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Abstract

Automatic design via Bayesian optimization
holds great promise given the constant increase
of available data across domains. However, it
faces difficulties from high-dimensional, poten-
tially discrete, search spaces. We propose to
probabilistically embed inputs into a lower di-
mensional, continuous latent space, where we
perform gradient-based optimization guided by
a Gaussian process. Building on variational au-
toncoders, we use both labeled and unlabeled
data to guide the encoding and increase its ac-
curacy. In addition, we propose an adversar-
ial extension to render the latent representa-
tion invariant with respect to specific design
attributes, which allows us to transfer these at-
tributes across structures. We apply the frame-
work both to a functional-protein dataset and
to perform optimization of drag coefficients di-
rectly over high-dimensional shapes without in-
corporating domain knowledge or handcrafted
features.

1 INTRODUCTION

Developing enhanced designs is an overarching goal
across engineering disciplines ranging from the optimiza-
tion of planes in aeronautics (Simpson et al., 2001) and
batteries for electric vehicles (Grover et al., 2018) to the
development of proteins in bioengineering (Damborsky
and Brezovsky, 2014). The different optimization ef-
forts often face the same challenges in form of search-
space complexity and costly design evaluations which ren-
der naive exhaustive search infeasible and make human-
expert knowledge a key success factor. The ever increas-
ing amounts of experimental data have to be considered,
however, pose new challenges to manual analysis.
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Increasing amounts of data open new opportunities for
statistical design approaches. In this context Bayesian op-
timization has emerged as a data-driven tool for automated
design optimization (Shahriari et al., 2016). Bayesian op-
timization is a model-based approach with a prescribed
prior belief on the functional score of designs. Given data,
we sequentially update this belief and optimize a surrogate
function to our true objective. The choice of this surrogate
function thereby trades exploration vs. exploitation in the
design space.

By leveraging the problem structure, Bayesian optimiza-
tion can be much more sample efficient than random
search (Snoek et al., 2012b), but it is not immune to
the curse of dimensionality. Signal is often sparse in
high-dimensional input spaces of many real-world design
problems. In addition, desirable target applications like
drug or material design involve optimization over dis-
crete structures, where even optimizing the model-based
surrogate is difficult.

We target the input-space challenges of high-
dimensionality and discrete designs by combining
Bayesian optimization with deep generative modeling.
Specifically, we built on the architecture by Gémez-
Bombarelli et al. (2016a; 2016b) combining a variational
autoencoder (VAE) and Gaussian process (GP) regression.
VAEs (Kingma and Welling, 2013) are probabilistic mod-
els which map high-dimensional, possibly discrete inputs
to a lower dimensional continuous space. The encoder
consists of a neural network whose feature-construction
ability is leveraged for dimensionality reduction. We
learn a GP on top of the latent space as its predictions
enjoy uncertainty estimates such that we can explore
the design space based on a confidence measure. At the
same time, the continuous space now allows us to use
gradient-based methods for optimization.

In this work we make the following contributions: (i)
We propose to use parametric label-guidance for the au-
toencoder and demonstrate how this results in increased



label-prediction accuracy for the datasets we consider. (ii)
We present a corresponding graphical model and derive
a variational lower bound on the marginal log-likelihood.
The variational bound provides us with a principled way
of incorporating unlabeled data in the joint training proce-
dure. We show that incorporating unlabeled data results
in enhanced reconstruction accuracy for our datasets. (iii)
We perform Bayesian design optimization on two differ-
ent domains: proteins and shapes in laminar flow. Having
access to a physics simulator, we show the validity of the
approach in the hydrodynamics setting. (iv) We propose
an adversarial model extension to render the latent rep-
resentation invariant with respect to specific, real-valued
design attributes. To compensate for the loss of informa-
tion, we provide these attributes as additional arguments
to the decoder. This allows us to transfer attributes across
designs when we generate a design from its latent repre-
sentation.

2 PROBLEM SETUP

We consider the setting of a high-dimensional, possibly
discrete input space of designs X. Each design x is as-
sociated with a real-valued score y € R drawn from a
conditional distribution p* (y|z).

Our goal is to find a design z € X that maximizes the
expectation E[y|x]. We are given access to an oracle
providing a sample of y ~ p*(-|x), however, we assume
that obtaining a sample (evaluating y for a given design x)
is expensive. For example, it might require an expensive
simulation or conducting a lab experiment.

Furthermore, we assume to have access to samples D,, =
{x1,-- ,zn, } from X, and a (small) number of labeled
examples Dy = {(z1,v1)," - , (®nN,, Yn,) }- Where each
pair (z,y) corresponds to a design and a measurement of
its score. We assume that labeled and unlabeled examples
are sampled from the same marginal distribution.

2.1 BAYESIAN OPTIMIZATION

Bayesian optimization is a data-driven tool to optimize
expensive black-box functions. In this model-based ap-
proach we start with a prior belief on the functional re-
lationship between inputs and outputs, and update it se-
quentially as new data is acquired. As actual function
evaluations are expensive, we aim to optimize a surrogate
or acquisition function instead. A popular choice of acqui-
sition function is expected improvement (EI) (Jones et al.,
1998) which strikes to balance exploration vs. exploitation
in the search space. To calculate EI we require a predic-
tion with uncertainty for the black-box function values.
Gaussian processes (GPs) provide uncertainty quantifica-
tion and as such they are a standard model in Bayesian

optimization. In the framework of GPs we assume that
given a finite number of n inputs x1.,, the function val-
ues f (z1.,) are jointly Gaussian and the observations
y1.n, are normally distributed given f (Rasmussen and
Williams, 2006). Because of the GP guidance, it can
be more sample efficient than random search, however,
Bayesian optimization still faces the challenges of data
sparsity when operating in high dimensions. In addition,
gradient-based optimization of the (EI) surrogate is not a
priori applicable for discrete inputs. Finally, the benefit
of uncertainty quantification comes at a price, as learning
in the nonparametric GP model is cubic in the number
of inputs. To circumvent this bottleneck, different sparse
approximations have been developed. One approach to
reduce the computational complexity is to calculate the co-
variance matrix with respect to m inducing points instead
of n data points and typically m < n with complexity
O (m?n) (Titsias, 2009; McIntire et al., 2016).

2.2 VARIATIONAL AUTOENCODERS

A variational autoencoder is a generative model defining
a joint probability distribution between a latent variable z
and inputs . We commonly assume a simple Gaussian
prior distribution p(z) and model the input data distribu-
tion as a more complex conditional distribution py (|2)
where U are the parameters of a neural network. Di-
rectly optimizing the marginal likelihood is intractable
as it requires integration over the latent space. Kingma
and Welling (2013) circumvent this obstacle by proposing
an auxiliary inference distribution g¢ (z|2) and derive a
variational lower bound on the log likelihood

Lrso= E [logpy (z]2)] — Dxr (ga (2|2) [|p(2))

qa (z|w)

<logp ()
(D
Maximizing this objective can be naturally interpreted
as minimizing the reconstruction loss of a probabilistic
autoencoder and regularizing the posterior distribution
towards the prior. Kingma et al. (2014) extend this work
to the semi-supervised setting considering both labeled

and unlabeled data.

3 BAYESIAN OPTIMIZATION AND A
SHAPED LATENT SPACE

We address the optimization challenges of high dimen-
sions and discrete spaces in Bayesian Optimization by
combining Gaussian process regression with variational
autoencoding. In addition, we further shape the latent
space through adversarial training. By learning an invari-
ant latent representation regarding input-specific attributes
we are able to transfer these attributes across inputs.



We consider the directed graphical model of inputs =z,
corresponding labels y and latent variables z shown in
Figure 1. Given z, we assume z and y to be independent:

p(z,ylz) = pw (z[2) pe (y|2) . (2)

The data distribution pg (x|z) is modeled as either multi-
nomial (protein dataset) or multivariate normal with fixed
covariance (shape dataset). The discriminative pg (y|2)
is modeled as standard normal AV (ug(z), 1). Both distri-
butions are parametrized through neural networks with
parameters ¥ and ©.

labeled data

Y/Z\x 7 Z\X

unlabeled data

Figure 1: Graphical model connecting input space z with
latent variable z and label y. The model assumes condi-
tional independence of x and y given z. The gray shading
marks observed quantities.

3.1 SEMI-SUPERVISED LEARNING

Given labeled and unlabeled data D, and D,,, respectively,
we aim to optimize the likelihoods p (x, y) and p (x). As
in the case of the VAE this is intractable to compute due
to integration over z and we instead resort to variational
lower bounds.

unlabeled data

p,(X|2)

labeled data y

p,(X|2)

Figure 2: Illustration of the parametrized distributions
involved in the derivation of the variational lower bounds.

Introducing the auxiliary model ¢¢ (z|z) and using
Jensen’s inequality, we derive a variational lower bound
on the log-likelihood of labeled data (z, y). The indepen-
dence of the proposal distribution regarding y reflects the
view that x contains all information on y. An illustration

of the parametrized distributions is shown in Figure 2.
logp (z,y) = log/p(%y\Z)p(Z)dZ
p(z,y[2)
= log/ — z)dz
s (1) *
)

p(z
[p (z,y]2) 7 7

qa (2|7) p

=log E

zrvga (z|T)

> E [logp(z,yl|2)]

z~qe(z|7)

— Dxkr (ga (2|2) [|p(2))
- E | [log pw (z|2) + log pe (y|z)]

z~qe (z|x
— Dk (g (2[2) [[p(2))
=Ly
3)

where Dk, indicates Kullback-Leibler divergence.

In contrast, we find in the case of unlabeled data
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where we recover the ELBO objective of the VAE. Mod-
eling the proposal distribution ¢¢ (z|x) as multivariate
Gaussian and assuming a Gaussian prior p(z) = N (0,1)
results in an analytic expression for the divergence term.
Together £,, and £, form a joint lower bound in the
semi-supervised setting. During training we optimize
a weighted sum of the two bounds. Specifically, labeled
and unlabeled data share the same encoder ¢¢ (z|z) and
decoder py (x|z).

3.2 DESIGN OPTIMIZATION ON THE LATENT
SPACE

After the designs are embedded in a lower dimensional
continuous latent space we can now use a GP to perform
Bayesian optimization. The algorithm for the joined pro-
cedure of latent embedding and following optimization is
outlined in pseudocode in Algorithm 1.

For each (x;, y;) pair from the labeled set, we can com-
pute the mean value of ¢ (z|x;) that we denote z;. This
effectively embeds the labeled inputs from D, in the
lower-dimensional latent space. We can then fit a GP on



the set D), := {(z;, ;) }i<n,. Depending on the dataset
size this is either a full GP or a sparse approximation
with inducing points (Titsias, 2009). Subsequently we
perform iterative optimization by sampling points from
the latent prior p(z) and maximizing expected improve-
ment via gradient ascent. Next, we generate new designs
corresponding to the latent points with largest EI value
using the decoder, leveraging the generative capability of
a VAE. Finally we evaluate the black-box function for
these designs. The new data is appended to our dataset
and we continue ad libitum. For simplicity, we do not
retrain the VAE with each dataset expansion.

Algorithm 1 VAE-guided Bayesian Optimization
Input: Unlabeled data D,, labeled data D, =
{(xi,vi)}i<n,, fitness function f, parameters
a, B, K.

Ymax < MaX;<N, Yi
TrainVAE:
minimizeg ¢,v Ly (Dy) + BL: (Dy)
Dz — {(Zz; yi)}iSNe with z; mean of Qq;,<~|.’17i)
loop:
GP < FitGP (Dj; k)
parallel loop:
sample 20 ~ N (0,1)
(zF, f¥) + max,EI (z, 20 = 22, Ymax, GP)

1J1
Z + zp with b <= argmax; f;
% + decoderg (%) > Create design
7+ [(2) > Evaluate design &
Add (,9) to Dy and (2,9) to Dj
Ymax < MAX{Ymax, U}
return D,

3.3 ADJUSTING ATTRIBUTES AT TIME OF
DECODING

We consider a setting in which we have successfully used
our Bayesian optimization framework to find an enhanced
design = which we generated by decoding its correspond-
ing latent representation z. In addition, let a be a real-
valued attribute intrinsic to a given input design = which
is uncorrelated to the functional score y of the design.
Taking the case of car designs as an example, y could be a
measure of the car’s aerodynamic properties and a reflect
the car’s color.

The joint probability distribution p(a, x, y, z) factorizes
as

pla,z,y, z) = pu(z|a, 2)p,(alz)pe (y|z)p(z)  (5)

with the additional inference network p- (a|z) (Figure 3).
We assume that the input design x and the attribute o
are observed variables, and that the label y is sometimes
observed (i.e. the semi-supervised setting).

The question we consider is whether we can transfer an
attribute across designs, i.e., can we decode our optimized
latent representation to designs which share the optimal
score but differ with respect to the value of attribute a. Re-
ferring again to our example of car designs, the attribute
adjustment would consist in changing a car’s color after
finding an aerodynamically optimal design.

Our strategy to enable attribute adjustment is to enforce
a latent representation which is invariant to a. If the
latent space contains no information on the attribute, the
decoder py (z|z, a) is forced to learn how to impose a on
z in order to achieve proper design reconstruction. We
can then adjust attributes by decoding optimized latent
points with an attribute value of our choice.

To enforce this invariance, we add adversarial training to
the training objective. We formalize this in the following
maxmin expression:

maxmin |
P 7 z~q(z) 2oqe (2)T)

(alx) —a, ()] ©®)
Here a is the attribute we want to be invariant to, and a.,
is an estimator of a given the latent set z. The notation
a(z) emphasizes the fact that every design « has an in-
trinsic attribute value a. We model p, (a|z) as Gaussian
with fixed covariance and predict the mean using a neu-
ral network with parameters . If we assume that p., is
expressive enough and the network trained such that it
can take advantage of all information z has on a, then the
objective minimizes the mutual information I(a; z) and
D~ is forced to settle on mean prediction. Note that this
adversarial training objective does not depend on the ob-
servation of the label y and can thus leverage both labeled
and unlabeled data.

unlabeled data

labeled data

Figure 3: The augmented architecture with adversarial
network p., (a|z) mapping from latent space z to attribute
a. Providing a as additional input to the decoder encour-
ages an a-invariant latent representation.



4 DATASETS

We empirically evaluate the performance of our method
on two datasets.

4.1 PROTEIN-FITNESS LANDSCAPE

Proteins are of paramount importance for biological sys-
tems and in industrial applications such as food process-
ing or biomass conversion. As such the ability to design
enhanced proteins is desirable. Proteins form both a high-
dimensional as well as discrete design space as a protein
is defined by an amino-acid sequence with alphabet size
20.

Protein optimization is especially challenging as (i) the
number of target amino-acid sequences grows exponen-
tially with the number of considered amino-acid muta-
tions and (ii) only a very small fraction of all amino-
acid sequences results in a functional protein (Keefe and
Szostak, 2001).

We base our protein-optimization approach on a large
fitness-landscape exploration study of the green fluores-
cent protein from Aequorea victoria (avGFP) (Sarkisyan
et al., 2016). GFP is a widely used label-protein in fluo-
rescence microscopy with a sequence of 237 amino acids.
Our specific dataset consists of 51, 715 different protein
sequences D, generated by random mutagenesis from
the avGFP sequence and associated fluorescence values
y as measured by fluorescence-activated cell sorting. On
average each protein sequence contains 3.7 mutations
compared to avGFP.

Amino acid sequences of the avGFP variants are encoded
in a one-hot-style manner through a matrix of size 20 x
237 — accounting for the 20 essential amino acids and the
sequence length of avGFP. All entries of the columns are
0 except for one 1 encoding the amino acid at the specific
sequence position.

4.2 DRAG IN LAMINAR FLUID FLOW

The second dataset consists of 5100 two-dimensional
shapes z and scalar drag coefficients y associated with the
resistance these shapes experience in a constant fluid flow.
We consider the case of laminar flow around an object in
two dimensions as it allows us to generate training and
test data, and perform Bayesian optimization at relatively
low computational cost.

We generate the dataset by numerically solving the Navier-
Stokes equations (Lifshitz and Landau, 1959) which pro-
vide a theoretical description of fluid flow around objects.
Figure 4 shows example simulations from the dataset gen-
eration. Generated shapes are resized to 42 x 56 pixels

to reduce memory requirements. Further details on the
hydrodynamics simulation can be found in the appendix.
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Figure 4: Finite-element simulations of fluid flow around
random shapes in two dimensions. The left wall defines
the fluid inlet.

S EXPERIMENTS

In a first set of experiments we investigate the effect label-
guided encoding and training with additional unlabeled
data have on inference and autoencoder reconstruction
error. The second part is concerned with design optimiza-
tion of proteins and shapes. Finally, we demonstrate how
we can use invariant learning to adjust shape attributes,
namely area, with little effect on the drag coefficient.

5.1 INFERENCE AND RECONSTRUCTION
ERROR

We consider the effect of label-guided encoding and
adding unlabeled data to the training on 1) inference
of y and 2) autoencoder reconstruction error as defined
through the first term in the ELBO objective for the test
set.

Tables 1 and 2 summarize the results for the protein and
shape dataset, respectively. Details on the model architec-
tures can be found in the appendix.

In general, we notice the positive effect label-guided en-
coding has on test set prediction. Column ‘NN’ shows
the relative prediction error when using pe (y|z) for in-
ference. In absence of unlabeled data (Ny = 0) we
consider two settings whose corresponding values are
separated by a backslash: i) training pe (y|z) and the au-
toencoder jointly (left value) and ii) training autoencoder
and discriminative network sequentially (right value). We
observe that the discriminative network guides the dimen-
sionality reduction such that label-relevant information



Table 1: Protein dataset: Normalized test set prediction
errors for different allocations of labeled (Ny,) and un-
labeled (/Ny) training data. NN, GP-NN and GP-LAT
describe the neural network parametrized by © and GPs
trained on the neural-network features and the latent space,
respectively. REC describes relative reconstruction error
for test set designs.

N/ Ny NN GP-NN GP-LAT REC
30K/10K 1.04 2.43 1.82 1.00
30K/0 1.00/1.48 2.45 1.79 1.03
15K/15K 1.22 2.49 1.93 1.14
15k/0 1.31/1.57 2.58 2.18 1.64
5K/5K 1.18 2.62 1.89 1.90
5kK/0 1.44/1.70 2.58 1.97 3.11

Table 2: Hydrodynamic dataset: Normalized test set pre-
diction errors for different allocations of labeled (/Np)
and unlabeled (Ny) training data. NN, GP-NN and GP-
LAT describe the neural network parametrized by © and
GPs trained on the neural-network features and the latent
space, respectively. REC describes relative reconstruction
error for test set designs.

N/ Ny NN GP-NN GP-LAT REC
2500/2000 1.00 1.41 1.02 1.00
2500/0 1.21/1.38 1.44 1.22 1.04
1500/2000 1.10 1.31 1.24 1.07
1500/0 1.19/1.41 1.19 1.07 1.17
500/2000 1.91 1.64 1.79 1.31
500/0 2.05/1.98 1.61 2.02 1.82

in the amino-acid sequence or shape is encoded with en-
hanced accuracy.

In addition, we also observe a positive effect of adding
unlabeled data with respect to the reconstruction error
(REC). The effect is more pronounced when less labeled
data is available. Incorporating unlabeled data is also
beneficial for NN prediction error in almost all cases.

In order to obtain uncertainty measures for the predic-
tions we train and compare two GP models with squared-
exponential kernel. Model 1 is trained on the latent-space
embedding of the training data (GP-LAT). Model 2 is
trained on the features learned by the discriminative neu-
ral network pe (y|z) (GP-NN). Both models consider the
situation in which pg (y|z) and the autoencoder have pre-
viously been trained jointly.

We account for dimension-specific length scales in the
covariance function such that the Gaussian process can
filter irrelevant dimensions. For the protein dataset we
use a sparse approximation with 500 inducing points such

that the prediction performance of both GP models is
impaired compared to the neural network (NN columns
in the Tables). Comparing the GPs among each other we
note the in general much better performance of the GP
trained on the latent-space coordinates.

5.2 OPTIMIZATION OF PROTEIN AND SHAPE
DESIGNS

We follow the algorithm outlined in Algorithm 1 to opti-
mize shape and protein designs.

5.2.1 Design of New Protein Variants

A schematic of the optimization framework is shown
in Figure 5A. To find the best local EI maxima we in-
dependently sample 20,000 start points from the prior
p(z) ~ N (0,I) and perform gradient ascent for each
point. Figure 5B visualizes amino-acid mutation sites
apparent in the highest-ranked protein variants on the
structure of avGFP.

While only experimental verification can provide a pre-
cise assessment of the model performance, comparison
with the data from literature on development of GFP vari-
ants shows that genotypes predicted by our model are free
from known deleterious mutations such as mutations in
the chromophore-forming amino acids and catalytically
active E222 residue (Chudakov et al., 2010). Most of the
mutated amino acid side chains in predicted genotypes
are oriented towards the solvent in the protein beta barrel
structure, in accordance with experimental observations
(Sarkisyan et al., 2016) and with the evolutionary conser-
vation of internally oriented residues (Chudakov et al.,
2010). Moreover, some predicted genotypes carry com-
binations of substitutions known to increase brightness
of avGFP, such as the FO9S/M153T pair of substitutions
that in combination with mutation V163A was reported to
result in avGFP being 42 times brighter when expressed
in vivo (Battistutta et al., 2000).

5.2.2 Design of Drag-reduced Shapes

The time and resources required for protein synthesis and
functional testing render it expensive to use this applica-
tion for several rounds of Bayesian optimization given
the purpose of this paper and to explore technical model
aspects in more detail. For this reason we use a set of two-
dimensional shapes and the drag these shapes face under
laminar flow conditions. We can calculate the drag forces
based on the Navier-Stokes equations in a physics simula-
tion. As such we can perform closed-loop optimization
with the goal of finding drag-reduced shapes.

Figure 6 shows a schematic of the optimization procedure
which is analogous to the protein case. We generate
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Figure 5: (A) Schematic illustrating the optimization of
amino-acid sequences to generate variants of the green
fluorescent protein (GFP) with enhanced brightness. (B)
The structure of GFP annotated with the distribution of
mutations among 100 sequences suggested by the design
algorithm. The main chromophore complex is shown in
green.

new object shapes by optimizing EI with respect to the
smallest drag coefficient in our training set. Promising
latent points are decoded to shape images and their drag
coefficients evaluated in our hydrodynamics simulator.
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Figure 6: Schematic of the Bayesian optimization proce-
dure to design drag-reduced shapes.

To illustrate the benefits of the joint autoencoder-GP
framework we compare three different strategies for
Bayesian optimization. In the first setting, we sample
random points from the Gaussian prior distribution p(2)
and for each point optimize EI via gradient ascent. We
contrast this with optimization working directly at the
level of shapes. Inputs are random shapes generated in
the same way as our training dataset. We consider train-
ing the GP directly on the input space (GP(z)) as well
as including the intermediary mapping of the encoder
(GP(z(z))). To be able to optimize EI via gradient as-
cent we relax the assumption of binary pixel values to
continuous values in [0, 1].

Figure 7 shows the best drag coefficient generated as a
function of shape evaluations for the three strategies. In

all cases we sample 600 starting points for gradient ascent
and evaluate the resulting 100 shapes corresponding to
the largest EI values in our simulator. All models share
the same GP kernel function (squared-exponential), opti-
mization parameters and stopping criteria.

Optimizing the acquisition function over the latent space
consistently yields the largest reduction in drag coeffi-
cient for all rounds of Bayesian optimization. Optimizing
the acquisition function over shapes does not improve
upon directly simulating the drag coefficient for the ran-
dom shapes which are chosen as gradient-ascent start
points. The GP kernel is unable to extract drag-relevant
features from the pixel input. As a consequence of the
high-dimensionality of the pixel space, mean predictions
for unknown shapes are close to the Gaussian prior and
the EI gradient vanishes. We can recover part of the per-
formance by using the ‘deep kernel’ of the encoder while
still optimizing directly on shape images. We reason that
the remaining performance gap is due to to the relaxation
of continuous pixel values.

Another advantage of the latent-space optimization con-
sists in the fact that we can generate gradient-ascent start-
ing points by simply sampling from z ~ A (0,7). In
contrast, optimization on the input space requires us to
have access to new valid structures, i.e. shapes, as naive
sampling in the [0, 1]*2*56 pixel space breaks the opti-
mization routine as expected.

Figure 8 shows examples of drag-reduced shapes over
the course of 500 calls to the hydrodynamics simulator
during optimization.
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Figure 7: Best relative drag coefficient as a function of
number of shape evaluations. The plot compares opti-
mization based on random shapes (x) versus latent points
(z). Error bars indicate standard deviation from three
independent experiments.
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Figure 8: The Bayesian optimization routine produces
shapes of reduced drag (< 1) compared to the smallest
drag coefficient in the training set (= 1). Shape inputs to
the hydrodynamic simulator (top) and corresponding flow
fields (bottom).

5.3 ATTRIBUTE ADJUSTMENT ACROSS
SHAPES

Given a set of shape designs with a real-valued attribute
a our goal is for the decoder to learn how to generate
a design with a given attribute value based on a latent
coordinate z.

We consider two scalar attributes for our shape dataset:
color and surface area. To introduce ‘color’ we create a
separate channel for each shape which contains the binary
mask multiplied by a random number from [0, 1]. During
training we provide the true attribute value for each shape
to the adversarial network and decoder. To make the
learning more stable we slowly fade in the adversarial
loss over half the number of maximal training epochs.
Early stopping is only considered after this point.

At test time we take a given latent point and feed it
along with a desired attribute value from the aforemen-
tioned range to the decoder. Figure 9 shows five example
shapes decoded each with four different attribute values
[0.2,0.4,0.6,0.8] resulting in a specific black-white in-
tensity.

Adjusting color is a relatively easy task as the additionally
introduced color channel is entirely orthogonal to the
drag coefficient - the quantity our discriminative model
pe (y|z) promotes to be accurately encoded in the latent
space. For this reason we consider the area of a shape
as another more challenging attribute value to control
for. Invariance to shape size requires the architecture to
apply a non-trivial geometric transformation or to learn
and store the shape information in the latent space in a
more abstract way, e.g. through scale-invariant Fourier
descriptors.

Figure 10 shows a selection of five latent points and their
associated drag coefficients decoded with four different
area values in analogy to the color-adjustment example.
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Figure 9: Shapes generated from five exemplary latent
points z;...z5 and four different color-attribute values
each.

The shapes are not cherry-picked. It is difficult to name
an exact drag coefficient for the very small shapes due to
the necessary shape rescaling, smoothing and boundary
point extraction before any finite-element simulation can
be performed. The simulations indicate that the drag
coefficient of the scaled shapes stay within 25% of their
original values with the largest deviations occurring at
the smallest scale. At the same time area values change
consistently for all shapes by about 300% (compare Table
3). The consistency of the scaling is remarkable as less
than 4.5% of training shapes have an area smaller or larger
than 67 and 175 pixels, respectively.
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Figure 10: Shapes generated from five exemplary latent
points 21...z5 and four different area-attribute values each.

6 RELATED WORK

Our approach draws on a broad basis of prior work and
is generally related to conditional VAEs (Kingma et al.,
2014) and hybrid models bridging generative and discrim-



Table 3: Pixel areas corresponding to shapes generated
from latent points z;...z5 and four different area-attribute
values each (compare Figure 10)

Z1 22 z3 Z4 Z5

60 67 64 64 64
91 91 90 89 89
149 143 149 152 152
174 175 176 177 177

inative architectures (Maalge et al., 2016; Shu et al., 2016;
Kuleshov and Ermon, 2017). In contrast to the conditional
VAE, we choose a label-independent encoder distribution
stressing the perspective on the latent space as continuous
embedding of inputs X.

Using neural-network learned features as input to a GP
model in the context of autoencoders dates back to Ben-
gio et al. (2007). More recently, Snoek et al. (2012a)
proposed non-parametric autoencoder guidance. Wilson
et al. (2016a) present deep-kernel learning in which a
stacked architecture of neural network and GP is trained
jointly. Wilson et al. (2016b) and Huang et al. (2015) tar-
get the scalability of these hybrid GP models. Successful
optimization within our framework depends on the ability
to encode high-dimensional designs in a continuous latent
space of lower dimensionality. This assumption is similar
to the notion of low effective dimensionality in Wang et al.
(2013) and related to Garnett et al. (2014). We considered
joint training of GP and autoencoder in the case of the
hydrodynamic dataset (5.2.2) but did not find this to out-
perform the sequential setting in which we train the GP
on the latent space after parametric label guidance.

The idea of attribute adjustment draws on learning of
fair representations, notably the fair VAE (Louizos et al.,
2015). Purushotham et al. (2016) and recently Lample
et al. (2017) explore enforcing invariance for adaptation
in time-series data and natural images. We propose an
adversarial objective based on mean-squared error max-
imization and demonstrate that attribute adjustment is
feasible concurrent with Bayesian optimization.

GPs have been used for protein design and shape opti-
mization - the two domains considered in our datasets.
Romero et al. (2013) demonstrated the application of GPs
to navigate the fitness landscape of proteins given limited
data. The GP model is directly trained on amino acid se-
quences through a kernel function which relates sequence
similarity to the spatial distance of amino acid positions
in the folded protein structure. Previous works demon-
strating the successful application of GP regression for
the optimization of parametric designs in aerodynamic
applications include (Simpson et al., 2001; Martin and

Simpson, 2005; Jeong et al., 2005; Jouhaud et al., 2007).
The aforementioned publications leverage domain knowl-
edge for optimization. In contrast, the approach presented
here is solely data-driven and based on deep-generative
models.

7 DISCUSSION

Bayesian optimization is a data-efficient approach to op-
timize complex black-box functions without the need to
supply gradients. Nevertheless discrete, high-dimensional
input spaces pose a challenge to successful design opti-
mization.

In this work we explore a framework combining varia-
tional autoencoding and Gaussian process regression to
approach this challenge. We present a variational bound
for the underlying graphical model and show how label-
guidance enhances the predictive performance and incor-
porating unlabeled data leads to an increase in reconstruc-
tion accuracy.

We apply the optimization framework to the design of
enhanced functional proteins. One round of Bayesian
optimization proposes meaningful new protein variants
which are free of known deleterious mutations.We fur-
ther introduce a physics-based dataset of two-dimensional
shapes and associated drag coefficients in laminar flow.
Having access to a simulator allows us to perform closed-
loop Bayesian optimization, such that after five rounds we
improve by about 30% on the best value in the training
set. We demonstrate that optimization based in the latent
space outperforms optimization in the design space.

Finally, we consider an adversarial extension to our model.
By forcing the latent space to be invariant w.r.t. an at-
tribute value of choice, we are able to select this attribute
value when decoding a latent point and impose it on our
design. The combination of label-guidance and attribute-
adversarial training shapes the information encoded in the
latent space. We envision that the adversarial-model ex-
tension might be a fruitful approach to transfer functional
groups or domains across molecules. In addition, the per-
formance of discriminative models trained on the latent
space could benefit when uninformative factors of varia-
tion are removed from the latent code based on domain
knowledge.
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