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Abstract

In high dimensional settings, density estimation algorithms rely crucially on their
inductive bias. Despite recent empirical success, the inductive bias of deep gen-
erative models is not well understood. In this paper we propose a framework to
systematically investigate bias and generalization in deep generative models of
images. Inspired by experimental methods from cognitive psychology, we probe
each learning algorithm with carefully designed training datasets to characterize
when and how existing models generate novel attributes and their combinations.
We identify similarities to human psychology and verify that these patterns are
consistent across commonly used models and architectures.

1 Introduction

The goal of a density estimation algorithm is to learn a distribution from training data (Figure 1,A).
However, unbiased and consistent density estimation is known to be impossible [1, 2]. Even in
discrete settings, the number of possible distributions scales doubly exponentially w.r.t. dimensional-
ity [3], suggesting extremely high data requirements. As a result, the assumptions made by a learning
algorithm, or its inductive bias, are key when practical data regimes are concerned. For simple
density estimation algorithms, such as fitting a Gaussian distribution via maximum likelihood, we can
easily characterize the distribution that is produced given some training data. However, for complex
algorithms involving deep generative models such as Generative Adversarial Networks (GAN) and
variational autoencoders (VAE) [4–8], the nature of the inductive bias is very difficult to characterize.

In the absence of insights in analytic form, a possible strategy to evaluate this bias is to probe the
input-output behavior of the learning algorithm. The challenge with this approach is that both inputs
and outputs are high dimensional (e.g., distributions over images), making it difficult to exhaustively
characterize the input-output relationship. A strategy for studying high-dimensional objects is to
project them onto a lower dimensional space where analysis is feasible. In fact, similar problems
have long challenged cognitive psychologists. As visual cognitive functions are extremely complex,
cognitive psychologists and neuroscientists have developed controlled experiments to investigate the
visual system. For example, experiments on perception and representation of shape, color, numerosity,
etc., have led to important discoveries such as ensemble representation [9], prototype enhancement
effect [10], and Weber’s law [11].

We propose to adopt experimental methods from cognitive psychology to characterize the generaliza-
tion biases of machine intelligence. To characterize the input-output relationship of an algorithm, we
explore its behavior by projecting the image space onto a carefully chosen low dimensional feature
space. We select several features that are known to be important to humans, such as shape, color, size,
numerosity, etc. We systematically explore these dimensions by crafting suitable training datasets and
measuring corresponding properties of the learned distribution. For example, we ask, after training
on a dataset with red and yellow spheres, and red cubes, will the model generates yellow cubes, as a
result of its inductive bias?
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algorithm will generalize given a new dataset, or provide insight into exactly which inductive biases
are involved. The lack of systematic study is due to the high dimensionality of both the input dataset
D and the output distribution q(z). In fact, even evaluating how “close” the learned distribution q is
to p is an open question, and there is no commonly accepted evaluation metric [18–20]. Therefore, to
examine the inductive bias we need to design settings where the training and output distributions can
be exactly characterized and compared.

3 Exploring Generalization Through Probing Features

We take inspiration from cognitive psychology, and provide a novel framework to analyze empirically
the inductive bias of generative algorithms via a set of probing features. We focus on images but the
techniques can also be applied to other domains.

Let S ⊂ X be the support set of p(x). We define a set of (probing) features as a tuple of functions
φ = (φ1, · · · , φk) where each φi maps an input image in S to a value. For example, one of the
features φi : S → N may map the input image to the number of objects (numerosity) in that image
(Figure 1BC). We denote the range of φ as the feature space Z . For any choice of p(x), with a
slight abuse of notation, we denote p(z) as the (induced) distribution on Z by φ(x) when x ∼ p(x).
Intuitively p(z) is the projection of p(x) onto the feature space Z .

When a learning algorithm A produces a learned distribution q(x), we also project it to feature space
using φ. Our goal is to investigate how p(z) differs from q(z), i.e. the generalization behavior of
the learning algorithm restricted to the feature space Z . In the input space X even evaluating the
distance between p(x) and q(x) is difficult, while in feature space Z we can not only decide if q(z) is
different from p(z) but also characterize how they are different. For example, if p(z) is a distribution
over images with red and blue triangles ( , ) and red circles ( ), we can investigate whether q(z)
generalizes to blue circles ( ). We can also investigate the number of colors for circles that must
be in the training data so that q(z) generates circles of all colors. Such questions are important to
characterize the inductive bias of existing generative modeling algorithms.

Related ideas [21] have been previously used to evaluate the distance between p(x) and q(x).
In particular, the FID score [22], the mode score [23] and the Inception score [24] use hidden
features/labels of a pretrained CNN classifier as φ, and measure the performance of generative
modeling algorithms by comparing p(z) and q(z) under this projection. In contrast, because we
want to study the exact difference between p(z) and q(z), we choose φ to be interpretable high level
features inspired by experimental work in cognitive psychology, e.g. numerosity, color, etc.

Using low dimensional projection function φ has an additional benefit. Because Z is low dimensional
and discrete in our synthetic datasets, we are essentially in the infinite data regime. In all of our
experiments, the support of p(z) does not exceed 500, so we accurately approximate p(z) [25] with a
reasonably sized dataset (100k-1M examples in our experiments). The interesting observation is that
even though D is a very accurate approximation of p(z), the learned distribution q(z) is not, so this
simplified setting is sufficient to reveal many interesting inductive biases of the modeling algorithms.

Feature Selection and Evaluation We select features φ that satisfy two requirements: 1) they
are important to human perception and have been studied in cognitive psychology, and 2) they are
easy to evaluate either by reliable algorithms or human judgment. The features studied include
numerosity, shape, color, size, and location of each object. For numerosity and shape we use
independent evaluations by three human evaluators. The other features are easy to evaluate by
automated algorithms. More details about evaluation are presented in the appendix.

Models To ensure that the result is not sensitive to the choice of model architecture and hyper-
parameters, we use two very different model families: GAN (WGAN-GP [26]) and VAE [4]. We
also use different network architectures and hyper-parameter choices, including both convolutional
networks and fully connected networks. We will present the experimental results for WGAN-GP
with convolutional networks in the main body, and results for other architectures in the appendix.
Surprisingly, we find fairly consistent results for these very different models and objectives. Whenever
they differ, we will explicitly mention the differences in the main body.

4 Characterizing Generalization on an Individual Feature

In this section we explore generalization when we project the input space X to a single feature (i.e.,
p(z) is a one-dimensional distribution). We first analyze the learning algorithm’s output q(z) when
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