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Abstract

We give a simple, fast algorithm for hyperparameter optimization inspired by techniques
from the analysis of Boolean functions. We focus on the high-dimensional regime where the
canonical example is training a neural network with a large number of hyperparameters.
The algorithm — an iterative application of compressed sensing techniques for orthogonal
polynomials — requires only uniform sampling of the hyperparameters and is thus easily
parallelizable.

Experiments for training deep neural networks on Cifar-10 show that compared to
state-of-the-art tools (e.g., Hyperband and Spearmint), our algorithm finds significantly
improved solutions, in some cases better than what is attainable by hand-tuning. In terms
of overall running time (i.e., time required to sample various settings of hyperparameters
plus additional computation time), we are at least an order of magnitude faster than
Hyperband and Bayesian Optimization. We also outperform Random Search 8×.

Our method is inspired by provably-efficient algorithms for learning decision trees using
the discrete Fourier transform. We obtain improved sample-complexty bounds for learning
decision trees while matching state-of-the-art bounds on running time (polynomial and
quasipolynomial, respectively).
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1 Introduction

Large scale machine learning and optimization systems usually involve a large number of free
parameters for the user to fix according to their application. A timely example is the training
of deep neural networks for a signal processing application: the ML specialist needs to decide
on an architecture, depth of the network, choice of connectivity per layer (convolutional, fully-
connected, etc.), choice of optimization algorithm and recursively choice of parameters inside
the optimization library itself (learning rate, momentum, etc.).

Given a set of hyperparameters and their potential assignments, the naive practice is to
search through the entire grid of parameter assignments and pick the one that performed the
best, a.k.a. “grid search”. As the number of hyperparameters increases, the number of possible
assignments increases exponentially and a grid search becomes quickly infeasible. It is thus
crucial to find a method for automatic tuning of these parameters.

This auto-tuning, or finding a good setting of these parameters, is now referred to as hy-
perparameter optimization (HPO), or simply automatic machine learning (auto-ML). For con-
tinuous hyperparameters, gradient descent is usually the method of choice [MDA15, LBGR15,
FLF+16]. Discrete parameters, however, such as choice of architecture, number of layers,
connectivity and so forth are significantly more challenging. More formally, let

f : {−1, 1}n 7→ [0, 1]

be a function mapping hyperparameter choices to test error of our model. That is, each
dimension corresponds to a certain hyperparameter (number of layers, connectivity, etc.), and
for simplicity of illustration we encode the choices for each parameter as binary numbers
{−1, 1}. The goal of HPO is to approximate the minimizer x∗ = argminx∈{0,1}n f(x) in the
following setting:

1. Oracle model: evaluation of f for a given choice of hyperparameters is assumed to be
very expensive. Such is the case of training a given architecture of a huge dataset.

2. Parallelism is crucial: testing several model hyperparameters in parallel is entirely pos-
sible in cloud architecture, and dramatically reduces overall optimization time.

3. f is structured.

The third point is very important since clearly HPO is information-theoretically hard and
2n evaluations of the function are necessary in the worst case. Different works have considered
exploiting one or more of the properties above. The approach of Bayesian optimization [SLA12]
addresses the structure of f , and assumes that a useful prior distribution over the structure of
f is known in advance. Multi-armed bandit algorithms [LJD+16], and Random Search [BB12],
exploit computational parallelism very well, but do not exploit any particular structure of f .
These approaches are surveyed in more detail later.

1.1 Our contribution

In this paper we introduce a new spectral approach to hyperparameter optimization. Our main
idea is to make assumptions on the structure of f in the Fourier domain. Specifically we assume
that f can be approximated by a sparse and low degree polynomial in the Fourier basis. This
means intuitively that it can be approximated well by a decision tree.
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The implication of this assumption is that we can obtain a rigorous theoretical guarantee:
approximate minimization of f over the boolean hypercube with function evaluations only
linear in sparsity that can be carried out in parallel. We further give improved heuristics
on this basic construction and show experiments showing our assumptions are validated in
practice for HPO as applied to deep learning over image datasets.

Thus our contributions can be listed as:

• A new spectral method called Harmonica that has provable guarantees: sample-efficient
recovery if the underlying hyperparameter objective is a sparse (noisy) polynomial and
easy to implement on parallel architectures.

• Improved bounds on the sample complexity of learning noisy, size s decision trees over n
variables under the uniform distribution. We observe that the classical sample complexity
bound of nO(log(s/ε)) due to Linial et al. [LMN93] to quadratic in the size of the tree
Õ(s2/ε · log n) while matching the best known quasipolynomial bound in running time.

• We demonstrate significant improvements in accuracy, sample complexity, and running
time for deep neural net training experiments. We compare ourselves to state-of-the-art
solvers from Bayesian optimization, Multi-armed bandit techniques, and Random Search.
Projecting to even higher numbers of hyperparameters, we perform simulations that show
several orders-of-magnitude of speedup versus Bayesian optimization techniques.

1.2 Previous work

The literature on discrete-domain HPO can be roughly divided into two: probabilistic ap-
proaches and decision-theoretic methods. In critical applications, researchers usually use a
grid search over all parameter space, but that becomes quickly prohibitive as the number of
hyperparameter grows. Gradient-based methods such as [MDA15, LBGR15, FLF+16, Ben00]
are applicable only to continuous hyperparameters which we do not consider.

Probabilistic methods and Bayesian optimization. Bayesian optimization (BO) algo-
rithms [BBBK11, SLA12, SSA13, SSZA14, GKX+14, WZH+13, IAFS17] tune hyperparameters
by assuming a prior distribution of the loss function, and then keep updating this prior dis-
tribution based on the new observations. Each new observation is selected according to an
acquisition function, which balances exploration and exploitation such that the new observa-
tion gives us a better result, or helps gain more information about the loss function. The BO
approach is inherently serial and difficult to parallelize, and its theoretical guarantees have
thus far been limited to statistical consistency (convergence in the limit).

Decision-theoretic methods. Perhaps the simplest approach to HPO is random sampling
of different choices of parameters and picking the best amongst the chosen evaluations [BB12].
It is naturally very easy to implement and parallelize. Upon this simple technique, researchers
have tried to allocate different budgets to the different evaluations, depending on their early
performance. Using adaptive resource allocation techniques found in the multi-armed ban-
dit literature, Successive Halving (SH) algorithm was introduced [JT16]. Hyperband further
improves SH by automatically tuning the hyperparameters in SH [LJD+16].
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Learning decision trees. Prior work for learning decision trees (more generally Boolean
functions that are approximated by low-degree polynomials) used the celebrated “low-degree”
algorithm of Linial, Mansour, and Nisan [LMN93]. Their algorithm uses random sampling to
estimate each low-degree Fourier coefficient to high accuracy.

We make use of the approach of Stobbe and Krause [SK12], who showed how to learn
low-degree, sparse Boolean functions using tools from compressed sensing (similar approaches
were taken by Kocaoglu et al. [KSDK14] and Negahban and Shah [NS12]). We observe that
their approach can be extended to learn functions that are both “approximately sparse” (in
the sense that the L1 norm of the coefficients is bounded) and “approximately low-degree”
(in the sense that most of the L2 mass of the Fourier spectrum resides on monomials of
low-degree). This implies the first decision tree learning algorithm with polynomial sample
complexity that handles adversarial noise. In addition, we obtain the optimal dependence on
the error parameter ε.

For the problem of learning exactly k-sparse Boolean functions over n variables, Haviv and
Regev [HR15] have recently shown that O(nk log n) uniformly random samples suffice. Their
result is not algorithmic but does provide an upper bound on the information-theoretic problem
of how many samples are required to learn. The best algorithm in terms of running time for
learning k-sparse Boolean functions is due to [FGKP09], and requires time 2Ω(n/ logn). It is
based on the Blum, Kalai, and Wasserman algorithm for learning parities with noise [BKW03].

Techniques. Our methods are heavily based on known results from the analysis of boolean
functions as well as compressed sensing. The relevant material and literature are given in the
next section.

2 Setup and definitions

The problem of hyperparameter optimization is that of minimizing a discrete, real-valued
function, which we denote by f : {−1, 1}n 7→ [−1, 1] (we can handle arbitrary inputs, binary
is chosen for simplicity of presentation).

In the context of hyperparameter optimization, function evaluation is very expensive, al-
though parallelizable, as it corresponds to training a deep neural net. In contrast, any compu-
tation that does not involve function evaluation is considered less expensive, such as computa-
tions that require time Ω(nd) for “somewhat large” d or are subexponential (we still consider
runtimes that are exponential in n to be costly).

2.1 Basics of Fourier analysis

The reader is referred to [O’D14] for an in depth treatment of Fourier analysis of Boolean
functions. Let f : X 7→ [−1, 1] be a function over domain X ⊆ R

n. Let D a probability
distribution on X . We write g ≡ε f and say that f, g are ε-close if

Ex∼D[(f(x)− g(x))2] ≤ ε.

Definition 1. [Rau10] We say a family of functions ψ1, . . . , ψN (ψi maps X to R) is a Random
Orthonormal Family with respect to D if

ED[ψi(X) · ψj(X)] = δij =

{

1 if i = j

0 otherwise
.
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The expectation is taken with respect to probability distribution D. We say that the family
is K-bounded if supx∈X |ψi(x)| ≤ K for every i. Henceforth we assume K = 1.

An important example of a random orthonormal family is the class of parity functions with
respect to the uniform distribution on {−1, 1}n:

Definition 2. A parity function on some subset of variables S ⊆ [n] is the function χS :
{−1, 1}n 7→ {−1, 1} where χS(x) =

∏

i∈S xi.

It is easy to see that the set of all 2n parity functions {χS}, one for each S ⊆ [n], form a
random orthonormal family with respect to the uniform distribution on {−1, 1}n.

This random orthonormal family is often referred to as the Fourier basis, as it is a complete
orthonormal basis for the class of Boolean functions with respect to the uniform distribution
on {−1, 1}n. More generally, for any f : {−1, 1}n 7→ R, f can be uniquely represented in this
basis as

f(x) =
∑

S⊆[n]

f̂SχS(x)

where
f̂S = 〈f, χS〉 = Ex∈{−1,1}n [f(x)χS(x)]

is the Fourier coefficient corresponding to S where x is drawn uniformly from {−1, 1}n. We
also have Parseval’s identity: E[f2] =

∑

S f̂
2
S .

In this paper, we will work exclusively with the above parity basis. Our results apply
more generally, however, to any orthogonal family of polynomials (and corresponding product
measure on R

n). For example, if we wished to work with continuous hyperparameters, we could
work with families of Hermite orthogonal polynomials with respect to multivariate spherical
Gaussian distributions.

We conclude with a definition of low-degree, approximately sparse (bounded L1 norm)
functions:

Definition 3 (Approximately sparse function). Let {χS} be the parity basis, and let C be a
class of functions mapping {−1, 1} to R. Thus for f ∈ C, f =

∑

S f̂(S)χS . We say that:

• A function f ∈ C is s-sparse if L0(f) ≤ s, ie., f has at most s nonzero entries in its
polynomial expansion.

• f is (ε, d)-concentrated if E[(f −∑

S,|S| ≤ d f̂(S)χS)
2] ≥ 1− ε.

• C is (ε, d, s)-bounded if for every f ∈ C, f is (ε, d)-concentrated and in addition C has
L1 norm bounded by s, that is, for every f ∈ C we have

∑

S |f̂(S)| ≤ s.

It is easy to see that the class of functions with bounded L1 norm is more general than
sparse functions. For example, the Boolean AND function has L1 norm bounded by 1 but is
not sparse.

We also have the following simple fact:

Fact 4. [Man94] Let f be such that L1(f) ≤ s. Then there exists g such that g is s2/ε sparse
and E[(f − g)2] ≤ ε. The function g is constructed by taking all coefficients of magnitude ε/s
or larger in f ’s expansion as a polynomial.
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2.2 Compressed sensing and sparse recovery

In the problem of sparse recovery, a learner attempts to recover a sparse vector x ∈ R
n which

is s sparse, i.e. ‖x‖0 ≤ s, from an observation vector y ∈ Rm that is assumed to equal

y = Ax+ e,

where e is assumed to be zero-mean, usually Gaussian, noise. The seminal work of [CRT06,
Don06] shows how x can be recovered exactly under various conditions on the observation
matrix A ∈ R

m×n and the noise. The usual method for recovering the signal proceeds by solving
a convex optimization problem consisting of `1 minimization as follows (for some parameter
λ > 0):

min
x∈Rn

{

‖x‖1 + λ‖Ax− y‖22
}

. (1)

The above formulation comes in many equivalent forms (e.g., Lasso), where one of the objective
parts may appear as a hard constraint.

For our work, the most relevant extension of traditional sparse recovery is due to Rauhut
[Rau10], who considers the problem of sparse recovery when the measurements are evaluated
according to a random orthonormal family. More concretely, fix x ∈ R

n with s non-zero
entries. For K-bounded random orthonormal family F = {ψ1, . . . , ψN}, and m independent
draws z1, . . . , zm from corresponding distribution D define the m × N matrix A such that
Aij = ψj(z

i). Rauhut gives the following result for recovering sparse vectors x:

Theorem 5 (Sparse Recovery for Random Orthonormal Families, [Rau10] Theorem 4.4).
Given as input matrix A ∈ R

m×N and vector y with yi = Ax + ei for some vector e with
‖e‖2 ≤ η

√
m, mathematical program (1) finds a vector x∗ such that (for constants c1 and c2)

‖x− x∗‖2 ≤ c1
σs(x)1√

s
+ c2η

with probability 1− δ as long as, for sufficiently large constant C,

m ≥ CK2 logK · s log3 s · log2N · log(1/δ).

The term σs(x)1 is equal to min{‖x− z‖1, z is s sparse}. Recent work [Bou14, HR16] has
improved the dependence on the polylog factors in the lower bound for m.

3 Basic Algorithm and Main Theoretical Results

The main component of our spectral algorithm for hyperparameter optimization is given in
Algorithm 1. It is essentially an extension of sparse recovery (basis pursuit or Lasso) to the
orthogonal basis of polynomials in addition to an optimization step. See Figure 1 for an
illustration. We prove Harmonica’s theoretical guarantee, and show how it gives rise to new
theoretical results in learning from the uniform distribution.

In the next section we describe extensions of this basic algorithm to a more practical
algorithm with various heuristics to improve its performance.
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× α
α has entry αS

for all |S| ≤ d

rows corresponds

to xi ∈ {−1, 1}n

columns S ⊆ [n]

for all |S| ≤ d

=f

entry (i) corresponds to

f(xi) =
∑

S
αSψS(xi),

the i-th measurement

entry (i,S)

= ψS(xi)

Figure 1: Compressed sensing over the Fourier domain: Harmonica recovers the Fourier coefficients

of a sparse low degree polynomial
∑

S
αSΨS(xi) from observations f(xi) of randomly chosen points

xi ∈ {−1, 1}n.

Algorithm 1 Harmonica-1

1: Input: oracle for f , number of samples T , sparsity s, degree d, parameter λ.
2: Invoke PSR(f, T, s, d, λ) (Procedure 2) to obtain (g, J), where g is a function defined on

variables specified by index set J ⊆ [n].
3: Set the variables in [n] \ J to arbitrary values, compute a minimizer x? ∈ argmin gi(x).
4: return x?

Procedure 2 Polynomial Sparse Recovery (PSR)

1: Input: oracle for f , number of samples T , sparsity s, degree d, regularization parameter λ
2: Query T random samples: {f(x1), ...., f(xT )}.
3: Solve sparse d-polynomial regression over all polynomials up to degree d

argmin

α∈R(
n
d)







T
∑

i=1





∑

|S| ≤ d

αSψS(xi)− f(xi)





2

+ λ‖α‖1







(2)

4: Let S1, ..., Ss be the indices of the largest coefficients of ~α. Let g be the polynomial

g(x) =
∑

i∈[s]

αSi
ψSi

(x)

5: return g and J = ∪s
i=1Si

Theorem 6 (Noiseless recovery). Let {ψS} be a K-bounded orthonormal polynomial basis for
distribution D. Let f : Rn 7→ R be a (0, d, s)-bounded function as per definition 3 with respect
to the basis ψS. Then Algorithm 1, in time nO(d) and sample complexity T = Õ(K2s · d log n),
returns x? such that

x? ∈ argmin f(x)
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This theorem, and indeed most of the theoretical results of this paper, follow from the
main recovery properties of Procedure 2. Our main technical lemma follows the same outline
of the compressed sensing result due to Stobbe and Krause [SK12] but with a generalization
to functions that are approximately sparse and low-degree:

Lemma 7 (Noisy recovery). Let {ψS} be a K-bounded orthonormal polynomial basis for dis-
tribution D. Let f : Rn 7→ R be a (ε/4, d, s)-bounded as per definition 3 with respect to the
basis ψS. Then Procedure 2 finds a function g ≡ε f in time O(nd) and sample complexity
T = Õ(K2s2/ε · d log n).

In the rest of this section we proceed to prove the main lemma and derive the theorem.
Recall the Chebyshev inequality:

Fact 8 (Multidimensional Chebyshev inequality). Let X be an m dimensional random vector,
with expected value µ = E[X], and covariance matrix V = E[(X − µ)(X − µ)T ].

If V is a positive definite matrix, for any real number δ > 0:

P(
√

(X − µ)TV −1(X − µ) > δ) ≤ m

δ2

Proof of Lemma 7. For ease of notation we assume K = 1. Let f be an (ε/4, s, d)-bounded
function written in the orthonormal basis as

∑

S f̂(S)ψS . We can equivalently write f as
f = h + g, where h is a degree d polynomial that only includes coefficients of magnitude at
least ε/4s and the constant term of the polynomial expansion of f .

Since L1(f) =
∑

S |f̂S | ≤ s, by Fact 4 we have that h is 4s2/ε+ 1 sparse. The function g

is thus the sum of the remaining f̂(S)ψS terms not included in h.
Draw m (to be chosen later) random labeled examples {(z1, y1), . . . , (zm, ym)} and enu-

merate all N = nd basis functions ψS for |S| ≤ d as {ψ1, . . . , ψN}. Form matrix A such that
Aij = ψj(z

i) and consider the problem of recovering 4s2/ε+1 sparse x given Ax+e = y where
x is the vector of coefficients of h, the ith entry of y equals yi, and ei = g(zi).

We will prove that with constant probability over the choicem random examples, ‖e‖2 ≤ √
εm.

Applying Theorem 5 by setting η =
√
ε and observing that σ4s2/ε+1(x)1 = 0, we will recover x′

such that ‖x−x′‖22 ≤ c22ε for some constant c2. As such, for the function f̃ =
∑N

i=1 x
′
iψi we will

have E[‖h− f̃‖2] ≤ c22ε by Parseval’s identity. Note, however, that we may rescale ε by con-
stant factor 1/(2c22) to obtain error ε/2 and only incur an additional constant (multiplicative)
factor in the sample complexity bound.

By the definition of g, we have

‖g‖2 =





∑

S,|S|>d

f̂(S)2 +
∑

R

f̂(R)2



 (3)

where each f̂(R) is of magnitude at most ε/4s. By Fact 4 and Parseval’s identity we have
∑

R f̂(R)
2 ≤ ε/4. Since f is (ε/4, d)-concentrated we have

∑

S,|S|>d f̂(S)
2 ≤ ε/4. Thus, ‖g‖2

is at most ε/2. Therefore, by triangle inequality E[‖f − f̃‖2] ≤ E[‖h− f̃‖2] + E[‖g‖2] ≤ ε.
It remains to bound ‖e‖2. Note that since the examples are chosen independently, the

entries ei = g(zi) are independent random variables. Since g is a linear combination of or-
thonormal monomials (not including the constant term), we have Ez∼D[g(z)] = 0. Here we

7



can apply linearity of variance (the covariance of ψi and ψj is zero for all i 6= j) and calculate
the variance

Var(g(zi)) = (
∑

S,|S|>d

f̂(S)2 +
∑

R

f̂(R)2)

With the same calculation as (3), we know Var(g(zi)) is at most ε/2.
Now consider the covariance matrix V of the vector e which equals E[ee>] (recall every

entry of e has mean 0). Then V is a diagonal matrix (covariance between two independent
samples is zero), and every diagonal entry is at most ε/2. Applying Fact 8 we have

P(‖e‖2 >
√

ε

2
δ) ≤ m

δ2
.

Setting δ =
√
2m, we conclude that P(‖e‖2 >

√
εm) ≤ 1

2 . Hence with probability at least

1/2, we have that ‖e‖2 ≤ √
εm. From Theorem 5, we may choose m = Õ(s2/ε · log nd).

This completes the proof. Note that the probability 1/2 above can be boosted to any constant
probability with a constant factor loss in sample complexity.

Remark: Note that the above proof also holds in the adversarial or agnostic noise setting.
That is, an adversary could add a noise vector v to the labels received by the learner. In this
case, the learner will see label vector y = Ax + e + v. If ‖v‖2 ≤ √

γm, then we will recover
a polynomial with squared-error at most ε + O(γ) via re-scaling ε by a constant factor and
applying the triangle inequality to ‖e+ v‖2.

While this noisy recovery lemma is the basis for our enhanced algorithm in the next section
as well as the learning-theoretic result on learning of decision trees detailed in the next sub-
section, it does not imply recovery of the global optimum. The reason is that noisy recovery
guarantees that we output a hypothesis close to the underlying function, but even a single
noisy point can completely change the optimum.

Nevertheless, we can use our techniques to prove recovery of optimality for functions that
are computed exactly by a sparse, low-degree polynomial.

Proof of Theorem 6. There are at mostN = nd polynomials ψS with |S| ≤ d. Let the enumer-
ation of these polynomials be ψ1, . . . , ψN . Draw m labeled examples {(z1, y1), . . . , (zm, ym)}
independently from D and construct an m × N matrix A with Aij = ψj(z

i). Since f can be
written as an s sparse linear combination of ψ1, . . . , ψN , there exists an s-sparse vector x such
that Ax = y where the ith entry of y is yi. Hence we can apply Theorem 5 to recover x exactly.
These are the s non-zero coefficients of f ’s expansion in terms of {ψS}. Since f is recovered
exactly, its minimizer is found in the optimization step.

3.1 Application: Learning Decision Trees in Quasi-polynomial Time and

Polynomial Sample Complexity

Here we observe that our results imply new bounds for decision-tree learning. For example,
we obtain the first quasi-polynomial time algorithm for learning decision trees with respect
to the uniform distribution on {−1, 1}n with polynomial sample complexity and an optimal
dependence on the error parameter ε:

8



Corollary 9. Let X = {−1, 1}n and let C be the class of all decision trees of size s on n
variables. Then C is learnable with respect to the uniform distribution in time nO(log(s/ε)) and
sample complexity m = Õ(s2/ε · log n). Further, if the labels are corrupted by arbitrary noise
vector v such that ‖v‖2 ≤ √

γm, then the output classifier will have squared-error at most
ε+O(γ).

Proof. As mentioned earlier, the orthonormal polynomial basis for the class of Boolean func-
tions with respect to the uniform distribution on {−1, 1}n is the class of parity functions {χS}
for S ⊆ {−1, 1}n. Further, it is easy to show that for Boolean function f , if E[(h− f)2] ≤ ε
then P[sign(h(x)) 6= f(x)] ≤ ε. The corollary now follows by applying Lemma 7 and two
known structural facts about decision trees: 1) a tree of size s is (ε, log(s/ε))-concentrated and
has L1 norm bounded by s (see e.g., Mansour [Man94]) and 2) by Fact 4, for any function f
with L1 norm bounded by s (i.e., a decision tree of size s), there exists an s2/ε sparse function
g such that E[(f − g)2] ≤ ε. The noise tolerance property follows immediately from the
remark after the proof of Lemma 7.

Comparison with the “Low-Degree” Algorithm. Prior work for learning decision trees
(more generally Boolean functions that are approximated by low-degree polynomials) used the
celebrated “low-degree” algorithm of Linial, Mansour, and Nisan [LMN93]. Their algorithm
uses random sampling to estimate each low-degree Fourier coefficient to high accuracy. In
contrast, the compressed-sensing approach of Stobbe and Krause [SK12] takes advantage of
the incoherence of the design matrix and gives results that seem unattainable from the “low-
degree” algorithm.

For learning noiseless, Boolean decision trees, the low-degree algorithm uses quasipolyno-
mial time and sample complexity Õ(s2/ε2 ·log n) to learn to accuracy ε. It is not clear, however,
how to obtain any noise tolerance from their approach.

For general real-valued decision trees where B is an upper bound on the maximum value at
any leaf of a size s tree, our algorithm will succeed with sample complexity Õ(B2s2/ε · log n)
and be tolerant to noise while the low-degree algorithm will use Õ(B4s2/ε2 · log n) (and will
have no noise tolerance properties). Note the improvement in the dependence on ε (even in
the noiseless setting), which is a consequence of the RIP property of the random orthonormal
family.

4 Harmonica: The Full Algorithm

Rather than applying Algorithm 1 directly, we found that performance is greatly enhanced
by iteratively using Procedure 2 to estimate the most influential hyperparameters and their
optimal values.

In the rest of this section we describe this iterative heuristic, which essentially runs Algo-
rithm 1 for multiple stages. More concretely, we continue to invoke the PSR subroutine until
the search space becomes small enough for us to use a “base” hyperparameter optimizer (in
our case either SH or Random Search).

The space of minimizing assignments to a multivariate polynomial is a highly non-convex
set that may contain many distinct points. As such, we take an average of several of the best
minimizers (of subsets of hyperparameters) during each stage.

In order to describe this formally we need the following definition of a restriction of function:

9



Definition 10 (restriction [O’D14]). Let f ∈ {−1, 1}n 7→ R, J ⊆ [n], and z ∈ {−1, 1}J be
given. We call (J, z) a restriction pair of function f . We denote fJ,z the function over n− |J |
variables given by setting the variables of J to z.

We can now describe our main algorithm (Algorithm 3). Here q is the number of stages
for which we apply the PSR subroutine, and the restriction size t serves as a tie-breaking rule
for the best minimizers (which can be set to 1).

Algorithm 3 Harmonica-q

1: Input: oracle for f , number of samples T , sparsity s, degree d, regularization parameter λ,
number of stages q, restriction size t, base hyperparameter optimizer ALG.

2: for stage i = 1 to q do
3: Invoke PSR(f, T, s, d, λ) (Procedure 2) to obtain (gi, Ji), where gi is a function defined

on variables specified by index set Ji ⊆ [n].
4: Let Mi = {x?1, ..., x?t } = argmin gi(x) be the best t minimizers of gi.
5: Let fi = Ek∈[t][fJi,x?

k
] be the expected restriction of f according to minimizers Mi.

1

6: Set f = fi.
7: end for
8: return Search for the global minimizer of fq using base optimizer ALG

4.1 Algorithm attributes and heuristics

Scalability. If the hidden function if s-sparse, Harmonica can find such a sparse function
using Õ(s log s) samples. If at every stage of Harmonica, the target function can be approx-
imated by an s sparse function, we only need Õ(qs log s) samples where q is the number of
stages. For real world applications such as deep neural network hyperparameter tuning, it
seems (empirically) reasonable to assume that the hidden function is indeed sparse at every
stage (see Section 5).

For Hyperband [LJD+16], SH [JT16] or Random Search, even if the function is s-sparse,
in order to cover the optimal configuration by random sampling, we need Ω(2s) samples.

Optimization time. Harmonica runs the Lasso [Tib96] algorithm after each stage to solve
(2), which is a well studied convex optimization problem and has very fast implementations.
Hyperband and SH are also efficient in terms of running time as a function of the number of
function evaluations, and require sorting or other simple computations. The running time of
Bayesian optimization is cubic in number of function evaluations, which limits applicability for
large number of evaluations / high dimensionality, as we shall see in Section 5.4.

Parallelizability. Harmonica, similar to Hyperband, SH, and Random Search, has straight-
forward parallel implementations. In every stage of those algorithms, we could simply evaluate
the objective functions over randomly chosen points in parallel.

It is hard to run Bayesian optimization algorithm in parallel due to its inherent serial
nature. Previous works explored variants in which multiple points are evaluated at the same

1In order to evaluate fi, we first sample k ∈ [t] to obtain fJi,x
∗

k
, and then evaluate fJi,x

∗

k
.

10



time in parallel [WF16], though speed ups do not grow linearly in the number of machines,
and the batch size is usually limited to a small number.

Feature Extraction. Harmonica is able to extract important features with weights in each
stages, which automatically sorts all the features according to their importance. See Section
A.2.

5 Experiments with training deep networks

We compare Harmonica2 with Spearmint3 [SLA12], Hyperband, SH4 and Random Search.
Both Spearmint and Hyperband are state-of-the-art algorithms, and it is observed that Random
Search 2x (Random Search with doubled function evaluation resources) is a very competitive
benchmark that beats many algorithms5.

Our first experiment is over training residual network on Cifar-10 dataset6. We included 39
binary hyperparameters, including initialization, optimization method, learning rate schedule,
momentum rate, etc. Table 2 (Section A.1) details the hyperparameters considered. We also
include 21 dummy variables to make the task more challenging. Notice that Hyperband, SH,
and Random Search are agnostic to the dummy variables in the sense that they just set the
value of dummy variables randomly, therefore select essentially the same set of configurations
with or without the dummy variables. Only Harmonica and Spearmint are sensitive to the
dummy variables as they try to learn the high dimensional function space. To make a fair
comparison, we run Spearmint without any dummy variables.

As most hyperparameters have a consistent effect as the network becomes deeper, a com-
mon hand-tuning strategy is “tune on small network, then apply the knowledge to big network”
(See discussion in Section A.3). Harmonica can also exploit this strategy as it selects impor-
tant features stage-by-stage. More specifically, during the feature selection stages, we run
Harmonica for tuning an 8 layer neural network with 30 training epochs. At each stage, we
take 300 samples to extract 5 important features, and set restriction size t = 4 (see Procedure
2). After that, we fix all the important features, and run the SH or Random Search as our base
algorithm on the big 56 layer neural network for training the whole 160 epochs7. To clarify,
“stage” means the stages of the hyperparameter algorithms, while “epoch” means the epochs
for training the neural network.

5.1 Performance

We tried three versions of Harmonica for this experiment, Harmonica with 1 stage (Harmonica-
1), 2 stages (Harmonica-2) and 3 stages (Harmonica-3). All of them use SH as the base
algorithm. The top 10 test error results and running times of the different algorithms are
depicted in Figure 2. SH based algorithms may return fewer than 10 results. For more runs
of variants of Harmonica and its resulting test error, see Figure 3 (the results are similar to
Figure 2).

2A python implementation of Harmonica can be found at https://github.com/callowbird/Harmonica
3https://github.com/HIPS/Spearmint.git
4We implemented a parallel version of Hyperband and SH in Lua.
5E.g., see [Rec16a, Rec16b].
6https://github.com/facebook/fb.resnet.torch
7Other algorithms like Spearmint, Hyperband, etc. can be used as the base algorithms as well.
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A Experimental details

A.1 Options

Table 2: 60 options used in Section 5

Option Name Description

01. Weight initialization Use standard initializations or other initializations?

02. Weight initialization (Detail 1) Xavier Glorot [GB10], Kaiming [HZRS15], 1/n, or 1/n2?

03. Optimization method SGD or ADAM? [KB14]

04. Initial learning rate ≥ 0.01 or < 0.01?

05. Initial learning rate (Detail 1) ≥ 0.1, < 0.1, ≥ 0.001, or < 0.001?

06. Initial learning rate (Detail 2) 0.3, 0.1, 0.03, 0.01, 0.003, 0.001, 0.0003, or 0.0001?

07. Learning rate drop Do we need to decrease learning rate as we train? Yes or
No?

08. Learning rate first drop time If drop learning rate, when is the first time to drop by 1/10?
Epoch 40 or Epoch 60?

09. Learning rate second drop time If drop learning rate, when is the second time to drop by
1/100? Epoch 80 or Epoch 100?

10. Use momentum [SMDH13] Yes or No?

11. Momentum rate If use momentum, rate is 0.9 or 0.99?

12. Initial residual link weight What is the initial residual link weight? All constant 1 or a
random number in [0, 1]?

13. Tune residual link weight Do we want to use back propagation to tune the weight of
residual links? Yes or No?

14. Tune time of residual link
weight

When do we start to tune residual link weight? At the first
epoch or epoch 10?

15. Resblock first activation Do we want to add activation layer after the first convolu-
tion? Yes or No?

16. Resblock second activation Do we want to add activation layer after the second convo-
lution? Yes or No?

17. Resblock third activation Do we want to add activation layer after adding the residual
link? Yes or No?

18. Convolution bias Do we want to have bias term in convolutional layers? Yes
or No?

19. Activation What kind of activations do we use? ReLU or others?

20. Activation (Detail 1) ReLU, ReLU, Sigmoid, or Tanh?

21. Use dropout [SHK+14] Yes or No?

22. Dropout rate If use dropout, rate is high or low?

23. Dropout rate (Detail 1) If use dropout, the rate is 0.3, 0.2, 0.1, or 0.05?

24. Batch norm [IS15] Do we use batch norm? Yes or No?

25. Batch norm tuning If we use batch norm, do we tune the parameters in the
batch norm layers? Yes or No?

26. Resnet shortcut type What kind of resnet shortcut type do we use? Identity or
others?
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27. Resnet shortcut type (Detail 1) Identity, Identity, Type B or Type C?

28. Weight decay Do we use weight decay during the training? Yes or No?

29. Weight decay parameter If use weight decay, what is the parameter? 1e−3 or 1e−4?

30. Batch Size What is the batch size we should use? Big or Small?

31. Batch Size (Detail 1) 256, 128, 64, or 32?

32. Optnet An option specific to the code9. Yes or No?

33. Share gradInput An option specific to the code. Yes or No?

34. Backend What kind of backend shall we use? cudnn or cunn?

35. cudnn running state If use cudnn, shall we use fastest of other states?

36. cudnn running state (Detail 1) Fastest, Fastest, default, deterministic

37. nthreads How many threads shall we use? Many or few?

38. nthreads (Detail 1) 8, 4, 2, or 1?

39-60. Dummy variables Just dummy variables, no effect at all.

See Table 2 for the specific hyperparameter options that we use in Section 5. For those variables
with k options (k > 2), we use log k binary variables under the same name to represent them.
For example, we have two variables (01, 02) and their binary representation to denote four
kinds of possible initializations: Xavier Glorot [GB10], Kaiming [HZRS15], 1/n, or 1/n2.

A.2 Importance features

We show the selected important features and their weights during the first 3 stages in Table
3, where each feature is a monomial of variables with degree at most 3. We do not include the
4th stage because in that stage there are no features with nonzero weights.

Smart choices on important options. Based on Table 3, Harmonica will fix the follow-
ing variables (sorted according to their importance): Batch Norm (Yes), Activation (ReLU),
Initial learning rate ([0.001, 0.1]), Optimization method (Adam), Use momentum (Yes), Res-
block first activation (Yes), Resblcok third activation (No), Weight decay (No if initial learning
rate is comparatively small and Yes otherwise), Batch norm tuning (Yes). Most of these choices
match what people are doing in practice.

A metric for the importance of variables. The features that Harmonica finds can serve
as a metric for measuring the importance of different variables. For example, Batch Norm turns
out to be the most significant variable, and ReLU is second important. By contrast, Dropout,
when Batch Norm is presented, does not have significant contributions. This actually matches
with the observations in [IS15].

No dummy/irrelevant variables selected. Although there are 21/60 dummy variables,
we never select any of them. Moreover, the irrelevant variables like cudnn, backend, nthreads,
which do not affect the test error, were not selected.

A.3 Generalizing from small networks to big networks

In our experiments, Harmonica first runs on a small network to extract important features and
then uses these features to do fine tuning on a big network. Since Harmonica finds significantly

9https://github.com/facebook/fb.resnet.torch
10This is an interesting feature. In the code repository that we use, optnet, shared gradInput are two special

options of the code and cannot be set true at the same time, otherwise the training becomes unpredictable.
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Table 3: Important features

Stage Feature Name Weights

1-1 24. Batch norm 8.05

1-2 19. Activation 3.47

1-3 04. Initial learning rate * 05. Initial learning rate (Detail 1) 3.12

1-4 19. Activation * 24. Batch norm -2.55

1-5 04. Initial learning rate -2.34

1-6 28. Weight decay -1.90

1-7 24. Batch norm * 28. Weight decay 1.79

1-8 34. Optnet * 35. Share gradInput * 52. Dummy 10 1.54

2-1 03. Optimization method -4.22

2-2 03. Optimization method * 10. Use momentum -3.02

2-3 15. Resblock first activation 2.80

2-4 10. Use momentum 2.19

2-5 15. Resblock first activation * 17. Resblock third activation 1.68

2-6 01. Good initialization -1.26

2-7 01. Good initialization * 10. Use momentum -1.12

2-8 01. Good initialization * 03. Optimization method 0.67

3-1 29. Weight decay parameter -0.49

3-2 28. Weight decay -0.26

3-3 06. Initial learning rate (Detail 3) * 28. Weight decay 0.23

3-4 25. Batch norm tuning 0.21

3-5 28. Weight decay * 29. Weight decay parameter 0.20

better solutions, it is natural to ask whether other algorithms can also exploit this strategy to
improve performance.

Unfortunately, it seems that all the other algorithms do not naturally support feature ex-
traction from a small network. For Bayesian Optimization techniques, small networks and large
networks have different optimization spaces. Therefore without some modification, Spearmint
cannot use information from the small network to update the prior distribution for the large
network.

Random-search-based techniques are able to find configurations with low test error on the
small network, which might be good candidates for the large network. However, based on our
simulation, good configurations of hyperparameters from random search do not generalize from
small networks to large networks. This is in contrast to important features in our (Fourier)
space, which do seem to generalize.

To test the latter observation using Cifar-10 dataset, we first spent 7 GPU days on 8 layer
network to find top 10 configurations among 300 random selected configurations. Then we
apply these 10 configurations, as well as 90 locally perturbed configurations (each of them
is obtained by switching one random option from one top-10 configuration), so in total 100
“promising” configurations, to the large 56 layer network. This simulation takes 27 GPU
days, but the best test error we obtained is only 11.1%, even worse than purely random search.
Since Hyperband is essentially a fast version of Random Search, it also does not support feature
extraction.
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Hence, being able to extract important features from small networks seems empirically to
be a unique feature of Harmonica.
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