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Abstract
We propose a bio-inspired approach named Tem-
poral Belief Memory (TBM) for handling missing
data with recurrent neural networks (RNNs). When
modeling irregularly observed temporal sequences,
conventional RNNs generally ignore the real-time
intervals between consecutive observations. TBM
is a missing value imputation method that consid-
ers the time continuity and captures latent missing
patterns based on irregular real time intervals of the
inputs. We evaluate our TBM approach with real-
world electronic health records (EHRs) consisting
of 52,919 visits and 4,224,567 events on a task of
early prediction of septic shock. We compare TBM
against multiple baselines including both domain
experts’ rules and the state-of-the-art missing data
handling approach using both RNN and long short-
term memory. The experimental results show that
TBM outperforms all the competitive baseline ap-
proaches for the septic shock early prediction task.

1 Introduction
Multivariate time series data are ubiquitous in real-world dy-
namic systems such as health care and distributed sensor net-
works. In many of these systems, measurements are com-
monly acquired at irregular intervals. For example, many
health care systems record large amounts of time series data
in electronic health records (EHRs) for each patient’s visit;
during a patient’s visit, the body temperatures are often mea-
sured a few times a day while the white blood cells are only
measured every other day. As a result of merging such ir-
regular data, real-world multivariate time series data is often
plagued by missing values.

Generally speaking, the mechanisms of missing data can
be divided into three categories: missing completely at ran-
dom (MCAR), missing at random (MAR), and missing not
at random (MNAR) [Rubin and Little, 1987]. In the domain
of EHRs, for example, MCAR refers to missingness that is
independent of all observed and unobserved values; one such
example is when equipment failed to collect a patient’s data.
MAR refers to missingness that is independent of unobserved
values but depends on the observed values: for example, pa-
tients with very good vital signs may not need to undergo

certain lab tests. Finally, MNAR refers to missingness that
depends on both observed values and unmeasured variables:
for instance, a depressed patient might refuse a depression
screening.

Ideally, different approaches should be applied depend-
ing on the missing mechanisms. For example, if the data is
MCAR and the missing rate is low, we can delete the cases
with missing values; if the missing rate is high, we might im-
pute missing values with the mean. However, as many real-
world datasets often have all three categories of missingness,
various missing data approaches have been used, and some
common approaches include forward-filling, hot-deck, EM
imputation [Garcı́a-Laencina et al., 2015], resampling [Cis-
mondi et al., 2013], multiple imputation [Galimard et al.,
2016] and so on. More recently, Lipton et al. showed us-
ing missing indicators (MI) [Rubin and Little, 1987] to be
highly effective for handling temporal missing data [Lipton
et al., 2016].

In this paper, we propose a bio-inspired imputation
method, temporal belief memory (TBM), that considers the
time continuity and captures latent missing patterns based on
irregular real time intervals of inputs to handle missing data.
More specifically, TBM computes a belief of the last obser-
vation over time for each feature and imputes a missing value
based on that individual belief in both forward and backward
directions. We evaluate the proposed TBM method and com-
pare it with four competitive missing data handling methods
– mean-substitution, forward-filling, expert knowledge based
imputation rules – and the recent effective approach, miss-
ing indicator (MI) [Lipton et al., 2016]. These missing data
handling methods are compared on two types of state-of-the-
art classifiers: RNNs and long short-term memory (LSTM)
[Hochreiter and Schmidhuber, 1997]. Our empirical results
showed TBM can effectively handle multivariate time series
data with a high rate of missing values. It outperformed
not only the two baseline methods (mean-substitution and
forward-filling) but also the domain experts’ rules and MI.
TBM and MI tackle missing data from two different perspec-
tives, since the best performance is obtained when we com-
bine the two approaches.

Recurrent neural networks (RNNs), such as LSTM and
gated recurrent unit (GRU) [Cho et al., 2014], have been
shown to achieve the state-of-the-art results in many real-
word applications with multivariate time series data through



deep hierarchical feature construction. Moreover, they can
capture long-range dependencies in time series data in an ef-
fective manner. RNNs for missing data have been studied
in earlier works [Bengio and Gingras, 1995], and applied
for speech recognition and blood-glucose prediction [Parveen
and Green, 2004; Tresp and Briegel, 1997]. Recently re-
searchers tried to handle missingness in RNNs by concatenat-
ing missing entries, or incorporating a time based decay func-
tion, or synchronizing different sampling frequencies [Lip-
ton et al., 2016; Che et al., 2016; Neil et al., 2016]. To
our knowledge, however, no prior work has addressed the
power of TBM, which can systematically model missing pat-
terns in both forward and backward directions, with RNNs
for sequence-labeling tasks.

Here, our task is early prediction of septic shock. Sepsis
is a life-threatening organ dysfunction caused by a deregu-
lated host response to infection [Singer et al., 2016]. As a
leading cause of hospital death in the United States, sepsis
affects nearly 30 million episodes and 6 million deaths per
year worldwide [Reinhart et al., 2017]. From 2005 to 2014
Septic shock, the most severe complication of sepsis, inci-
dence increased from 6.7 to 19.3 per 1,000 hospitalizations,
while mortality decreased from 48.3% to 39.3% [Kadri et al.,
2017]. Prior studies have indicated that early diagnosis and
treatment of septic shock can prevent about 80% of sepsis
deaths. On the contrary, over the first 6 hours after the on-
set of recurrent or persistent hypotension, every hour delay
in antibiotic treatment leads to a 7.6% decrease in survival of
septic patients [Kumar et al., 2006].

One major challenge associated with early prediction of
sepsis/septic shock is its subtle but fast progression at early
stages with lack of information. Sepsis has a wide range
of potential symptoms, and its common indicators such as
infection, fast heart rate, high/low body temperature, and
low blood pressure [Polat et al., 2017] are highly likely to
progress to other disease. Because of such delicate progres-
sions, variables in the before-shock stage may either be mea-
sured infrequently or not measured at all. In result, the dura-
tion between two clinical events in EHRs can be long and the
missing rate can be very high. For example, the EHRs used
in this work were taken from large typical US hospitals, and
on average more than 80% of data are missing and several
variables’ missing rates are above 99.9%. Thus, missing data
handling can be a key factor in this early prediction task.

2 Related Work
2.1 The Hodgkin-Huxley Model
Our TBM approach was originally inspired by a biologi-
cal neural model proposed by [Hodgkin and Huxley, 1952],
commonly referred to as the Hodgkin-Huxley model. The
Hodgkin-Huxley model describes the electro-chemical infor-
mation transmission of natural neurons with electrical cir-
cuits. It has been shown to realistically model biological neu-
rons, and consistently inspired the advance of artificial neural
networks, including deep learning.

Despite the great success of deep learning, the existing ar-
tificial neural networks still cannot match the human brain
on many tasks. Therefore, some recent research on artificial

neural networks returns to the biological roots of neurons and
looks at how our brains function. Among them, spiking neu-
ral networks (SNNs) have gained increasing attention. SNNs
can be seen as time dependent neural networks inspired by
the Hodgkin-Huxley model and other bio-neuron models, and
are often considered as the third generation of computational
neural networks [Maass, 1997]. Compared with conventional
artificial neural networks, SNNs take advantage of the precise
timing of spikes generated by neurons and thus have greater
computational power [Gerstner and Kistler, 2002]. Indeed,
a probabilistic SNN outperformed deep networks for breast
cancer prediction [Hsieh and Tang, 2013].

Although this work has a common ground with SNN in that
the neural networks embrace a time concept to process inputs,
we focus on the decaying mechanism on how bio-neurons
handle missing signals, while most SNNs have concentrated
on the spiking mechanism on how bio-neurons fire.

2.2 Missing Data Handling in RNNs
A recurrent neural network (RNN) is a type of deep neural
network, designed to learn temporal patterns in sequential
data. Although RNNs are theoretically able to find long-term
dependencies underlying sequential data, classical RNNs of-
ten do not effectively capture them due to the vanishing and
exploding gradient problem [Graves, 2013]. As variants of
RNNs, LSTM [Hochreiter and Schmidhuber, 1997] and GRU
[Cho et al., 2014] overcome these issues by incorporating
multiple gating units into an RNN structure. A gating mecha-
nism allows for explicit memory delete and update, and con-
trols the flow of information in hidden units.

As frontier work for missing data handling for RNNs,
[Bengio and Gingras, 1995] proposed an RNN structure for
both missing inputs and asynchronous data that randomly ini-
tializes missing values and optimizes the filled values through
backpropagation. In [Tresp and Briegel, 1997], they demon-
strated a modified RNN for missing data handling, com-
bined with a linear error model trained by an expectation-
maximization technique. The experimental results show that
their method improves performance in the glucose/insulin
metabolism prediction task with respect to both conventional
RNNs and various linear models.

Recently, [Lipton et al., 2016] showed the effectiveness of
missing indicators (MI) with LSTM for the 128 phenotype
prediction task using an EHR dataset. In their work, they gave
an insight that LSTM is implicitly able to impute missing val-
ues based on its memory. About the same period, Phased
LSTM [Neil et al., 2016] extends an LSTM unit by adding
a time gate to align asynchronous streams, which allows the
feature learning only when the time gate is open. On the other
hand, [Kim et al., 2017] incorporated a forward-filling oper-
ation for missing data into RNN and LSTM, and tested it to
a clinical variable prediction task. While all these proceeding
approaches show their own achievements, TBM addresses the
missing data problem in terms of an observation’s reliable pe-
riod based on the input timing.

Closely related to this work, GRU-D [Che et al., 2016] im-
putes missing values using a modified GRU, regulated by a
temporal decay function with trainable weights. On a wide
range of tasks, the authors showed that GRU-D often demon-



strates performance comparable to MI. In their work, they
introduce an input/ hidden state decay function, and impute
missing values with the input decay and update the previous
hidden state with the hidden state decay. Our TBM differs
from GRU-D in terms of four aspects: 1) when an input is
observed, GRU-D imputes missing values in a forward direc-
tion, while TBM bidirectionally updates the imputed values
within a reliable time window; 2) GRU-D updates the hidden
state with the trained decay rate, while TBM only uses errors
backpropagated by RNN models to update its parameters and
does not modify an RNN structure; 3) GRU-D’s trainable pa-
rameters are weight matrices, while TBM’s is time; finally, 4)
MI [Lipton et al., 2016] is incorporated into GRU-D (the up-
date/reset gates and the hidden state candidate), while in this
work MI is not originally incorporated into TBM but they
can be combined. In fact, we explored the effectiveness of
MI only, TBM only and combining TBM and MI.

3 Methods
In this section, we describe how TBM is derived from the
Hodgkin-Huxley model and how TBM’s model parameters
can be learned during RNN training.

3.1 Bio-inspired Missing Data Handling
The Hodgkin-Huxley model explains how to propagate
electro-chemical signals through bio-neurons, using the volt-
age equation defined as:

V (t) =

{
I ∗R(1− e−t/(R∗C)) I > 0
v ∗ e−t/(R∗C) I = 0

(1)

where t is the time interval between the current time and the
last observed time, V is a voltage, v is the last voltage when
the input ceases, I is an input current, R is resistance, and
C is capacity. As shown in Equation (1), while input signals
continuously come into the pre-synapse of neuron within a
specific time interval (I > 0), the neuron accumulates the
voltage into its membrane, and if the voltage goes beyond
a threshold, the neuron fires and propagates the signal to
other neurons. This process is explained by the accumula-
tion function (Equation 1, Top). When the input signal stops
to come into the pre-synapse (I = 0), the voltage gradually
decreases over time, and if it goes below the threshold, the
signal propagation stops, which is performed by the decay
function (Equation 1, Bottom). It should be noted that the ac-
cumulating/decaying gradients of voltage depend on R ∗ C.
AsR∗C increases, the voltage changes less rapidly; asR∗C
decreases, the voltage changes more rapidly.

For R ∗ C, there are two notable properties. First, when
the signal ceases (I = 0), if the neuron has been already ac-
tivated, the voltage is still valid at least within a specific time
window. Second, since each neuron has its own resistance R
and capacity C, each neuron has its own accumulating and
decaying rate for voltage. That is, each neuron has its own
time-based memory mechanism: how fast it accepts or for-
gets input signals.

Unlike continuous and frequent signals processed by bio-
neurons, real-world multivariate time series data such as
EHRs are characterized by discrete and sparse data. There-
fore, to apply the Hodgkin-Huxley model to our data, we need

to reformulate the voltage equation. The accumulation func-
tion (Equation 1, Top) models bio-neurons’ continuous be-
haviors toward input and thus better suits for high frequency
data such as audio or video. The decay function (Equation
1, Bottom) is designed to model when there is no input, how
the voltage V gradually decreases over time. Similarly, for
EHRs, we can treat each observation as the initial voltage and
model how our confidence on its value gradually decreases
over time. Next, we describe how to combine this decay func-
tion mechanism with RNNs to address the data missingness.

3.2 Temporal Belief Memory
Figure 1 shows the architecture of a temporal belief mem-
ory (TBM), whose output connects to the input of LSTM. A
TBM is a memory module that consists of two gating units
(a missing gate m and a belief gate b), which collaboratively
enables imputation of missing values based on beliefs of ob-
servations over time. The missing gate m indicates whether
a value is missing (set to 1) or present (set to 0), and the be-
lief gate b decides whether the last observation carries over to
the imputed value x̃ based on the temporal reliability of the
last observation. When an input is observed (m = 0), the
observed value directly passes to the input of LSTM and up-
dates the last observation, xl, with the current value. When
an input is missing (m = 1), the belief gate b computes the
belief of xl based on the time interval t between the current
time and the last observed time. If the belief is greater than
a threshold, it imputes the missing value with xl; otherwise,
it sets the missing value to xm, which is the mean value of
observations for each feature.

Once TBM imputes the missing values, LSTM is trained
utilizing inputs with imputed values. The LSTM units are
described as

it = σi(xtWxi + ht−1Whi + bi)
ft = σf (xtWxf + ht−1Whf + bf )
c̃t = tanh(xtWxc + ht−1Whc + bc)
ct = ft � ct−1 + it � c̃
ot = σo(xtWxo + ht−1Who + bo)
ht = ot � tanh(ct)

(2)

where W is a weight matrix, b is a bias, σ is a sigmoid acti-
vation function, tanh is a hyperbolic tangent function, and �
denotes an element-wise vector product. In these equations,
it, ft, and ot indicate the input, forget, and output gate at time
t, while xt, c̃t, ct, and ht denote the input, memory cell state
candidate, memory cell state, and memory cell output at time
t, respectively. Although an LSTM is given as example in this
section, TBM is scalable to variants of RNNs such as simple
recurrent networks and GRUs.

Figure 1: Temporal Belief Memory with LSTM.



Figure 2: Belief propagation modes: (a) TBM.25: 25% of back-
ward and 75% of forward belief interval, (b) TBM.50: equal weights
of backward and forward belief interval, and (c) TBM.75: 75% of
backward and 25% of forward belief interval.

Belief Gate
As described above, the decay function: V (t) = v∗e−t/(R∗C)

(Equation 1, Bottom) can play a pivotal role to impute miss-
ing values. To reformulate it, we reinterpret a voltage V at
time t as a temporal belief of an input value at current time t
and then impute missing values based on the current belief.

First, we set the v in the decay function to be 1, which
means whenever an input is observed, our belief on its value
is 1; R ∗ C is combined into one parameter τ , which is con-
ceptually a reliable-time-window variable that indicates how
long we can trust the last observation when the current value
is not observed. t is mapped to δt, the time interval between
the last observation and the current time t. Thus we have a
rather simple belief function at time t referred to as b

′

t:

b
′

t = e−δt/τ (3)

which models that the belief or the confidence of the last
value gradually decreases over time. On the other hand, ob-
servations in EHRs are often reliable for a certain period in
bidirectional ways. For example, if the current heart rate is
100, it is likely to be 100 a few minutes prior as well as a few
minutes later. To incorporate the bidirectional nature of ob-
servations, we introduce a new parameter β into the equation
above and result a new definition b′′t:

b
′′

t = e(−β∗|δt|)/τ (4)

where β is a hyper-parameter that controls a shift of the time
window τ and the absolute value of δt is the time interval
between the last observed time and the current time. Note
that backward belief propagation can be implemented by mir-
roring the forward belief and the use of the absolute value
of δt would support both the backward and forward cases.
The lower part of Figure 2 shows the impact of different βs
on the belief functions. Here based on different combina-
tions, we have three settings of TBM: (a) TBM.25: 25% of
backward and 75% of forward belief interval, (b) TBM.50:
equal weights of backward and forward belief interval, and
(c) TBM.75: 25% of backward and 75% of forward belief in-
terval. Finally, we apply the unit step function with threshold
h on b

′′

t to get the belief gate, bt = θh(e
(−β∗|δt|)/τ ) where if

b
′′

t in Equation 4 is greater than h, bt = 1; otherwise bt = 0.

Imputation
For a given time t, TBM imputes missing values using the
missing gate mt and the belief gate bt. We denote an imputed

value at time t with x̃t, which is defined as

x̃t = (1−mt)xt +mt{btxl + (1− bt)xm} (5)

where xt is a current value, xl is a last value, and xm is a
mean value for a feature. When a current value is observed
(mt = 0), xt takes the current input xt, while when a current
value is missing (mt = 1), xt takes the last value only if it is
reliable (the output of belief gate is 1: bt = 1). Otherwise, it
takes the mean value for the corresponding feature.

Note that by using the unit step function to transform b
′′

t
to bt, the imputed values will not converge to the mean value
within the reliable-time-window, and the variance of the im-
puted ones will be close to the original values. By contrast,
the mean substitution or b′′t without the unit step function
often abnormally creates average data points and decreases
the variation of the imputed data. This decrease in individual
variables is proportional to the number of missing data, and
may considerably distort the correlations of variables when
the missing rate is high [Cohen and Cohen, 1975].

4 Experiment
4.1 Data
Our dataset constitutes anonymized clinical multivariate time
series data, extracted from the EHR system at Christiana
Care Health System, Delaware from July, 2013 to December,
2015. Each visit/episode consists of multiple temporal events
such as medical readings and interventions. In total, there
are 119,857 patients, 210,289 visits, and 10,412,729 medical
events. Along with time stamps, identifiers, locations, and
description, there are three categories of main attributes as
follows:

• Vital signs: systolic blood pressure, mean arterial pres-
sure, temperature, heart rate, respiratory rate, etc.
• Lab results: white blood cell count, Bands, BUN, pro-

calcitonin, platelet, creatinine, bilirubin, C-reactive pro-
tein, lactate, sedimentation rate, etc.
• Intervention: oxygen source, change of oxygen source,

FiO2, drug administration, intravenous therapy, etc.

Target Population and Labeling
The study population are patients with Suspected infection
which was identified by the presence of any type of antibiotic,
antiviral, or antifungal administration, or a positive test result
of Point of Care Rapid, and it consists of 52,919 visits and
4,224,567 medical events. Note that the study population, the
aforementioned rules for identifying suspected infection, and
the septic shock labeling in next paragraph were determined
by two leading clinicians with extensive experience on this
subject from Mayo Clinic and Cristina Care Health System.

Supervised models depend heavily on the accurate label of
the training dataset. However, acquiring the true label (i.e.,
septic shock and non septic shock) can be challenging. Al-
though diagnosis codes, such as International Classification
of Diseases, Ninth Revision (ICD-9), are widely used for clin-
ical labeling, solely relying on ICD-9 can be problematic as
it has been proven to have limited reliability due to the fact
that its coding practice is used mainly for administrative and



Feature Missing rate Feature Missing rate

Procalcitonin 0.9998 FiO2 0.8046
CReactiveProtein 0.9994 MAP 0.7735
SedRate 0.9992 DistolicBP 0.7214
Bands 0.9892 SystolicBP 0.7204
BiliRubin 0.9793 PulseOx 0.6369
Lactate 0.9723 RespiratoryRate 0.6261
WBC 0.9347 HeartRate 0.6064
Platelet 0.9341 OxygenSource 0.1267
BUN 0.9332 ——————— ———
Creatinine 0.9331 Infection 0.9438
ChangeOxygenSrc. 0.9137 Inflammation 0.6964
Temperature 0.8125 OrganFailure 0.7661

Mean 0.8184

Table 1: Missing rates of 23 features from Cristiana Health Care
System EHR, of which every instance and every feature contains at
least one missing value. The first 20 features are clinical readings,
and the last three features are the early stages of sepsis.

billing purpose. Indeed, it has been widely argued that ICD-
9 codes cannot be used for establishing reliable gold stan-
dards for various clinical conditions [Ho et al., 2014]. More
importantly, ICD-9 cannot tell when septic shock occurs at
event level, which is essential for our task. On the basis of
the Third International Consensus Definitions for Sepsis and
Septic Shock [Singer et al., 2016], our domain experts identi-
fied septic shock as having received vasopressor(s) or having
had persistent hypotension (i.e., systolic blood pressure less
than 90 mmHg or mean arterial pressure less than 65 mmHg
for more than 1 hour) and enabled to diagnose septic shock at
event level.

When applying both ICD-9 and our clinical rules, we
identified 1,869 shock positive visits and 23,901 negative
visits. Given the imbalanced ratio of positive and negative
shock visits, we further conducted a stratified random
sampling on shock negative visits while keeping the same
underlying distribution of age, gender, ethnicity, length of
stay and the number of records in both positive and negative
visits. As a result, the final dataset has 3,738 visits (1,869
positives and 1,869 negatives) and 145,421 events.

Missing Data Analysis
Each visit consists of irregular multivariate time series events
with missing values and missing attributes, because different
attributes are measured at different events. For example,
vital signs are measured every 8 hours while lab values are
measured only every 24 hours. Hence there may not be
available readings for lab results when a new event is created
for vital signs. Table 1 shows the missing rates of 23 features
in our final dataset. On average, the missing rate is 81.84%.

Experiment Setup
To evaluate the proposed TBM framework, we conducted a
series of experiments to test its effectiveness for early sep-
tic shock prediction using two types of classifiers: RNN and
LSTM. For each classifier, we explored three TBM imputa-
tion modes: TBM.25, TBM.50, and TBM.75, described in
Figure 2, and compared these against two widely used base-
line methods: Mean and Forward, and the rules suggested by

domain experts, Expert.
• Mean: fills all the missing values with the mean value

for the corresponding feature, which is zero in our case
since the data is standardized.
• Forward: fills the missing values with the last observa-

tion until the next value is observed.
• Expert: is defined by the domain experts; it fills the

missing values with the last value within the fixed length
of forward time window (8 hours for vital signs and 24
hours for lab tests), and fills the remaining ones with the
mean value for the corresponding feature.

Additionally, our TBM modes are also compared against and
with missing indicator (MI) given its effectiveness [Lipton et
al., 2016]. When applying MI, we need to decide how to
fill-in the missing values. In [Lipton et al., 2016], they used
MI with zero-filling, forward-filling, and hand-engineered-
filling, respectively. In our comparison, we combined MI
with Mean, Forward, and Expert, respectively. Also, we ex-
plored combining the three TBMs with MI to see whether
combining them together would further improve our results.

To summarize, we used two classifiers: RNN and LSTM to
compare the following twelve methods from four categories:
the Base (Mean, Forward, Expert), the Base-MI (Mean+MI,
Forward+MI, Expert+MI), the TBMs (TBM.25, TBM.50,
TBM.75) and the TBMs combined with MI (TBM.25-MI,
TBM.50-MI, TBM.75-MI). For both RNN and LSTM, we
use one hidden layer with 30 hidden neurons and 32 maxi-
mum sequence length. We use the Adam optimizer [Kingma
and Ba, 2015] with the batch size 30, and adopt early stopping
with 7 patience after minimum 10 epochs.

Our evaluation metrics include accuracy, recall (sensitiv-
ity), precision (positive predictive value (PPV)), F1 score, and
area under the ROC (receiver operator characteristic) curve
(AUC). Accuracy, F1-score and AUC are widely used to
measure the prediction performance for machine learning ap-
proaches. In the realm of medical science, researchers com-
monly refer to sensitivity (recall) and PPV for the annotation
performance. Therefore, we include the metrics for both ma-
chine learning and medical science domains. In the learning
process, we split data into 80% for training, 10% for valida-
tion, and 10% for test, and conduct 5-fold cross validation.

4.2 Results
Three-hour-before & overall shock prediction
Table 2 shows predictive performance results. The first col-
umn is the classifier, the second column is the missing data
handling method, columns 3 to 7 present our evaluation met-
rics for the three-hour-before shock prediction, and the last
column presents the AUC score for the overall shock predic-
tion (i.e., 0-24 hour-before shock prediction).

For each classifier, Table 2 can be divided into four sub-
sessions: Base, Base-MI, TBM, and TBM-MI. For each sub-
session, the best results are marked in bold. Also, for either
classifier, the highest score per metric across all the models
is underlined. Finally, the best model across all methods and
two classifiers are labeled with ∗. In the following, we an-
alyze predictive performance within each classifier and then
compare across them.



Figure 3: Septic shock prediction for 0-24 hour-before-shock, com-
pared the best baseline, TBM.75, and TBM.75-MI

For RNN classifier, Table 2 shows that for the three Base
methods, the Expert outperforms the other two on all mea-
sures except for the precision. For the Base-MI methods:
there is no clear winner but in general Mean-MI and For-
ward-MI split the lead. For TBM-based model, TBM.75 out-
performs the other two on all measures except for the pre-
cision; finally, for the three TBM-MI methods, TBM.50-MI
outperforms the other two except for the precision and over-
all. Across the four categories using RNN, the best perfor-
mance (underlined) is generated using the TBM-based mod-
els. In general, based on the best results from each category,
we have Base ≈ Base-MI < TBM-MI < TBM.

Next, for LSTM, Table 2 shows that for the three Base
methods, the Expert outperforms the other two on all mea-
sures except for the precision and overall. For the Base-
MI methods: Forward-MI outperforms the other two on all
measures except for the recall and overall. For TBM-based
model, TBM.75 outperforms the other two on all measures
except for the precision; finally, for the three TBM-MI meth-
ods, TBM.75-MI outperforms the other two except for the
recall. Across the four categories using LSTM, the best per-
formance (underlined) is generated using the TBM-MI mod-
els. In general, based on the best results from each category,
we have Base ≈ Base-MI<TBM<TBM-MI for LSTM.

Across all 12 methods and two base classifiers, the best
results come from LSTM+TBM-MI. On both classifiers, the
TBM models outperform not only the popular applied base-
lines and the domain experts’ rules but also the state-of-the-
art approach MI. However, we assume that TBM and MI
tackle missing data handling from two different perspectives
so that our best performance is generated by combining the
two approaches using LSTM.

Detailed analyses on early prediction
We also evaluate TBM’s early prediction capacity compar-
ing to other baseline methods based on the 0-24 hour-before
shock prediction task. In particular, we compare the best
TBM (TBM.75) to the best Base (Expert for RNN and Mean-
MI for LSTM) every hour between 0 to 10 hours and ev-
ery two hours between 12 and 24 hours. Figure 3 (Left)
shows that TBM.75 outperforms Expert throughout the time
for RNN. Interestingly, when combining TBM with the pre-
vious state-of-the-art method, MI, TBM.75-MI does not out-
perform TBM.75. For LSTM (Figure 3, Right), TBM.75-MI
outperforms Mean-MI except for the 12 hour-before shock
prediction, while TBM.75 is comparable to MEAN-MI.

Base Method 3 hour-before-shock Overall

classifier Acc Recall Prec F1 AUC AUC

RNN Mean 0.7061 0.7076 0.7101 0.7077 0.7061 0.6875
Forward 0.7233 0.7264 0.7378 0.7270 0.7233 0.6968
Expert 0.7367 0.7529 0.7113 0.7292 0.7368 0.6983

Mean-MI 0.7306 0.7427 0.7102 0.7256 0.7306 0.6954
Forward-MI 0.7306 0.7644 0.6792 0.7152 0.7308 0.6956
Expert-MI 0.7100 0.7416 0.6726 0.6997 0.7102 0.6973

TBM.25 0.7567 0.7700 0.7368 0.7525 0.7568 0.7146
TBM.50 0.7511 0.7554 0.7522 0.7221 0.7511 0.7083
TBM.75 0.7628 0.7815 0.7357 0.7570 0.7630 0.7237

TBM.25-MI 0.7467 0.7681 0.7168 0.7395 0.7469 0.7195
TBM.50-MI 0.7556 0.7732 0.7312 0.7504 0.7557 0.7144
TBM.75-MI 0.7528 0.7700 0.7313 0.7464 0.7530 0.7185

LSTM Mean 0.7078 0.7088 0.7102 0.7094 0.7078 0.6903
Forward 0.7156 0.7103 0.7423 0.7233 0.7154 0.6927
Expert 0.7367 0.7429 0.7312 0.7358 0.7367 0.6918

Mean-MI 0.7267 0.7346 0.7300 0.7276 0.7266 0.7107
Forward-MI 0.7300 0.7263 0.7644 0.7395 0.7299 0.7067
Expert-MI 0.7217 0.7174 0.7378 0.7249 0.7215 0.7058

TBM.25 0.7556 0.7573 0.7589 0.7569 0.7556 0.7188
TBM.50 0.7606 0.7725 0.7457 0.7576 0.7607 0.7184
TBM.75 0.7633 0.7751 0.7456 0.7593 0.7635 0.7245

TBM.25-MI 0.7739 0.8085* 0.7246 0.7623 0.7742 0.7262
TBM.50-MI 0.7683 0.8002 0.7213 0.7572 0.7686 0.7322
TBM.75-MI 0.7839* 0.7900 0.7777* 0.7832* 0.7840* 0.7340*

Table 2: Sepsis shock prediction at 3 hour-before-shock and the
overall time (0-24 hours).

5 Conclusion
Missing data pervading in real-world multivariate time series
datasets pose significant challenges in deriving robust predic-
tive models for these real-world applications. More challeng-
ingly, the categories of missing data in these datasets are min-
gled or difficult to identify. To address this challenge, we have
investigated missing data handling methods with RNNs and
LSTMs, and examined early prediction of septic shock using
imputed missing values in EHR. We have introduced a bidi-
rectional time-based imputation method, called TBM, which
was inspired by bio-neurons’ behaviors. Empirical evalua-
tions demonstrate that TBM achieves the best performance
in the septic shock early prediction task, outperforming four
competitive missing data handling methods.

Rather than use the pre-defined βs like in this study, in
the future, we will further optimize TBM with respect to the
model hyperparameter β, which adjusts the bidirectional por-
tions of reliable-time-window. Another interesting line of re-
search is to investigate the interpretation of the reliable-time-
window τ , which can suggest a desirable sampling frequency
for each feature to clinical and medical experts. Finally, it
will be important to evaluate robustness and generalizabil-
ity of TBM by investigating the septic shock early prediction
framework for other EHR datasets such as MIMIC-III and as
well as other disease prediction tasks or different prediction
tasks on multivariate time-series data suffering a high rate of
missing values in other domains.
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