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ABSTRACT

Fault pattern recognition in complex mechanical systems
such as gearbox has always been a great challenge. The
performance of a classic fault pattern recognition approach
heavily depends on domain expertise and the classifier applied.
This paper proposes a deep convolutional neural network-based
transfer learning approach that not only entertains adaptive
feature extractions, but also requires only a small set of training
data. The proposed transfer learning architecture essentially
consists of two sequentially connected pieces; first is of a pre-
trained deep neural network that serves to extract features
automatically, the second piece is a neural network aimed for
classification which is to be trained using data collected from
gearbox experiment. The proposed approach performs gear
fault pattern recognition using raw accelerometer data. The
achieved accuracy indicates that the proposed approach is not
only sensitive and robust in performance, but also has the
potential to be applied to other pattern recognition practices.

INTRODUCTION

Health monitoring is critical to modern machinery systems
and has been motivating research aiming at fault pattern
recognition techniques. Gearbox, as one of the most common
components used in those systems, is prone to fault conditions
and failures, because of the severe working condition with high
mechanical loading and long operational time. Vibration
signals are most widely used to infer the health condition of
gear system, because they contain rich information and can be
casily measured with off-the-shelf, low-cost sensors.
However, the practice of fault pattern recognition using
vibration signals is quite demanding. Generally, a manually
selected feature extraction technique is first applied to vibration
signals measured from a gear system that characterizes the
fault-related features. Subsequently, a classifier is trained and
applied to new signals to recognize fault occurrence in terms of
type and severity. There have been extensive and diverse
attempts in identifying useful features from gear vibration
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signals, which fall into three main categories: time-domain
analysis (Zhou et al, 2008; Parey and Pachori, 2012), frequency
domain-analysis (Fakhfakh et al, 2005; Li et al, 2015; Wen et
al, 2015) and time-frequency analysis (Tang et al, 2010; Chaari
et al, 2012; Yan et al, 2014; Zhang and Tang, 2018). Time-
domain statistical approaches can capture the changes in
amplitude and phase modulation caused by faults. In
comparison, spectrum analysis can extract the features more
efficiently such that distributed faults with clear sidebands can
be detected. To deal with noise and at the same time utilize
the transient components in vibration signals, many recent
research efforts have place their focus on joint time-frequency
domain analysis utilizing, such as Wigner-Ville distribution,
short time Fourier transform, and various wavelet transforms.
The time-frequency distribution in theory may lead to rich
information regarding the time and frequency-related events in
signals.

Although manual feature extraction methods have seen
great successes, their effectiveness is hinged upon the specific
features adopted in the diagnostic analysis. It is worth
emphasizing that the choices of features as well as the often-
applied signal processing techniques are generally based on
domain. For example, while wavelet transforms have been
popular, it is evident from large amount of literature that there
does not seem to be a consensus on what kind of wavelet to be
used for gear fault pattern recognition. This should not come
as a surprise. On one hand, gear faults occur primarily at
microstructure or even material level but their effects can only
be observed indirectly at a system level; consequently, there
exists a many-to-many relationship between actual faults and
the observable quantifies (i.e., features) for a given gear system
(Lu et al, 2012). On the other hand, different gear systems
have different designs which lead to distinct dynamic
characteristics. ~ As such, the result on features manually
selected and, to a large extent, the methodology employed to
extract these features for one gear system design may not be
casily extrapolated to a different gear system design.
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Fundamentally, condition monitoring and fault diagnosis of
gear systems belongs to the general field of data mining. The
advancements in related algorithms and computational power
have led to the wide spread of machining learning techniques to
various applications. Most recently, deep neural network-
based methods are progressively being investigated in gear fault
pattern recognition in an automated manner with minimal
tuning. For example, Zhang et al (2015) developed a deep
learning network for degradation pattern classification and
demonstrated the efficacy using turbofan engine dataset. Li et
al (2016) proposed a deep random forest fusion technique for
gearbox fault diagnosis. Weimer et al (2016) examined the
usage of deep convolutional neural network for industrial
inspection and demonstrated excellent defect detection results.
Ince et al (2017) developed a fast motor condition monitoring
system using a 1-D convolutional neural network with good
classification accuracy. Abdeljaber et al (2017) performed
real-time damage detection using convolutional neural network
and showcased satisfactory efficiency.

Deep neural network is undoubtedly a powerful tool in
pattern recognition and data mining. As an end-to-end
hierarchical system, it inherently blends the two essential
elements in condition monitoring, feature extraction and
classification, into a single adaptive learning frame. It should
be noted that the amount of training data required for
satisfactory results depends on many aspects of the specific
problem being tackled, such as the correctness of training
samples, the number of classes, and the degree of separation
between each class. In most machinery diagnosis
investigations, the lack of labeled training samples is a common
issue. To improve the performance given limited training
data, some recent studies have attempted to combine data
processing and data augmentation techniques, e.g., discrete
wavelet transform (Saravanan and Ramachandran, 2010),
antialiasing/decimation filter (Ince et al, 2017), and wavelet
packet transform (Li et al, 2016), with neural networks for fault
diagnosis.  Nevertheless, the data processing techniques
employed, subjected to selection based on domain expertise,
may hurt the objective nature of neural networks and to some
extent undermines the usage of such tools.

In this research, we present a deep neural network-based
transfer learning approach utilizing limited time domain data
for gearbox fault pattern recognition. This approach inherits
the non-biased nature of neural network-type methods that
avoids the manual selection of features. Meanwhile, the issue
of limited data is overcome by formulating a new architecture
with two parts. Massive image data (1.2 million) from
ImageNet are used first to train the original deep neural
network model. Then the parameters of the original neural
network are partially transferred to construct the first part of the
proposed architecture. The second part of the neural net is
further trained using experimentally generated gear fault data.
With this new architecture, highly accurate gear fault pattern
recognition can be achieved using limited time-domain data
without any subjective data processing techniques to assist
feature extraction.

APPROACH FORMULATION

The proposed approach is built upon deep neural network
transfer-learning. In this section, we start from the
fundamental formulations of deep convolutional neural network
and transfer learning, followed by specific architecture
developed for gear fault pattern recognition.

Deep Convolutional Neural Network

Convolutional Neural Network (CNN) is a class of
biologically inspired neural network featuring one or multiple
convolutional layers that simulate human visual system (LeCun
et al, 1990). In recent years, due to the enhancement in
computational power and the dramatic increase in the amount
of data available in various applications, CNN-based methods
have shown significant improvements in performance and thus
have become the most popular class of approaches for pattern
recognition tasks such as image classification (Krizhevsky et al,
2012), natural language processing (Kim, 2016), recommending
systems (Van den Oord, et al, 2013) and fault detection (Ince et
al, 2016). CNN learns how to extract and recognize
characteristics of the target task by combining and stacking
convolutional layers, pooling layers and fully connected layers
in its architecture. Figure 1 illustrates a simple CNN with an
input layer to accept input images, a convolution layer to
extract features, a ReLU layer to augment features through non-
linear transformation, a max pooling layer to reduce data size,
and a fully connected layer combined with a Softmax layer to
classify the input to defined labels. The parameters are trained
through a training dataset and updated using back propagation
algorithm to reflect the features of the task that may not be
recognized otherwise. The basic mechanism of layers in CNN
is outlined as follows.
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Figure 1 An example convolutional neural network.

Convolutional layer. Each feature map in the convolution
layer shown in Figure 1 is generated by a convolution filter.
Generally, the input and convolution filters are tensors of size
mxn and pxgxK (K is the number of filter used),

respectively. Stride (i.e., step size of the filter sliding over
input) is set to 1 and padding (i.e., the number of rows and
columns to insert around the original input) is set to 0. The
convolution operation can be expressed as,

P 4
Ya,.dy. k :szdli,dzjxﬁ,j,k ©)

i=0 j=0
Where y, x and f denote the element in feature map, input and
convolutional filter, respectively. Jix represents the

element on the i-th column and j-th row for filter k.~ y, , , is

the element on the d;-th column and d>-th row of feature map £.
And x,,, . refers to the input element on the i-th column and



j-th row of the stride window specified by d, and d, .

Equation (1) gives a concise representation of the convolution
operation when the input is 2-demensional, and stride and
padding are 1 and 0. Higher dimension convolution
operations can be conducted in a similar manner. In CNN,
multiple convolution filters are used in a convolutional layer,
each acquiring a feature piece in its own perspective from the
input image specified by the filter parameters. Regardless of
what and where a feature appears in the input, the convolution
layer will try to characterize it from various perspectives that
have been tuned automatically by the training dataset.

ReLU layer. In CNN, ReLU (rectified linear units) layers
are commonly used after convolution layers. In most cases,
the relationship between the input and output is not linear.
While the convolution operation is linear, the ReLU layer is
designed to take non-linear relationship into account, as shown
in the equation below,

y =max(0, ) 2
The ReLU operation is applied to each feature map and returns
an activation map. The depth of the ReLU layer equals to that
of the convolution layer.

Max pooling layer. Max pooling down-samples a sub-
region of the activation map to its maximum value,

y= max y 3)

Li<i<U,, Ly<i<U, = "/
where L <i<U, and L,<;j<U, define the sub-region.
The max pooling layer not only makes the network less

sensitive to location changes of a feature but also reduces the
size of parameters, thus alleviating computational burden.

Transfer Learning

The performance of a convolutional neural network can be
improved by upscaling the CNN equipped. The scale of a
CNN concurs with the scale of the training dataset. Naturally,
the deeper the CNN, the more parameters need to be trained,
which requires a substantial amount of valid training samples.
Nevertheless, in the application of gear fault pattern
recognition, the training data is always not as sufficient as that
of other tasks such as natural image classification. Transfer
learning, on the other hand, can achieve prominent performance
commensurate with large scale CNNs using only a small set of
training date. By partially deploying a pre-trained neural
network, transfer learning provides a possible solution to
improve the performance of a novel task with small training
dataset. Classic transfer learning approaches transfer (copy)
the first n layers of a well-trained network to the target network
of layer m>n . Initially, the last (m—n) layers of the

target network are left untrained. They are trained
subsequently using the training data from the novel task.
Transfer learning becomes possible and promising because,
as has been discovered by recent studies, the layers at the
convolutional stages (convolution layers, ReLU layers and
pooling layers) of the convolutional neural network trained on
large dataset indeed extract general features of inputs, while the
layers of fully connected stages (fully connected layers,
softmax layers, classification layers) are more specific to task
(Zeiler and Fergus, 2013; Sermanet et al, 2014). Therefore,
the n layers transferred to the new task can be regarded as a

well-trained feature extraction tool and the last few layers serve
as a classifier to be trained. Even with substantial training
data, initializing with transferred parameters can improve the
performance in general (Yosinski et al, 2014). In this
research, transfer learning is implemented to gearbox fault
pattern recognition. The CNN is well-trained in terms of
pulling characteristics from images. As illustrated in Figure 5,
the parameters in the convolution stage, i.e., the parameters
used in the convolution filter, the ReLU operator and the max
pooling operator are transferred to the fault pattern recognition
task. The parameters used in the fully connected layer and the
softmax layers are trained subsequently using a small amount
of training data generated from gear fault experiments.

Proposed Architecture

In this sub-section we present the details of the proposed
architecture. The deep CNN adopted in this study as base
architecture is originally proposed by Krizhevsky et al (2012),
which is essentially composed of 5 convolution stages and 3
fully connected stages (Figure 2). This base architecture
showed its extraordinary performance in Large Scale Visual
Recognition Challenge 2012 (ILSVRC2012), and has since
been repurposed for other learning tasks (Shie et al, 2015). To
the best of our knowledge, the architecture has yet to be used
for fault pattern recognition using time domain inputs. In the
base architecture, the parameters are trained using
approximately 1.2 million human/software labeled 3D true-
color nature images from ImageNet. The trained parameters
in the first 7 stages are well-polished in the sense of
characterizing high-level abstractions of the input image and
thus have the potential to be used for other tasks with image
inputs.

In gear fault pattern recognition, vibration signals can be
sampled using accelerometers as gear rotates. Such vibration
signals can then be represented by 3D grey-scale/true-color
images as.  Although the vibration images may look different
from the images used to train the original CNN, useful features
can be extracted in a similar manner if the CNN adopted is able
to identify high-level abstractions. Therefore, as a deep
convolution neural network, the first 7 stages of the base
architecture can be transferred to facilitate gear fault pattern
recognition. The first 7 stages indeed serve as a general well-
trained tool for automatic feature extraction. The more stages
and layers used, the higher level of features can be obtained.
The final stage is left to be trained as a classifier using the
experiment data specific to the pattern recognition task. As
specified in Table 1, a total number of 24 layers are used in the
proposed architecture; the parameters and specifications used in
the first 21 layers are transferred from the base architecture.
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Figure 2 lllustration of the transfer learning
architecture (adopted from (Krizhevsky et al, 2012)).



In this study, the loss function used is the cross-entropy
function given as follows,

E(0)=-LIn(CNN(X,0))+7[0], =—LinL+y[0], (4
where ||0||2 is a [, normalization term to prevent the network

from over-fitting. Equation (4) quantifies the difference
between correct output labels and predicted labels. And the
loss is then back propagated to update the parameters using the
stochastic gradient descent method (Sutskever et al, 2013)
given as,

0., =0, -aVE(®,)+/(6,-6,_) (5)
where « is the learning rate, i is the number of iteration, and
f stands for the contribution of previous gradient step.

Table 1 Specifications of the proposed architecture

Stage Layer Name Specifications
1 Convolution 11*11*96
1 2 ReLU N/A
(transferred) 3 Normalization | 5 channels/element
4 Max pooling 3*3
5 Convolution 5*5%256
2 6 ReLU N/A
(transferred) 7 Normalization | 5 channels/element
8 Max pooling 3*3
3 9 Convolution 3*3*384
(transferred) 10 ReLU N/A
4 11 Convolution 3*3*384
(transferred) 12 ReLU N/A
5 13 Convolution 3*3*256
(transferred) 14 RelLU N/A
15 Max pooling 3*3
6 16 Fully connected 4096
(transferred) 17 ReL.U N/A
18 Dropout 50%
7 19 Fully connected 4096
(transferred) 20 RelLU N/A
21 Dropout 50%
22 Fully connected 9
i gzebde) 23 Softmax N/A
24 Classification Cross entropy

EXPERIMENTAL STUDIES

Experimental Setup

Many types of mechanical faults and failures can occur to
gears in a gearbox. Vibration signals collected from such a
system are usually used to reveal information about its
operating condition. In this study, experimental cases are
carried out on a two-stage gearbox with replaceable gears as
shown in Fig. 3. The speed of the gear is controlled by a
motor. The torque is supplied by a magnetic brake which can
be adjusted by changing its input voltage. A 32-tooth pinion
and an 80-tooth gear are installed on the first stage input shaft.
The second stage consists of a 48-tooth pinion and 64-tooth
gear. The input shaft speed is measured by a tachometer and
gear vibration signals are measured by an accelerometer. The
signals are recorded through a dSPACE system (DS1006
processor board, dSPACE Inc., Wixom, MI) with sampling
frequency of 20 KHz. As illustrated in Fig. 4, nine different
gear faults are introduced to the pinion on the input shaft

including health, missing tooth, root crack, spalling and
chipping tip with 5 different levels of severity. Dynamic
responses of a system involving gear mechanism are angle-
periodic. The gearbox system is usually treated as time-
periodic system while the rotational speed is assumed to be
constant. This assumption is generally not accurate because of
load disturbances, geometric tolerances, and motor control
errors, etc (Zhang and Tang, 2018). In this study, the

originally time-domain vibration signals are converted from
time-even to angle-even with evenly angular increment.

Figure 3 Gearb for experimental study.

Missing tooth

igure 4 Nine pinions with different health conditions
(five levels of severity for chipping tip).

For each gear condition, 104 signals are generated using
the gearbox system. For each signal, 3,600 angle-even
samples are recorded during 4 gear revolutions first for the case
study. Figure 5 shows all 104 signals of each type of gear
condition where the vertical axis is the acceleration of the gear
(rad/s?) and the horizontal axis corresponds to the 3,600 angel-
even sampling points.
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Figure 5 Vibration signal samples of different gear
health conditions.

Case Study - 3,600 sampling points with varying
training data size

104 vibration signals are generated for each gear condition.
In the case studies, a portion of the signals are randomly
selected as training data while the rest serves as validation data.
To demonstrate the performance of the proposed approach
towards various data sizes, the size of the training dataset
ranges from 80% (83 training data per condition, 83*9 data in
total) to 2% (2 training data per condition, 2*9 data in total) of
all the 104 signals for each health condition.

Table 2 Classification results (3,600 sampling points)

thod Transfer Local CNN AFS-SVM
learning Accuracy (%) Accuracy (%)
Training data Accuracy (%) v v
0,
?gf;er condition) Mean: 100 Mean: 97.57 Mean: 87.48
60% Mean: 100 Mean: 80.74 Mean: 87.72
(62 per condition) ) T U
40% Mean: 100 Mean: 76.63 Mean: 86.67
(42 per condition) ) e e
20% . Mean: 99.92 Mean: 69.69 Mean: 86.24
(21 per condition)
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° . Mean: 99.41 Mean: 55.82 Mean: 83.83
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(2 per condition)
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Figure 6 Classification results of the three methods
when training data size varies.

Table 2 shows the classification results where the mean
accuracy is the average of 5 training attempts. The
classification accuracy is the ratio of the correctly classified
validation data to the total validation dataset. As illustrated in
Fig. 6, the proposed transfer learning approach has the best
classification accuracy for all types of data size. Even if only
5 vibration signals per condition are selected for training, the
proposed approach can achieve an extraordinary 94.90%
classification accuracy, which further escalates to 99%-100%
when 10% and more training data are used. On the other
hand, while the performance of AFS-SVM reaches the plateau
(showing only minimal increments) after 20% date is used for
training, the classification accuracy of local CNN gradually
increases with data size from 27.99% to 97.57% and surpasses
AFS-SVM eventually when 80% data is used for training,
indicating the significance of the size of training data to
properly train a neural network. ~ Although the data size greatly
affects the performance of a CNN in general senses, the
proposed transfer learning architecture still exhibits high
classification accuracy because only one fully connected stage
needs to be trained locally, which notably lowers the standard
of the data required by a CNN in terms of achieving satisfactory
outcome. Figure 7 shows the convergent histories (mini-batch
accuracy) of the proposed approach and local CNN when 5%
data is used for training. As can be seen from the
comparisons, transfer learning gradually converges in accuracy
while local CNN inclines to ‘random walk’ due to insufficient
data. Compared with AFS-SVM, the proposed approach not
only excels in performance, but also requires no pre-processing
effort, angel-frequency analysis in this case, which makes the
proposed approach more unbiased in feature extraction and
readily applicable to other pattern recognition practices. The
proposed approach also shows satisfactory outcomes it the
regard of robustness. As demonstrated in Fig. 8, it has the
smallest variance in all cases, while the performance of the
under-trained local CNN oscillates the most.

Accuracy
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Figure 7 Convergent histories of transfer learning and
local CNN for 5% training data.
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Figure 8 Box plots of classification results of the
three methods when training data size varies.

The transferred stages of the proposed architecture attend
to extract the high-level abstract features of the input that
cannot be recognized otherwise, even if the input is different
from that of the previous task. Figure 9 gives an example of
such procedure by showing the feature maps generated in each
convolution layer by the proposed architecture when it is used
to classify a gearbox vibration signal. It is seen that the
abstraction level of the input image continuously escalates from



the Ist feature map to the Sth feature map. In general, the
number of convolution stages equipped is correlated with the
level of abstraction the features can be represented in the CNN.
As demonstrated in this case study, the base architecture is
indeed transferable towards gear fault pattern recognition tasks
and the proposed approach performs well with raw image signal
inputs, which indicates the transferred layers constructed in this
study are generally applicable to represent useful features of an
input image in high-level abstraction.

it .
1* convolution layer

sth

Figure 9 Feature maps extracted by 5 convolution
layers of the proposed transfer learning approach.

CONCLUSIONS

In this paper, a deep convolutional neural network-based
transfer learning approach is developed for pattern recognition.
The proposed approach not only entertains adaptive feature
extractions, but also requires only a small set of training data
compared to other locally trained convolution neural networks.
The proposed transfer learning architecture consists of two
parts; the first part is constructed with a piece of a pre-trained
deep neural network that serves to extract the features
automatically from the input, the second part is a fully
connected stage for classification which needs to be trained
using experiment data.  Experiment studies have been
conducted using pre-processing free raw accelerometer data.
The performance of the proposed approach is highlighted by
varying the size of training data. The classification accuracies
outperform other methods such as locally trained convolution
neural network and angle-frequency analysis-based support
vector machine by as much as 50%. The achieved outcome
indicates that the proposed approach is not only remarkable in
gear fault pattern recognition, but also has the potential to be
readily applicable to other fault diagnosis or pattern recognition
practices.
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