may end up finding multiple indices i for
which ai 6= bi. This means that there are now multiple rows on which they can solve KWg, and
they only need to solve KWg on one of these rows. In other words, Alice and Bob now face the
choice problem of KWg. Thus, if we are to prove that the foregoing intuition is correct, it seems
that we should prove that the choice problem choosemKWg

is not easier than solving KWg on a single
instance.

The connection to our result. We are therefore interested in the communication complexity
of choosemKWg

. Beimel et al. [BBKW14] observed that the communication complexity of the choice
problem choosemKWg

is exactly equal to the depth complexity of the agreement problem agreemg (this
follows directly from the reasoning of [KW90]). Now, Theorem 4 says that if g is a random function,
then agreemg is not significantly easier than g. In particular, Corollary 5 implies the following result.

Corollary 9. There exists a universal constant ε > 0 such that the following holds. Let g :
{0, 1}n → {0, 1} be a uniformly distributed function and let m ≤ ε · 2n. Then, with probability at
least 1− o(1), the deterministic communication complexity of choosemKWg

is at least n−O(log n).

This corollary is interesting, since even if we restrict the KRW conjecture to the case where g is
a random function and where m ≤ ε · 2n, the conjecture still implies the desired lower bounds on
depth complexity. We therefore hope that Corollary 9 constitutes a small step toward new lower
bounds.
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