
 

 1 Copyright © 2018 by ISFA 

Proceedings of 2018 ISFA 
2018 International Symposium on Flexible Automation 

Kanazawa, Japan, 15 - 19 July, 2018 

(ISFA2018-L101)

MACHINE LEARNING ENABLED GEARBOX FAULT PATTERN RECOGNITION  
 

 

Pei Cao 
Department of Mechanical Engineering 

University of Connecticut 
Storrs, CT 06269, USA 

pei.cao@uconn.edu 

J. Tang 
Department of Mechanical Engineering 

University of Connecticut 
Storrs, CT 06269, USA 
Jiong.tang@uconn.edu 

 

 

ABSTRACT 
Fault pattern recognition in complex mechanical systems 

such as gearbox has always been a great challenge.  The 

performance of a classic fault pattern recognition approach 

heavily depends on domain expertise and the classifier applied.  

This paper proposes a deep convolutional neural network-based 

transfer learning approach that not only entertains adaptive 

feature extractions, but also requires only a small set of training 

data.  The proposed transfer learning architecture essentially 

consists of two sequentially connected pieces; first is of a pre-

trained deep neural network that serves to extract features 

automatically, the second piece is a neural network aimed for 

classification which is to be trained using data collected from 

gearbox experiment.  The proposed approach performs gear 

fault pattern recognition using raw accelerometer data.  The 

achieved accuracy indicates that the proposed approach is not 

only sensitive and robust in performance, but also has the 

potential to be applied to other pattern recognition practices. 

INTRODUCTION 
Health monitoring is critical to modern machinery systems 

and has been motivating research aiming at fault pattern 

recognition techniques.  Gearbox, as one of the most common 

components used in those systems, is prone to fault conditions 

and failures, because of the severe working condition with high 

mechanical loading and long operational time.  Vibration 

signals are most widely used to infer the health condition of 

gear system, because they contain rich information and can be 

easily measured with off-the-shelf, low-cost sensors.  

However, the practice of fault pattern recognition using 

vibration signals is quite demanding.  Generally, a manually 

selected feature extraction technique is first applied to vibration 

signals measured from a gear system that characterizes the 

fault-related features.  Subsequently, a classifier is trained and 

applied to new signals to recognize fault occurrence in terms of 

type and severity.  There have been extensive and diverse 

attempts in identifying useful features from gear vibration 

signals, which fall into three main categories: time-domain 

analysis (Zhou et al, 2008; Parey and Pachori, 2012), frequency 

domain-analysis (Fakhfakh et al, 2005; Li et al, 2015; Wen et 

al, 2015) and time-frequency analysis (Tang et al, 2010; Chaari 

et al, 2012; Yan et al, 2014; Zhang and Tang, 2018).  Time-

domain statistical approaches can capture the changes in 

amplitude and phase modulation caused by faults.  In 

comparison, spectrum analysis can extract the features more 

efficiently such that distributed faults with clear sidebands can 

be detected.  To deal with noise and at the same time utilize 

the transient components in vibration signals, many recent 

research efforts have place their focus on joint time-frequency 

domain analysis utilizing, such as Wigner-Ville distribution, 

short time Fourier transform, and various wavelet transforms.  

The time-frequency distribution in theory may lead to rich 

information regarding the time and frequency-related events in 

signals. 

Although manual feature extraction methods have seen 

great successes, their effectiveness is hinged upon the specific 

features adopted in the diagnostic analysis.  It is worth 

emphasizing that the choices of features as well as the often-

applied signal processing techniques are generally based on 

domain.  For example, while wavelet transforms have been 

popular, it is evident from large amount of literature that there 

does not seem to be a consensus on what kind of wavelet to be 

used for gear fault pattern recognition.  This should not come 

as a surprise.  On one hand, gear faults occur primarily at 

microstructure or even material level but their effects can only 

be observed indirectly at a system level; consequently, there 

exists a many-to-many relationship between actual faults and 

the observable quantifies (i.e., features) for a given gear system 

(Lu et al, 2012).  On the other hand, different gear systems 

have different designs which lead to distinct dynamic 

characteristics.  As such, the result on features manually 

selected and, to a large extent, the methodology employed to 

extract these features for one gear system design may not be 

easily extrapolated to a different gear system design.     



 

 

Fundamentally, condition monitoring and fault diagnosis of 

gear systems belongs to the general field of data mining.  The 

advancements in related algorithms and computational power 

have led to the wide spread of machining learning techniques to 

various applications.  Most recently, deep neural network-

based methods are progressively being investigated in gear fault 

pattern recognition in an automated manner with minimal 

tuning.  For example, Zhang et al (2015) developed a deep 

learning network for degradation pattern classification and 

demonstrated the efficacy using turbofan engine dataset.  Li et 

al (2016) proposed a deep random forest fusion technique for 

gearbox fault diagnosis.  Weimer et al (2016) examined the 

usage of deep convolutional neural network for industrial 

inspection and demonstrated excellent defect detection results.  

Ince et al (2017) developed a fast motor condition monitoring 

system using a 1-D convolutional neural network with good 

classification accuracy.  Abdeljaber et al (2017) performed 

real-time damage detection using convolutional neural network 

and showcased satisfactory efficiency.   

Deep neural network is undoubtedly a powerful tool in 

pattern recognition and data mining.  As an end-to-end 

hierarchical system, it inherently blends the two essential 

elements in condition monitoring, feature extraction and 

classification, into a single adaptive learning frame.  It should 

be noted that the amount of training data required for 

satisfactory results depends on many aspects of the specific 

problem being tackled, such as the correctness of training 

samples, the number of classes, and the degree of separation 

between each class.  In most machinery diagnosis 

investigations, the lack of labeled training samples is a common 

issue.  To improve the performance given limited training 

data, some recent studies have attempted to combine data 

processing and data augmentation techniques, e.g., discrete 

wavelet transform (Saravanan and Ramachandran, 2010), 

antialiasing/decimation filter (Ince et al, 2017), and wavelet 

packet transform (Li et al, 2016), with neural networks for fault 

diagnosis.  Nevertheless, the data processing techniques 

employed, subjected to selection based on domain expertise, 

may hurt the objective nature of neural networks and to some 

extent undermines the usage of such tools. 

In this research, we present a deep neural network-based 

transfer learning approach utilizing limited time domain data 

for gearbox fault pattern recognition.  This approach inherits 

the non-biased nature of neural network-type methods that 

avoids the manual selection of features.  Meanwhile, the issue 

of limited data is overcome by formulating a new architecture 

with two parts.  Massive image data (1.2 million) from 

ImageNet are used first to train the original deep neural 

network model.  Then the parameters of the original neural 

network are partially transferred to construct the first part of the 

proposed architecture.  The second part of the neural net is 

further trained using experimentally generated gear fault data.  

With this new architecture, highly accurate gear fault pattern 

recognition can be achieved using limited time-domain data 

without any subjective data processing techniques to assist 

feature extraction.  

 

APPROACH FORMULATION 
The proposed approach is built upon deep neural network 

transfer-learning.  In this section, we start from the 

fundamental formulations of deep convolutional neural network 

and transfer learning, followed by specific architecture 

developed for gear fault pattern recognition. 

Deep Convolutional Neural Network 
Convolutional Neural Network (CNN) is a class of 

biologically inspired neural network featuring one or multiple 

convolutional layers that simulate human visual system (LeCun 

et al, 1990).  In recent years, due to the enhancement in 

computational power and the dramatic increase in the amount 

of data available in various applications, CNN-based methods 

have shown significant improvements in performance and thus 

have become the most popular class of approaches for pattern 

recognition tasks such as image classification (Krizhevsky et al, 

2012), natural language processing (Kim, 2016), recommending 

systems (Van den Oord, et al, 2013) and fault detection (Ince et 

al, 2016).  CNN learns how to extract and recognize 

characteristics of the target task by combining and stacking 

convolutional layers, pooling layers and fully connected layers 

in its architecture.  Figure 1 illustrates a simple CNN with an 

input layer to accept input images, a convolution layer to 

extract features, a ReLU layer to augment features through non-

linear transformation, a max pooling layer to reduce data size, 

and a fully connected layer combined with a Softmax layer to 

classify the input to defined labels.  The parameters are trained 

through a training dataset and updated using back propagation 

algorithm to reflect the features of the task that may not be 

recognized otherwise.  The basic mechanism of layers in CNN 

is outlined as follows. 

 

 
Figure 1 An example convolutional neural network. 

 

Convolutional layer.  Each feature map in the convolution 

layer shown in Figure 1 is generated by a convolution filter.  

Generally, the input and convolution filters are tensors of size 
m n  and p q K   (K is the number of filter used), 

respectively.  Stride (i.e., step size of the filter sliding over 

input) is set to 1 and padding (i.e., the number of rows and 

columns to insert around the original input) is set to 0.  The 

convolution operation can be expressed as, 

1 2 1 2, , , , ,

0 0

p q

d d k d i d j i j k

i j

y x f
 

               (1) 

Where y, x and f denote the element in feature map, input and 

convolutional filter, respectively.  , ,i j kf  represents the 

element on the i-th column and j-th row for filter k.  
1 2, ,d d ky  is 

the element on the d1-th column and d2-th row of feature map k.  

And 
1 2,d i d jx  refers to the input element on the i-th column and 



 

 

j-th row of the stride window specified by 
1d  and 

2d .  

Equation (1) gives a concise representation of the convolution 

operation when the input is 2-demensional, and stride and 

padding are 1 and 0.  Higher dimension convolution 

operations can be conducted in a similar manner.  In CNN, 

multiple convolution filters are used in a convolutional layer, 

each acquiring a feature piece in its own perspective from the 

input image specified by the filter parameters.  Regardless of 

what and where a feature appears in the input, the convolution 

layer will try to characterize it from various perspectives that 

have been tuned automatically by the training dataset. 

ReLU layer.  In CNN, ReLU (rectified linear units) layers 

are commonly used after convolution layers.  In most cases, 

the relationship between the input and output is not linear.  

While the convolution operation is linear, the ReLU layer is 

designed to take non-linear relationship into account, as shown 

in the equation below,   

max(0, )y y                   (2) 

The ReLU operation is applied to each feature map and returns 

an activation map.  The depth of the ReLU layer equals to that 

of the convolution layer.  

Max pooling layer.  Max pooling down-samples a sub-

region of the activation map to its maximum value, 

1 1 2 2

,
,

ˆ max i j
L i U L i U

y y
   

                (3) 

where 
1 1L i U   and 

2 2L j U   define the sub-region.  

The max pooling layer not only makes the network less 

sensitive to location changes of a feature but also reduces the 

size of parameters, thus alleviating computational burden. 

Transfer Learning 
The performance of a convolutional neural network can be 

improved by upscaling the CNN equipped.  The scale of a 

CNN concurs with the scale of the training dataset.  Naturally, 

the deeper the CNN, the more parameters need to be trained, 

which requires a substantial amount of valid training samples.  

Nevertheless, in the application of gear fault pattern 

recognition, the training data is always not as sufficient as that 

of other tasks such as natural image classification.  Transfer 

learning, on the other hand, can achieve prominent performance 

commensurate with large scale CNNs using only a small set of 

training date.  By partially deploying a pre-trained neural 

network, transfer learning provides a possible solution to 

improve the performance of a novel task with small training 

dataset.  Classic transfer learning approaches transfer (copy) 

the first n layers of a well-trained network to the target network 

of layer m n .  Initially, the last ( )m n  layers of the 

target network are left untrained.  They are trained 

subsequently using the training data from the novel task.   

Transfer learning becomes possible and promising because, 

as has been discovered by recent studies, the layers at the 

convolutional stages (convolution layers, ReLU layers and 

pooling layers) of the convolutional neural network trained on 

large dataset indeed extract general features of inputs, while the 

layers of fully connected stages (fully connected layers, 

softmax layers, classification layers) are more specific to task 

(Zeiler and Fergus, 2013; Sermanet et al, 2014).  Therefore, 

the n layers transferred to the new task can be regarded as a 

well-trained feature extraction tool and the last few layers serve 

as a classifier to be trained.  Even with substantial training 

data, initializing with transferred parameters can improve the 

performance in general (Yosinski et al, 2014).  In this 

research, transfer learning is implemented to gearbox fault 

pattern recognition.  The CNN is well-trained in terms of 

pulling characteristics from images.  As illustrated in Figure 5, 

the parameters in the convolution stage, i.e., the parameters 

used in the convolution filter, the ReLU operator and the max 

pooling operator are transferred to the fault pattern recognition 

task.  The parameters used in the fully connected layer and the 

softmax layers are trained subsequently using a small amount 

of training data generated from gear fault experiments.   

Proposed Architecture 
In this sub-section we present the details of the proposed 

architecture.  The deep CNN adopted in this study as base 

architecture is originally proposed by Krizhevsky et al (2012), 

which is essentially composed of 5 convolution stages and 3 

fully connected stages (Figure 2).  This base architecture 

showed its extraordinary performance in Large Scale Visual 

Recognition Challenge 2012 (ILSVRC2012), and has since 

been repurposed for other learning tasks (Shie et al, 2015).  To 

the best of our knowledge, the architecture has yet to be used 

for fault pattern recognition using time domain inputs.  In the 

base architecture, the parameters are trained using 

approximately 1.2 million human/software labeled 3D true-

color nature images from ImageNet.  The trained parameters 

in the first 7 stages are well-polished in the sense of 

characterizing high-level abstractions of the input image and 

thus have the potential to be used for other tasks with image 

inputs.   

In gear fault pattern recognition, vibration signals can be 

sampled using accelerometers as gear rotates.  Such vibration 

signals can then be represented by 3D grey-scale/true-color 

images as.   Although the vibration images may look different 

from the images used to train the original CNN, useful features 

can be extracted in a similar manner if the CNN adopted is able 

to identify high-level abstractions.  Therefore, as a deep 

convolution neural network, the first 7 stages of the base 

architecture can be transferred to facilitate gear fault pattern 

recognition.  The first 7 stages indeed serve as a general well-

trained tool for automatic feature extraction.  The more stages 

and layers used, the higher level of features can be obtained.  

The final stage is left to be trained as a classifier using the 

experiment data specific to the pattern recognition task.  As 

specified in Table 1, a total number of 24 layers are used in the 

proposed architecture; the parameters and specifications used in 

the first 21 layers are transferred from the base architecture.  

 

 
Figure 2 Illustration of the transfer learning 

architecture (adopted from (Krizhevsky et al, 2012)). 



 

 

In this study, the loss function used is the cross-entropy 

function given as follows, 

 
2 2

ˆ ˆ( ) ln ( , ) lnE CNN       θ L X θ θ L L θ    (4) 

where 
2

θ  is a l2 normalization term to prevent the network 

from over-fitting.  Equation (4) quantifies the difference 

between correct output labels and predicted labels.  And the 

loss is then back propagated to update the parameters using the 

stochastic gradient descent method (Sutskever et al, 2013) 

given as, 

1 1( ) ( )i i i i iE      θ θ θ θ θ           (5) 

where   is the learning rate, i is the number of iteration, and 

  stands for the contribution of previous gradient step.  

 
Table 1 Specifications of the proposed architecture 

 
 

EXPERIMENTAL STUDIES 

Experimental Setup 
Many types of mechanical faults and failures can occur to 

gears in a gearbox.  Vibration signals collected from such a 

system are usually used to reveal information about its 

operating condition.  In this study, experimental cases are 

carried out on a two-stage gearbox with replaceable gears as 

shown in Fig. 3.  The speed of the gear is controlled by a 

motor.  The torque is supplied by a magnetic brake which can 

be adjusted by changing its input voltage.  A 32-tooth pinion 

and an 80-tooth gear are installed on the first stage input shaft.  

The second stage consists of a 48-tooth pinion and 64-tooth 

gear.  The input shaft speed is measured by a tachometer and 

gear vibration signals are measured by an accelerometer.  The 

signals are recorded through a dSPACE system (DS1006 

processor board, dSPACE Inc., Wixom, MI) with sampling 

frequency of 20 KHz.  As illustrated in Fig. 4, nine different 

gear faults are introduced to the pinion on the input shaft 

including health, missing tooth, root crack, spalling and 

chipping tip with 5 different levels of severity.  Dynamic 

responses of a system involving gear mechanism are angle-

periodic.  The gearbox system is usually treated as time-

periodic system while the rotational speed is assumed to be 

constant. This assumption is generally not accurate because of 

load disturbances, geometric tolerances, and motor control 

errors, etc (Zhang and Tang, 2018).  In this study, the 

originally time-domain vibration signals are converted from 

time-even to angle-even with evenly angular increment.   

 

 
Figure 3 Gearbox for experimental study. 

 

 
Figure 4 Nine pinions with different health conditions 

(five levels of severity for chipping tip). 
 

For each gear condition, 104 signals are generated using 

the gearbox system.  For each signal, 3,600 angle-even 

samples are recorded during 4 gear revolutions first for the case 

study.  Figure 5 shows all 104 signals of each type of gear 

condition where the vertical axis is the acceleration of the gear 

(rad/s2) and the horizontal axis corresponds to the 3,600 angel-

even sampling points.  

 
(a) Healthy 

Stage Layer Name Specifications 

1 

(transferred) 

1 Convolution 11*11*96 

2 ReLU N/A 

3 Normalization 5 channels/element 

4 Max pooling 3*3 

2 

(transferred) 

5 Convolution 5*5*256 

6 ReLU N/A 

7 Normalization 5 channels/element 

8 Max pooling 3*3 

3 

(transferred) 

9 Convolution 3*3*384 

10 ReLU N/A 

4 

(transferred) 

11 Convolution 3*3*384 

12 ReLU N/A 

5 

(transferred) 

13 Convolution 3*3*256 

14 ReLU N/A 

15 Max pooling 3*3 

6 

(transferred) 

16 Fully connected 4096 

17 ReLU N/A 

18 Dropout 50% 

7 

(transferred) 

19 Fully connected 4096 

20 ReLU N/A 

21 Dropout 50% 

8 (to be 

trained) 

22 Fully connected 9 

23 Softmax N/A 

24 Classification Cross entropy 

 



 

 

 
(b) Missing tooth 

 
(c) Root crack 

 
(d) Spalling 

 
(e) Chipping tip_5 

 
(f) Chipping tip_4 

 
(g) Chipping tip_3 

 
(h) Chipping tip_2 

 
(i) Chipping tip_1 (most severe) 

Figure 5 Vibration signal samples of different gear 
health conditions. 

Case Study - 3,600 sampling points with varying 
training data size 

104 vibration signals are generated for each gear condition.  

In the case studies, a portion of the signals are randomly 

selected as training data while the rest serves as validation data.  

To demonstrate the performance of the proposed approach 

towards various data sizes, the size of the training dataset 

ranges from 80% (83 training data per condition, 83*9 data in 

total) to 2% (2 training data per condition, 2*9 data in total) of 

all the 104 signals for each health condition.   

 

Table 2 Classification results (3,600 sampling points)  

  Method 

 

Training data 

Transfer 

learning 

Accuracy (%) 

Local CNN 

Accuracy (%) 

AFS-SVM 

Accuracy (%) 

80% 

(83 per condition) 
Mean: 100 Mean: 97.57 Mean: 87.48 

60% 

(62 per condition) 
Mean: 100 Mean: 80.74 Mean: 87.72 

40% 

(42 per condition) 
Mean: 100 Mean: 76.63 Mean: 86.67 

20% 

(21 per condition) 
Mean: 99.92 Mean: 69.69 Mean: 86.24 



 

 

10% 

(10 per condition) 
Mean: 99.41 Mean: 55.82 Mean: 83.83 

5% 

(5 per condition) 
Mean: 94.90 Mean: 44.11 Mean: 79.89 

2% 

(2 per condition) 
Mean: 72.22 Mean: 27.99 Mean: 62.44 

 

 
Figure 6 Classification results of the three methods 

when training data size varies. 
 

Table 2 shows the classification results where the mean 

accuracy is the average of 5 training attempts.  The 

classification accuracy is the ratio of the correctly classified 

validation data to the total validation dataset.  As illustrated in 

Fig. 6, the proposed transfer learning approach has the best 

classification accuracy for all types of data size.  Even if only 

5 vibration signals per condition are selected for training, the 

proposed approach can achieve an extraordinary 94.90% 

classification accuracy, which further escalates to 99%-100% 

when 10% and more training data are used.  On the other 

hand, while the performance of AFS-SVM reaches the plateau 

(showing only minimal increments) after 20% date is used for 

training, the classification accuracy of local CNN gradually 

increases with data size from 27.99% to 97.57% and surpasses 

AFS-SVM eventually when 80% data is used for training, 

indicating the significance of the size of training data to 

properly train a neural network.  Although the data size greatly 

affects the performance of a CNN in general senses, the 

proposed transfer learning architecture still exhibits high 

classification accuracy because only one fully connected stage 

needs to be trained locally, which notably lowers the standard 

of the data required by a CNN in terms of achieving satisfactory 

outcome.  Figure 7 shows the convergent histories (mini-batch 

accuracy) of the proposed approach and local CNN when 5% 

data is used for training.  As can be seen from the 

comparisons, transfer learning gradually converges in accuracy 

while local CNN inclines to ‘random walk’ due to insufficient 

data.  Compared with AFS-SVM, the proposed approach not 

only excels in performance, but also requires no pre-processing 

effort, angel-frequency analysis in this case, which makes the 

proposed approach more unbiased in feature extraction and 

readily applicable to other pattern recognition practices.  The 

proposed approach also shows satisfactory outcomes it the 

regard of robustness.  As demonstrated in Fig. 8, it has the 

smallest variance in all cases, while the performance of the 

under-trained local CNN oscillates the most. 

 

 
Figure 7 Convergent histories of transfer learning and 

local CNN for 5% training data. 
  

 
              (a) 2%                  (b) 5% 

 
              (c) 10%               (d) 20% 

 
              (e) 40%             (f) 60% 

 
                        (g) 80% 

Figure 8 Box plots of classification results of the 
three methods when training data size varies. 

 

The transferred stages of the proposed architecture attend 

to extract the high-level abstract features of the input that 

cannot be recognized otherwise, even if the input is different 

from that of the previous task.  Figure 9 gives an example of 

such procedure by showing the feature maps generated in each 

convolution layer by the proposed architecture when it is used 

to classify a gearbox vibration signal.  It is seen that the 

abstraction level of the input image continuously escalates from 



 

 

the 1st feature map to the 5th feature map.  In general, the 

number of convolution stages equipped is correlated with the 

level of abstraction the features can be represented in the CNN.  

As demonstrated in this case study, the base architecture is 

indeed transferable towards gear fault pattern recognition tasks 

and the proposed approach performs well with raw image signal 

inputs, which indicates the transferred layers constructed in this 

study are generally applicable to represent useful features of an 

input image in high-level abstraction.   

 

 
Figure 9 Feature maps extracted by 5 convolution 
layers of the proposed transfer learning approach. 

 

CONCLUSIONS 
In this paper, a deep convolutional neural network-based 

transfer learning approach is developed for pattern recognition.  

The proposed approach not only entertains adaptive feature 

extractions, but also requires only a small set of training data 

compared to other locally trained convolution neural networks.  

The proposed transfer learning architecture consists of two 

parts; the first part is constructed with a piece of a pre-trained 

deep neural network that serves to extract the features 

automatically from the input, the second part is a fully 

connected stage for classification which needs to be trained 

using experiment data.  Experiment studies have been 

conducted using pre-processing free raw accelerometer data.  

The performance of the proposed approach is highlighted by 

varying the size of training data.  The classification accuracies 

outperform other methods such as locally trained convolution 

neural network and angle-frequency analysis-based support 

vector machine by as much as 50%.  The achieved outcome 

indicates that the proposed approach is not only remarkable in 

gear fault pattern recognition, but also has the potential to be 

readily applicable to other fault diagnosis or pattern recognition 

practices. 
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