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Abstract

Automatic design via Bayesian optimization

holds great promise given the constant increase

of available data across domains. However, it

faces difficulties from high-dimensional, poten-

tially discrete, search spaces. We propose to

probabilistically embed inputs into a lower di-

mensional, continuous latent space, where we

perform gradient-based optimization guided by

a Gaussian process. Building on variational au-

toncoders, we use both labeled and unlabeled

data to guide the encoding and increase its ac-

curacy. In addition, we propose an adversar-

ial extension to render the latent representa-

tion invariant with respect to specific design

attributes, which allows us to transfer these at-

tributes across structures. We apply the frame-

work both to a functional-protein dataset and

to perform optimization of drag coefficients di-

rectly over high-dimensional shapes without in-

corporating domain knowledge or handcrafted

features.

1 INTRODUCTION

Developing enhanced designs is an overarching goal

across engineering disciplines ranging from the optimiza-

tion of planes in aeronautics (Simpson et al., 2001) and

batteries for electric vehicles (Grover et al., 2018) to the

development of proteins in bioengineering (Damborsky

and Brezovsky, 2014). The different optimization ef-

forts often face the same challenges in form of search-

space complexity and costly design evaluations which ren-

der naive exhaustive search infeasible and make human-

expert knowledge a key success factor. The ever increas-

ing amounts of experimental data have to be considered,

however, pose new challenges to manual analysis.

Increasing amounts of data open new opportunities for

statistical design approaches. In this context Bayesian op-

timization has emerged as a data-driven tool for automated

design optimization (Shahriari et al., 2016). Bayesian op-

timization is a model-based approach with a prescribed

prior belief on the functional score of designs. Given data,

we sequentially update this belief and optimize a surrogate

function to our true objective. The choice of this surrogate

function thereby trades exploration vs. exploitation in the

design space.

By leveraging the problem structure, Bayesian optimiza-

tion can be much more sample efficient than random

search (Snoek et al., 2012b), but it is not immune to

the curse of dimensionality. Signal is often sparse in

high-dimensional input spaces of many real-world design

problems. In addition, desirable target applications like

drug or material design involve optimization over dis-

crete structures, where even optimizing the model-based

surrogate is difficult.

We target the input-space challenges of high-

dimensionality and discrete designs by combining

Bayesian optimization with deep generative modeling.

Specifically, we built on the architecture by Gómez-

Bombarelli et al. (2016a; 2016b) combining a variational

autoencoder (VAE) and Gaussian process (GP) regression.

VAEs (Kingma and Welling, 2013) are probabilistic mod-

els which map high-dimensional, possibly discrete inputs

to a lower dimensional continuous space. The encoder

consists of a neural network whose feature-construction

ability is leveraged for dimensionality reduction. We

learn a GP on top of the latent space as its predictions

enjoy uncertainty estimates such that we can explore

the design space based on a confidence measure. At the

same time, the continuous space now allows us to use

gradient-based methods for optimization.

In this work we make the following contributions: (i)

We propose to use parametric label-guidance for the au-

toencoder and demonstrate how this results in increased



label-prediction accuracy for the datasets we consider. (ii)

We present a corresponding graphical model and derive

a variational lower bound on the marginal log-likelihood.

The variational bound provides us with a principled way

of incorporating unlabeled data in the joint training proce-

dure. We show that incorporating unlabeled data results

in enhanced reconstruction accuracy for our datasets. (iii)

We perform Bayesian design optimization on two differ-

ent domains: proteins and shapes in laminar flow. Having

access to a physics simulator, we show the validity of the

approach in the hydrodynamics setting. (iv) We propose

an adversarial model extension to render the latent rep-

resentation invariant with respect to specific, real-valued

design attributes. To compensate for the loss of informa-

tion, we provide these attributes as additional arguments

to the decoder. This allows us to transfer attributes across

designs when we generate a design from its latent repre-

sentation.

2 PROBLEM SETUP

We consider the setting of a high-dimensional, possibly

discrete input space of designs X . Each design x is as-

sociated with a real-valued score y ∈ R drawn from a

conditional distribution p∗(y|x).

Our goal is to find a design x ∈ X that maximizes the

expectation E[y|x]. We are given access to an oracle

providing a sample of y ∼ p∗(·|x), however, we assume

that obtaining a sample (evaluating y for a given design x)

is expensive. For example, it might require an expensive

simulation or conducting a lab experiment.

Furthermore, we assume to have access to samples Du =
{x1, · · · , xNu

} from X , and a (small) number of labeled

examples D` = {(x1, y1), · · · , (xN`
, yN`

)}. where each

pair (x, y) corresponds to a design and a measurement of

its score. We assume that labeled and unlabeled examples

are sampled from the same marginal distribution.

2.1 BAYESIAN OPTIMIZATION

Bayesian optimization is a data-driven tool to optimize

expensive black-box functions. In this model-based ap-

proach we start with a prior belief on the functional re-

lationship between inputs and outputs, and update it se-

quentially as new data is acquired. As actual function

evaluations are expensive, we aim to optimize a surrogate

or acquisition function instead. A popular choice of acqui-

sition function is expected improvement (EI) (Jones et al.,

1998) which strikes to balance exploration vs. exploitation

in the search space. To calculate EI we require a predic-

tion with uncertainty for the black-box function values.

Gaussian processes (GPs) provide uncertainty quantifica-

tion and as such they are a standard model in Bayesian

optimization. In the framework of GPs we assume that

given a finite number of n inputs x1:n, the function val-

ues f (x1:n) are jointly Gaussian and the observations

y1:n are normally distributed given f (Rasmussen and

Williams, 2006). Because of the GP guidance, it can

be more sample efficient than random search, however,

Bayesian optimization still faces the challenges of data

sparsity when operating in high dimensions. In addition,

gradient-based optimization of the (EI) surrogate is not a

priori applicable for discrete inputs. Finally, the benefit

of uncertainty quantification comes at a price, as learning

in the nonparametric GP model is cubic in the number

of inputs. To circumvent this bottleneck, different sparse

approximations have been developed. One approach to

reduce the computational complexity is to calculate the co-

variance matrix with respect to m inducing points instead

of n data points and typically m � n with complexity

O
(

m2n
)

(Titsias, 2009; McIntire et al., 2016).

2.2 VARIATIONAL AUTOENCODERS

A variational autoencoder is a generative model defining

a joint probability distribution between a latent variable z

and inputs x. We commonly assume a simple Gaussian

prior distribution p(z) and model the input data distribu-

tion as a more complex conditional distribution pΨ (x|z)
where Ψ are the parameters of a neural network. Di-

rectly optimizing the marginal likelihood is intractable

as it requires integration over the latent space. Kingma

and Welling (2013) circumvent this obstacle by proposing

an auxiliary inference distribution qΦ (z|x) and derive a

variational lower bound on the log likelihood

LELBO = E
qΦ(z|x)

[log pΨ (x|z)]−DKL (qΦ (z|x) ||p(z))

≤ log p (x)
(1)

Maximizing this objective can be naturally interpreted

as minimizing the reconstruction loss of a probabilistic

autoencoder and regularizing the posterior distribution

towards the prior. Kingma et al. (2014) extend this work

to the semi-supervised setting considering both labeled

and unlabeled data.

3 BAYESIAN OPTIMIZATION AND A

SHAPED LATENT SPACE

We address the optimization challenges of high dimen-

sions and discrete spaces in Bayesian Optimization by

combining Gaussian process regression with variational

autoencoding. In addition, we further shape the latent

space through adversarial training. By learning an invari-

ant latent representation regarding input-specific attributes

we are able to transfer these attributes across inputs.



We consider the directed graphical model of inputs x,

corresponding labels y and latent variables z shown in

Figure 1. Given z, we assume x and y to be independent:

p (x, y|z) = pΨ (x|z) pΘ (y|z) . (2)

The data distribution pΨ (x|z) is modeled as either multi-

nomial (protein dataset) or multivariate normal with fixed

covariance (shape dataset). The discriminative pΘ (y|z)
is modeled as standard normal N (µθ(z), 1). Both distri-

butions are parametrized through neural networks with

parameters Ψ and Θ.

Figure 1: Graphical model connecting input space x with

latent variable z and label y. The model assumes condi-

tional independence of x and y given z. The gray shading

marks observed quantities.

3.1 SEMI-SUPERVISED LEARNING

Given labeled and unlabeled data D` and Du, respectively,

we aim to optimize the likelihoods p (x, y) and p (x). As

in the case of the VAE this is intractable to compute due

to integration over z and we instead resort to variational

lower bounds.
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Figure 2: Illustration of the parametrized distributions

involved in the derivation of the variational lower bounds.

Introducing the auxiliary model qΦ (z|x) and using

Jensen’s inequality, we derive a variational lower bound

on the log-likelihood of labeled data (x, y). The indepen-

dence of the proposal distribution regarding y reflects the

view that x contains all information on y. An illustration

of the parametrized distributions is shown in Figure 2.

log p (x, y) = log

∫

p (x, y|z) p(z)dz

= log

∫

p (x, y|z)

qΦ (z|x)
qΦ (z|x) p (z) dz

= log E
z∼qΦ(z|x)

[

p (x, y|z)
p(z)

qΦ (z|x)

]

≥ E
z∼qΦ(z|x)

[log p (x, y|z)]

−DKL (qΦ (z|x) ||p(z))

= E
z∼qΦ(z|x)

[log pΨ (x|z) + log pΘ (y|z)]

−DKL (qΦ (z|x) ||p(z))

≡ L`

(3)

where DKL indicates Kullback-Leibler divergence.

In contrast, we find in the case of unlabeled data

log p (x) = log

∫ ∫

p (x, y|z) p(z)dz dy

= log

∫ ∫

qΘ (y|z)
p (x, y|z)

qΘ (y|z)

qΦ (z|x)
p(z)

qΦ (z|x)
dz dy

≥ E
z∼qΦ(z|x)

[log pΨ (x|z)]

−DKL (qΦ (z|x) ||p(z))

≡ Lu

(4)

where we recover the ELBO objective of the VAE. Mod-

eling the proposal distribution qΦ (z|x) as multivariate

Gaussian and assuming a Gaussian prior p(z) = N (0, I)
results in an analytic expression for the divergence term.

Together Lu and L` form a joint lower bound in the

semi-supervised setting. During training we optimize

a weighted sum of the two bounds. Specifically, labeled

and unlabeled data share the same encoder qΦ (z|x) and

decoder pΨ (x|z).

3.2 DESIGN OPTIMIZATION ON THE LATENT

SPACE

After the designs are embedded in a lower dimensional

continuous latent space we can now use a GP to perform

Bayesian optimization. The algorithm for the joined pro-

cedure of latent embedding and following optimization is

outlined in pseudocode in Algorithm 1.

For each (xi, yi) pair from the labeled set, we can com-

pute the mean value of qΦ(z|xi) that we denote zi. This

effectively embeds the labeled inputs from D` in the

lower-dimensional latent space. We can then fit a GP on



the set D′
` := {(zi, yi)}i≤N`

. Depending on the dataset

size this is either a full GP or a sparse approximation

with inducing points (Titsias, 2009). Subsequently we

perform iterative optimization by sampling points from

the latent prior p(z) and maximizing expected improve-

ment via gradient ascent. Next, we generate new designs

corresponding to the latent points with largest EI value

using the decoder, leveraging the generative capability of

a VAE. Finally we evaluate the black-box function for

these designs. The new data is appended to our dataset

and we continue ad libitum. For simplicity, we do not

retrain the VAE with each dataset expansion.

Algorithm 1 VAE-guided Bayesian Optimization

Input: Unlabeled data Du, labeled data D` =
{(xi, yi)}i≤N`

, fitness function f , parameters

α, β, κ.

ymax ← maxi≤N`
yi

TrainVAE:

minimizeΘ,Φ,Ψ αLu (Du) + βL` (D`)
D′

` ← {(zi, yi)}i≤N`
with zi mean of qΦ(·|xi)

loop:

GP← FitGP (D′
`;κ)

parallel loop:

sample z0i ∼ N (0, I)
(z∗i , f

∗
i )← maxzEI

(

z, z0 = z0i , ymax, GP
)

ẑ ← zb with b← argmaxi f
∗
i

x̂← decoderΦ (ẑ) . Create design

ŷ ← f (x̂) . Evaluate design x̂

Add (x̂, ŷ) to D` and (ẑ, ŷ) to D′
`

ymax ← max{ymax, ŷ}
return D`

3.3 ADJUSTING ATTRIBUTES AT TIME OF

DECODING

We consider a setting in which we have successfully used

our Bayesian optimization framework to find an enhanced

design x which we generated by decoding its correspond-

ing latent representation z. In addition, let a be a real-

valued attribute intrinsic to a given input design x which

is uncorrelated to the functional score y of the design.

Taking the case of car designs as an example, y could be a

measure of the car’s aerodynamic properties and a reflect

the car’s color.

The joint probability distribution p(a, x, y, z) factorizes

as

p(a, x, y, z) = pΨ(x|a, z)pγ(a|z)pΘ(y|z)p(z) (5)

with the additional inference network pγ(a|z) (Figure 3).

We assume that the input design x and the attribute a

are observed variables, and that the label y is sometimes

observed (i.e. the semi-supervised setting).

The question we consider is whether we can transfer an

attribute across designs, i.e., can we decode our optimized

latent representation to designs which share the optimal

score but differ with respect to the value of attribute a. Re-

ferring again to our example of car designs, the attribute

adjustment would consist in changing a car’s color after

finding an aerodynamically optimal design.

Our strategy to enable attribute adjustment is to enforce

a latent representation which is invariant to a. If the

latent space contains no information on the attribute, the

decoder pΨ (x|z, a) is forced to learn how to impose a on

z in order to achieve proper design reconstruction. We

can then adjust attributes by decoding optimized latent

points with an attribute value of our choice.

To enforce this invariance, we add adversarial training to

the training objective. We formalize this in the following

maxmin expression:

max
Φ

min
γ

E
x∼q(x)

E
z∼qΦ(z|x)

[

(a(x)− âγ (z))
2
]

(6)

Here a is the attribute we want to be invariant to, and âγ
is an estimator of a given the latent set z. The notation

a(x) emphasizes the fact that every design x has an in-

trinsic attribute value a. We model pγ (a|z) as Gaussian

with fixed covariance and predict the mean using a neu-

ral network with parameters γ. If we assume that pγ is

expressive enough and the network trained such that it

can take advantage of all information z has on a, then the

objective minimizes the mutual information I(a; z) and

pγ is forced to settle on mean prediction. Note that this

adversarial training objective does not depend on the ob-

servation of the label y and can thus leverage both labeled

and unlabeled data.

unlabeled datalabeled data
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Figure 3: The augmented architecture with adversarial

network pγ (a|z) mapping from latent space z to attribute

a. Providing a as additional input to the decoder encour-

ages an a-invariant latent representation.



4 DATASETS

We empirically evaluate the performance of our method

on two datasets.

4.1 PROTEIN-FITNESS LANDSCAPE

Proteins are of paramount importance for biological sys-

tems and in industrial applications such as food process-

ing or biomass conversion. As such the ability to design

enhanced proteins is desirable. Proteins form both a high-

dimensional as well as discrete design space as a protein

is defined by an amino-acid sequence with alphabet size

20.

Protein optimization is especially challenging as (i) the

number of target amino-acid sequences grows exponen-

tially with the number of considered amino-acid muta-

tions and (ii) only a very small fraction of all amino-

acid sequences results in a functional protein (Keefe and

Szostak, 2001).

We base our protein-optimization approach on a large

fitness-landscape exploration study of the green fluores-

cent protein from Aequorea victoria (avGFP) (Sarkisyan

et al., 2016). GFP is a widely used label-protein in fluo-

rescence microscopy with a sequence of 237 amino acids.

Our specific dataset consists of 51, 715 different protein

sequences D` generated by random mutagenesis from

the avGFP sequence and associated fluorescence values

y as measured by fluorescence-activated cell sorting. On

average each protein sequence contains 3.7 mutations

compared to avGFP.

Amino acid sequences of the avGFP variants are encoded

in a one-hot-style manner through a matrix of size 20×
237 – accounting for the 20 essential amino acids and the

sequence length of avGFP. All entries of the columns are

0 except for one 1 encoding the amino acid at the specific

sequence position.

4.2 DRAG IN LAMINAR FLUID FLOW

The second dataset consists of 5100 two-dimensional

shapes x and scalar drag coefficients y associated with the

resistance these shapes experience in a constant fluid flow.

We consider the case of laminar flow around an object in

two dimensions as it allows us to generate training and

test data, and perform Bayesian optimization at relatively

low computational cost.

We generate the dataset by numerically solving the Navier-

Stokes equations (Lifshitz and Landau, 1959) which pro-

vide a theoretical description of fluid flow around objects.

Figure 4 shows example simulations from the dataset gen-

eration. Generated shapes are resized to 42 × 56 pixels

to reduce memory requirements. Further details on the

hydrodynamics simulation can be found in the appendix.

Figure 4: Finite-element simulations of fluid flow around

random shapes in two dimensions. The left wall defines

the fluid inlet.

5 EXPERIMENTS

In a first set of experiments we investigate the effect label-

guided encoding and training with additional unlabeled

data have on inference and autoencoder reconstruction

error. The second part is concerned with design optimiza-

tion of proteins and shapes. Finally, we demonstrate how

we can use invariant learning to adjust shape attributes,

namely area, with little effect on the drag coefficient.

5.1 INFERENCE AND RECONSTRUCTION

ERROR

We consider the effect of label-guided encoding and

adding unlabeled data to the training on 1) inference

of y and 2) autoencoder reconstruction error as defined

through the first term in the ELBO objective for the test

set.

Tables 1 and 2 summarize the results for the protein and

shape dataset, respectively. Details on the model architec-

tures can be found in the appendix.

In general, we notice the positive effect label-guided en-

coding has on test set prediction. Column ‘NN’ shows

the relative prediction error when using pΘ (y|z) for in-

ference. In absence of unlabeled data (NU = 0) we

consider two settings whose corresponding values are

separated by a backslash: i) training pΘ (y|z) and the au-

toencoder jointly (left value) and ii) training autoencoder

and discriminative network sequentially (right value). We

observe that the discriminative network guides the dimen-

sionality reduction such that label-relevant information



Table 1: Protein dataset: Normalized test set prediction

errors for different allocations of labeled (NL) and un-

labeled (NU ) training data. NN, GP-NN and GP-LAT

describe the neural network parametrized by Θ and GPs

trained on the neural-network features and the latent space,

respectively. REC describes relative reconstruction error

for test set designs.

NL/ NU NN GP-NN GP-LAT REC

30K/10K 1.04 2.43 1.82 1.00
30K/0 1.00/1.48 2.45 1.79 1.03
15K/15K 1.22 2.49 1.93 1.14
15K/0 1.31/1.57 2.58 2.18 1.64
5K/5K 1.18 2.62 1.89 1.90
5K/0 1.44/1.70 2.58 1.97 3.11

Table 2: Hydrodynamic dataset: Normalized test set pre-

diction errors for different allocations of labeled (NL)

and unlabeled (NU ) training data. NN, GP-NN and GP-

LAT describe the neural network parametrized by Θ and

GPs trained on the neural-network features and the latent

space, respectively. REC describes relative reconstruction

error for test set designs.

NL/ NU NN GP-NN GP-LAT REC

2500/2000 1.00 1.41 1.02 1.00
2500/0 1.21/1.38 1.44 1.22 1.04
1500/2000 1.10 1.31 1.24 1.07
1500/0 1.19/1.41 1.19 1.07 1.17
500/2000 1.91 1.64 1.79 1.31
500/0 2.05/1.98 1.61 2.02 1.82

in the amino-acid sequence or shape is encoded with en-

hanced accuracy.

In addition, we also observe a positive effect of adding

unlabeled data with respect to the reconstruction error

(REC). The effect is more pronounced when less labeled

data is available. Incorporating unlabeled data is also

beneficial for NN prediction error in almost all cases.

In order to obtain uncertainty measures for the predic-

tions we train and compare two GP models with squared-

exponential kernel. Model 1 is trained on the latent-space

embedding of the training data (GP-LAT). Model 2 is

trained on the features learned by the discriminative neu-

ral network pΘ (y|z) (GP-NN). Both models consider the

situation in which pΘ (y|z) and the autoencoder have pre-

viously been trained jointly.

We account for dimension-specific length scales in the

covariance function such that the Gaussian process can

filter irrelevant dimensions. For the protein dataset we

use a sparse approximation with 500 inducing points such

that the prediction performance of both GP models is

impaired compared to the neural network (NN columns

in the Tables). Comparing the GPs among each other we

note the in general much better performance of the GP

trained on the latent-space coordinates.

5.2 OPTIMIZATION OF PROTEIN AND SHAPE

DESIGNS

We follow the algorithm outlined in Algorithm 1 to opti-

mize shape and protein designs.

5.2.1 Design of New Protein Variants

A schematic of the optimization framework is shown

in Figure 5A. To find the best local EI maxima we in-

dependently sample 20,000 start points from the prior

p (z) ∼ N (0, I) and perform gradient ascent for each

point. Figure 5B visualizes amino-acid mutation sites

apparent in the highest-ranked protein variants on the

structure of avGFP.

While only experimental verification can provide a pre-

cise assessment of the model performance, comparison

with the data from literature on development of GFP vari-

ants shows that genotypes predicted by our model are free

from known deleterious mutations such as mutations in

the chromophore-forming amino acids and catalytically

active E222 residue (Chudakov et al., 2010). Most of the

mutated amino acid side chains in predicted genotypes

are oriented towards the solvent in the protein beta barrel

structure, in accordance with experimental observations

(Sarkisyan et al., 2016) and with the evolutionary conser-

vation of internally oriented residues (Chudakov et al.,

2010). Moreover, some predicted genotypes carry com-

binations of substitutions known to increase brightness

of avGFP, such as the F99S/M153T pair of substitutions

that in combination with mutation V163A was reported to

result in avGFP being 42 times brighter when expressed

in vivo (Battistutta et al., 2000).

5.2.2 Design of Drag-reduced Shapes

The time and resources required for protein synthesis and

functional testing render it expensive to use this applica-

tion for several rounds of Bayesian optimization given

the purpose of this paper and to explore technical model

aspects in more detail. For this reason we use a set of two-

dimensional shapes and the drag these shapes face under

laminar flow conditions. We can calculate the drag forces

based on the Navier-Stokes equations in a physics simula-

tion. As such we can perform closed-loop optimization

with the goal of finding drag-reduced shapes.

Figure 6 shows a schematic of the optimization procedure

which is analogous to the protein case. We generate



Figure 5: (A) Schematic illustrating the optimization of

amino-acid sequences to generate variants of the green

fluorescent protein (GFP) with enhanced brightness. (B)

The structure of GFP annotated with the distribution of

mutations among 100 sequences suggested by the design

algorithm. The main chromophore complex is shown in

green.

new object shapes by optimizing EI with respect to the

smallest drag coefficient in our training set. Promising

latent points are decoded to shape images and their drag

coefficients evaluated in our hydrodynamics simulator.

Figure 6: Schematic of the Bayesian optimization proce-

dure to design drag-reduced shapes.

To illustrate the benefits of the joint autoencoder-GP

framework we compare three different strategies for

Bayesian optimization. In the first setting, we sample

random points from the Gaussian prior distribution p(z)
and for each point optimize EI via gradient ascent. We

contrast this with optimization working directly at the

level of shapes. Inputs are random shapes generated in

the same way as our training dataset. We consider train-

ing the GP directly on the input space (GP (x)) as well

as including the intermediary mapping of the encoder

(GP (z(x))). To be able to optimize EI via gradient as-

cent we relax the assumption of binary pixel values to

continuous values in [0, 1].

Figure 7 shows the best drag coefficient generated as a

function of shape evaluations for the three strategies. In

all cases we sample 600 starting points for gradient ascent

and evaluate the resulting 100 shapes corresponding to

the largest EI values in our simulator. All models share

the same GP kernel function (squared-exponential), opti-

mization parameters and stopping criteria.

Optimizing the acquisition function over the latent space

consistently yields the largest reduction in drag coeffi-

cient for all rounds of Bayesian optimization. Optimizing

the acquisition function over shapes does not improve

upon directly simulating the drag coefficient for the ran-

dom shapes which are chosen as gradient-ascent start

points. The GP kernel is unable to extract drag-relevant

features from the pixel input. As a consequence of the

high-dimensionality of the pixel space, mean predictions

for unknown shapes are close to the Gaussian prior and

the EI gradient vanishes. We can recover part of the per-

formance by using the ‘deep kernel’ of the encoder while

still optimizing directly on shape images. We reason that

the remaining performance gap is due to to the relaxation

of continuous pixel values.

Another advantage of the latent-space optimization con-

sists in the fact that we can generate gradient-ascent start-

ing points by simply sampling from z ∼ N (0, I). In

contrast, optimization on the input space requires us to

have access to new valid structures, i.e. shapes, as naive

sampling in the [0, 1]42×56 pixel space breaks the opti-

mization routine as expected.

Figure 8 shows examples of drag-reduced shapes over

the course of 500 calls to the hydrodynamics simulator

during optimization.

Figure 7: Best relative drag coefficient as a function of

number of shape evaluations. The plot compares opti-

mization based on random shapes (x) versus latent points

(z). Error bars indicate standard deviation from three

independent experiments.





Table 3: Pixel areas corresponding to shapes generated

from latent points z1...z5 and four different area-attribute

values each (compare Figure 10)

z1 z2 z3 z4 z5

60 67 64 64 64
91 91 90 89 89
149 143 149 152 152
174 175 176 177 177

inative architectures (Maaløe et al., 2016; Shu et al., 2016;

Kuleshov and Ermon, 2017). In contrast to the conditional

VAE, we choose a label-independent encoder distribution

stressing the perspective on the latent space as continuous

embedding of inputs X .

Using neural-network learned features as input to a GP

model in the context of autoencoders dates back to Ben-

gio et al. (2007). More recently, Snoek et al. (2012a)

proposed non-parametric autoencoder guidance. Wilson

et al. (2016a) present deep-kernel learning in which a

stacked architecture of neural network and GP is trained

jointly. Wilson et al. (2016b) and Huang et al. (2015) tar-

get the scalability of these hybrid GP models. Successful

optimization within our framework depends on the ability

to encode high-dimensional designs in a continuous latent

space of lower dimensionality. This assumption is similar

to the notion of low effective dimensionality in Wang et al.

(2013) and related to Garnett et al. (2014). We considered

joint training of GP and autoencoder in the case of the

hydrodynamic dataset (5.2.2) but did not find this to out-

perform the sequential setting in which we train the GP

on the latent space after parametric label guidance.

The idea of attribute adjustment draws on learning of

fair representations, notably the fair VAE (Louizos et al.,

2015). Purushotham et al. (2016) and recently Lample

et al. (2017) explore enforcing invariance for adaptation

in time-series data and natural images. We propose an

adversarial objective based on mean-squared error max-

imization and demonstrate that attribute adjustment is

feasible concurrent with Bayesian optimization.

GPs have been used for protein design and shape opti-

mization - the two domains considered in our datasets.

Romero et al. (2013) demonstrated the application of GPs

to navigate the fitness landscape of proteins given limited

data. The GP model is directly trained on amino acid se-

quences through a kernel function which relates sequence

similarity to the spatial distance of amino acid positions

in the folded protein structure. Previous works demon-

strating the successful application of GP regression for

the optimization of parametric designs in aerodynamic

applications include (Simpson et al., 2001; Martin and

Simpson, 2005; Jeong et al., 2005; Jouhaud et al., 2007).

The aforementioned publications leverage domain knowl-

edge for optimization. In contrast, the approach presented

here is solely data-driven and based on deep-generative

models.

7 DISCUSSION

Bayesian optimization is a data-efficient approach to op-

timize complex black-box functions without the need to

supply gradients. Nevertheless discrete, high-dimensional

input spaces pose a challenge to successful design opti-

mization.

In this work we explore a framework combining varia-

tional autoencoding and Gaussian process regression to

approach this challenge. We present a variational bound

for the underlying graphical model and show how label-

guidance enhances the predictive performance and incor-

porating unlabeled data leads to an increase in reconstruc-

tion accuracy.

We apply the optimization framework to the design of

enhanced functional proteins. One round of Bayesian

optimization proposes meaningful new protein variants

which are free of known deleterious mutations.We fur-

ther introduce a physics-based dataset of two-dimensional

shapes and associated drag coefficients in laminar flow.

Having access to a simulator allows us to perform closed-

loop Bayesian optimization, such that after five rounds we

improve by about 30% on the best value in the training

set. We demonstrate that optimization based in the latent

space outperforms optimization in the design space.

Finally, we consider an adversarial extension to our model.

By forcing the latent space to be invariant w.r.t. an at-

tribute value of choice, we are able to select this attribute

value when decoding a latent point and impose it on our

design. The combination of label-guidance and attribute-

adversarial training shapes the information encoded in the

latent space. We envision that the adversarial-model ex-

tension might be a fruitful approach to transfer functional

groups or domains across molecules. In addition, the per-

formance of discriminative models trained on the latent

space could benefit when uninformative factors of varia-

tion are removed from the latent code based on domain

knowledge.
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