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ABSTRACT

Constrained action-based decision-making is one of the most chal-
lenging decision-making problems. It refers to a scenario where an
agent takes an action in an environment not only to maximize the
expected cumulative reward, but where it is subject to certain action-
based constraints; for example, an upper limit on the total number
of certain actions being carried out. In this work, we construct a gen-
eral data-driven framework called Constrained Action-based Par-
tially Observable Markov Decision Process (CAPOMDP) to induce
effective pedagogical policies. Specifically, we induce two types of
policies: CAPOMDP] ¢ using learning gain as reward with the goal
of improving students’ learning performance, and CAPOMDPr e
using time as reward for reducing students’ time on task. The ef-
fectiveness of CAPOMDP]  is compared against a random yet
reasonable policy and the effectiveness of CAPOMDPr ;¢ is com-
pared against both a Deep Reinforcement Learning induced policy
and a random policy. Empirical results show that there is an Ap-
titude Treatment Interaction effect: students are split into High
vs. Low based on their incoming competence; while no significant
difference is found among the High incoming competence groups,
for the Low groups, students following CAPOMDPr;,,, indeed
spent significantly less time than those using the two baseline poli-
cies and students following CAPOMDP; ¢ significantly outperform
their peers on both learning gain and learning efficiency.
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1 INTRODUCTION

Intelligent Tutoring Systems (ITSs), as one type of highly interactive
e-learning environment, have been widely used in the educational
domain. ITSs generally provide step-by-step adaptive support and
contextualized feedback to individual learners at run-time [12, 25].
Specifically, ITSs often apply the pedagogical strategies to decide
which action to take (e.g. give a hint, show an example) in the face
of alternatives at each time step with the purpose of improving
student learning. Reinforcement Learning (RL) is one of the most
promising data-driven approaches to induce an effective pedagogi-
cal strategy (policy) in ITSs. Most of prior research [11, 19, 22] apply
the RL approaches in unconstrained contexts, where the agent se-
lects actions given a situation to maximize expected cumulative
reward. Specifically, the agent chooses actions at each step based
upon the current state alone, regardless of prior decisions.

In this work, we mainly focus on inducing pedagogical strategy
in a constrained action-based RL (CARL) scenario, which involves
the additional action-based constraints such as a maximum number
of times that an agent may take a specific action. For example, in
American football, when the referee makes a call against a team the
coaches can challenge it but they can only do so 3 times per game.
And if the challenge is rejected, they not only lose an opportunity
but they may face an additional penalty. Similarly in law, when pros-
ecutors decide to charge someone with a crime, they are committed
to prove it under the relevant law and they have limited options
to add or modify the charges later on. In both scenarios, the early
decisions impose special constraints on the future actions. In other
words, the available actions for an agent at any given situation are
governed not only by the current state but also by prior decisions.
Therefore, when deciding the next action, the agent should take
the constraints into account.

Prior research on constrained RL has focused on inducing the op-
timal policy subject to constraints such as safety and risk avoidance.
Systems that physically interact with humans, for example, need to
satisfy the basic safety parameters or engage in risk avoidance [1].
Similarly robots that seek to reach a target position as quickly as
possible should also avoid dangerous places (say a crater) that might
render them irretrievable [14]. Prior researchers [2, 8, 9, 21] who
have sought to address such constrained scenarios have typically
specified an additional cost function which has a similar format
to the reward and then imposing constraints on the values of the
cost functions. However, such constraints are different from the
action-based constraints on which our work is focused. So far as we
know, no prior work has directly sought to address the action-based
constraints in an interactive e-learning environment.
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In order to solve the CARL problem, we propose a general frame-
work called Constrained Action-based Partially-observable Markov
Decision Processes (CAPOMDP). In particular, we apply this frame-
work to transform CARL problems into normal RL problems by
leveraging factored state representations to incorporate constraints
into the state space itself (see Sec. 4.1). The CARL scenario we inves-
tigated is an ITS called Deep Thought (DT) [17], which contains the
action-based constraints and one type of tutorial decision: whether
to provide students with a Worked Example (WE) or to ask them to
engage in Problem Solving (PS). When providing a WE, DT presents
an expert solution to a problem step by step so that the student sees
both the answer and the solution procedure. During PS, students
are required to complete the problem with tutor’s support. In DT,
the action-based constraints are: the last problem on each level
must be done in PS, and prior to reaching that problem the students
must complete at least one PS and one WE.

In applying CAPOMDP to DT, we explore two types of reward
functions: learning gain and time. For the former, the goal is to
maximize learning gain, while the goal for the latter is to reduce the
amount of time spent on completing the entire tutor. Prior research
use either learning gain or time but not both. In this work, we apply
CAPOMDP to induce two pedagogical policies using learning gain
and time as reward respectively, and then evaluate them through
two empirical experiments. In Experiment 1 (Exp1), we compare the
CAPOMDP policies induced by learning gain against a policy where
the system randomly decides whether to present the next problem
as WE or as PS. Because both PS and WE are always considered to
be reasonable educational interventions in our learning context, we
refer to such policy as a random yet reasonable policy or random in
the following. In Experiment 2 (Exp2), we compare the CAPOMDP
policies induced by time against a Deep Q-Network (DQN) induced
policy and a random policy.

Our empirical results suggest that there is an Aptitude Treat-
ment Interaction (ATI) effect [7]. Specifically, we find that students
with high incoming competence are less sensitive to the induced
policies in that they achieve a similar learning performance re-
gardless of policies employed whereas students with low incoming
competence are more sensitive in that their learning is highly de-
pendant on the effectiveness of the policies. Furthermore, Expl
shows that CAPOMDP using learning gains as reward significantly
outperforms the random policy in both learning gain and learning
efficiency, and Exp2 shows that CAPOMDP using time as reward
helps low incoming competence students spend significantly less
time than the two baseline policies. The post-hoc comparison sug-
gests that CAPOMDP using learning gains as reward also beats the
DON induced policy in terms of learning efficiency.

2 RELATED WORK

2.1 Applying RL into Educational Domain

MDP Framework. Both learning gain (LG) and time were explored
as the reward functions in prior work in applying MDP to ITSs. For
LG, Chi et al. [19] applied a model-based RL method with LG as re-
ward to induce pedagogical policies for improving the effectiveness
of an ITS that teaches students college physics. However, they found
that the RL policy did not outperform the random policy. Similarly,
Shen et al. [24] designed the immediate and delayed rewards based

on learning gain and implemented a model-based MDP framework
on a rule-based ITS for deductive logic. They found that the RL
policies were more effective than random baseline for a particular
type of learners. In addition, Rowe et al. [23] investigated a MDP
framework with normalized LG (NLG) as reward for tutorial plan-
ning in a game-based learning system. They found that students
in the induced planner condition had significant different behavior
patterns from the controlled group but no significant difference
was found between the two groups on the post-test.

When using time as reward function, Iglesias et al. [11] applied
online Q-learning to generate a policy in an ITS that teaches stu-
dents database design, with the purpose of providing students with
direct navigation support through the system’s content and mini-
mizing the time spent in the teaching process. Similarly, Beck et
al. [3] investigated temporal difference learning to induce pedagog-
ical policies that would minimize the time that students take to
complete each problem in an ITS that teaches arithmetic to grade
school students. For both works, they found that the policy group
spent significantly less time than the non-policy peers.

POMDP Framework. Mandel et al. [15] applied POMDP using
LG as reward to induce policies in an educational game for teach-
ing students concepts related to refraction. Their results showed
that the induced POMDP policies outperformed both random and
expert-designed polices in both simulated and empirical evalua-
tions. Similarly, Clement et al. [6] constructed a student model to
track students’ individual mastery of knowledge components, and
treated the mastery as hidden state and LG as reward in POMDP
for inducing instructional policies. Their results showed that the
POMDP policies outperformed the theory-based policies in terms
of students’ knowledge levels on task.

Different from the above POMDP applications, Rafferty et al.
[22] applied the POMDP framework using time as reward in the
domain of alphabet arithmetic. They interpreted the hidden states
of POMDP as the students’ latent knowledge related to concept
learning. Their empirical study showed that the POMDP policies
significantly outperformed the random policy in terms of time in
that the former spent significantly less time than the latter.

Deep RL Framework. Wang et al.[26] applied a deep RL frame-
work for personalizing interactive narratives in an educational
game. They designed the rewards based on NLG and found that in
simulation studies the students with the Deep RL policy achieved
a higher NLG score than with the linear RL agent. Furthermore,
Narasimhan et al. [20] implemented a DQN approach in a text-based
strategy game, where the state is represented by a Long Short-Term
Memory (LSTM) network, and the Q value is approximated by a
multi-layered neural network, and the reward is designed based on
the performance of game quest. Using simulations, they found that
the deep RL policy significantly outperformed the random policy
in terms of quest completion.

In summary, much of the prior work on applying RL in ITSs used
either LG or time as reward but not both. Furthermore, compared
with MDP and POMDP, relatively little research has been done on
applying Deep RL to the field of ITS nor has it directly empirically
compared Deep RL with other RL frameworks. Last but not least,
none of the prior research has investigated the impact of different
reward functions on RL frameworks by considering the action-
based constraints in interactive learning environments.



2.2 Aptitude Treatment Interaction (ATI) Effect

Prior research in instructional strategies [7] assert that for any
type of instructional interventions, an ATI effect is often exhibited,
which claims that the instructional interventions are more or less
effective for the learners depending on their abilities or aptitudes.
Chi & VanLehn [5] investigated the ATI effect in the domain of
probability and physics and their results showed that the high
incoming competence students can learn regardless of instructional
interventions, while for students with low incoming competence,
those who follow the effective instructional interventions learned
significantly more than those following less effective interventions.
In our prior work, it is consistently shown that for pedagogical
decisions on WE vs. PS, certain learners are always less sensitive in
that their learning is not affected, while others are more sensitive
to variations in different policies. For example, Shen et al. [24]
trained students in an ITS for logic proofs, then divided students
into the Fast and Slow groups based on time, and found that the
Slow groups are more sensitive to the pedagogical strategies while
the Fast groups are less sensitive.

3 BACKGROUND
3.1 Problem Statement

In the original RL scenarios, the agent selects the optimal action at
any given situation to maximize the expected cumulative reward
(ECR), which is represented as formula (1). In prior work in solv-
ing the classic constrained RL scenarios, the constrained MDP [2]
or the constrained POMDP [14] frameworks generally search for
the optimal policy that maximizes ECR while staying below the
upper bound of the expected cumulative cost (ECC), which involves
defining a cost function for each pair of state and action.

By contrast, in the constrained action-based RL (CARL) scenarios
described here, the agent chooses an action from a set of alternatives
to both maximize its expected cumulative reward while obeying
the action-based constraints. For example, the constraints in our
application limit the total number of times that PS and WE can
be selected in a given level. Therefore, rather than defining a cost
function for each pair of state and action as the classic constrained
RL scenarios, we formalize CARL problems as:
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where formula (2) is the action-based constraint. More specifically,
Ais the set of all possible actions and L is the length of a trajectory;
Cq and 0 denote the upper and lower bounds on the number of times
that action a can be selected; af indicates that action a is selected
by policy 7 at time step t, and I(-) is the indicator function in that it
would return 1 if the expression in (-) is true and 0 otherwise. C, (a)
represents the cost function (2) for the action-based constraints and
only depends on the actions. For our application, if the action-based
constraint is active at time ¢, then state s; is treated as a terminal
state, where the agent cannot take any more actions.

3.2 POMDP Framework

POMDP is defined as a tuple: ( S, O, A, R, P, P,, Prior, B). S rep-
resents the set of hidden states {51, Ss..., Sk } with the set size K;
O is the set of observations with a wide range of features; A and
R denote the set of actions and the reward function respectively.
Ps denotes the hidden state transition probability: Ps(s’,s,a) =
Pr(s’ls, a), and P, is the emission probability: Py(o, s, a) = Pr(ols, a).
Prior denotes the prior probability distribution of hidden states.
In addition, B denotes the belief state space, where each element
bt(s) = Pr(s|o1:t, a1:r) is the probability distribution of the hidden
state s at each time step ¢t after executing the action sequence aj.;
and obtaining the observation sequence o01.;. Specifically, we can
estimate b;(s) as:

biS) = 5 3 bei P s, a)Polonsa)  (3)

Where Z is the normalization value. The belief state at the first step
is calculated by multiplying Prior with the emission probability
P,. In our work, we utilize Input-Output Hidden Markov Models
(IOHMM) [4] to translate the observations into belief states. In this
context the input and output denote the action and observation.
More specifically, the belief state at each time step is calculated by
following formula (3) via the forward-backward IOHMM algorithm.

4 CONSTRAINED ACTION-BASED POMDP

As an extension of the POMDP framework, CAPOMDP modifies
the state representation and the reward function to incorporate
action-based constraints, shown in the following sections.

4.1 Factored State Representation

The factored state representation is constructed by concatenating
the belief state with a constrained state. Specifically, the belief
state is defined in the POMDP framework. The constrained state

at time step t is defined as [clt, cé, e cltAl]’ where each element is a

constrained feature which counts the total number of times that
the action was chosen up to the present time point. If an action a is
selected at a particular time step, the value of the corresponding
constrained feature c, is incremented by 1. Thus, we can estimate
¢!, efficiently as:
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Consequently, the factored state at time ¢ is represented as
st = [btbt,btcl et
state contains two independent components: the belief state and
the constrained state. The former is used to model the learning
process, while the latter only tracks the status of the actions and
whether the selection of the action triggers the constraints. There-
fore, the factored state transition can be decomposed into separate
estimates of the transition for the belief state component via func-
tion (3) and the transition for the constrained state component via
function (4).

Furthermore, we designate a factored state as safe if all of the
elements in its constrained state component satisfy the constraint
function (2). Error states are defined as any state where one or more
elements of its constrained state component violate function (2).

. cltAI]' In other words, the factored



Error states are treated as one type of terminal state since they
are disallowed in the system, while safe states permit actions to be
taken which can transit to other states.

4.2 Reward Function

Since the basic ITS prohibits any appearance of an error state, we
need to assign a strong negative reward for any transition from a
safe state to an error state and treat error states as terminal states.
We still retain the original reward for transitions between safe states
in the training corpus since these transitions impose no additional
cost. We therefore define the new constrained reward function as:

R(S;,at) St € SsafeastJrl € Ssafe
- St € Ssafe’st+1 € Serror

Re(st,ar) = { ®)

Where —¢ indicates a strong negative value. R¢(s¢, a;) represents
the reward function with constraints, and R(s¢, a;) denotes the
real reward in the training corpus. However, our training corpus
does not contain error states because the original system has hard-
coded rules to avoid them. Thus, we are required to manually add
transitions from the safe states to error states with strong negative
rewards in training dataset as shown in formula (5).

4.3 CAPOMDP Policy Induction

We implement Least Squares Policy Iteration (LSPI) [13] on the fac-
tor state of CAPOMDP to induce the optimal policy, which consists
of two steps: policy evaluation and policy improvement.

In the policy evaluation step, we approximate the Q-function
Q(s, a), the expected reward of taking action a at state s, using a
linear model generalized as:

IS]x|A]

Q(s,a) = Z widi(s, a) (6)
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Where ¢;(s, a) indicates the basic element in state s associated with
the action a, and s is a factored state representation in CAPOMDP
framework (see Sec 4.1). |S| and |A| denote the size of the state set
and action set respectively. w; is the parameter of the linear model
and it also involves a constant item (when i = 0). Additionally, we
have that the Q-function follows the Bellman equation:

Q" = R+yPI;Q" ()

By integrating equation (6) and (7), Least Square Temporal Differ-
ence Q learning approach [13] estimates the parameter w as:

w=H1f
H = Ys.0.5)ep 95, 9)[p(s. @) — y(s”, m(s")]" (®)
f= Z(s, a,s’)eD #(s, A)R(s, a)

Where D is the training corpus, and 7(s”) denotes the action se-
lected by current policy 7 given a state s’. H and f can be estimated
from the training corpus.

In the policy improvement step, w is updated through the gradient
decent approach toward to minimize the loss function, then LSPI
checks whether w converges. If w does not converge, it goes back
to the policy estimation step; otherwise, it terminates.
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Figure 1: Interface of PS in ITS

5 EXPERIMENT SETUP

5.1 Intelligent Tutoring System: Deep Thought

Deep Thought (DT) is a data-driven ITS used in the undergraduate-
level Discrete Mathematics (DM) course at North Carolina State
University (NCSU). DT [18] provides students with a graph-based
representation of logic proofs which allows students to solve prob-
lems by adding rule applications (represented as nodes). The system
automatically verifies proofs and provides immediate feedback on
logical errors. Every problem in DT can be presented in the form of
either Worked Example (WE) or Problem Solving (PS). In WE, stu-
dents are given a detailed example showing the expert solution for
the problem or were shown the best step to take given their current
solution state. In PS (shown in Figure 1), by contrast, students are
tasked with solving the same problem using the ITS or completing
an individual problem-solving step. By focusing on the pedagogical
decisions of choosing WE vs. PS, which would allow us to strictly
control the content to be equivalent for all students. In addition
to the problems, DT has two hard-coded action-based constraints
that are required by the class instructors: the last problem on each
level must be done as PS, and prior to reaching that problem the
students must complete at least one PS and one WE.

Procedure. The problems in DT are organized into seven strictly
ordered levels and in each level students are required to complete
3-4 problems. In the pre-test (level 1), all participants receive the
same set of PS problems and students performance in this level
is used to measure their incoming competence. In the following
five training levels 2-6, before the students proceed to a new
problem, the system followed the corresponding RL-induced or
random policies to decide whether to present it as PS or WE. The
last question on each level is a PS without DT’s help and thus
functioned as a mini-test for evaluating students’ knowledge on
the concepts of that level. In the post-test (level 7), all participants
also receive the same set of PS problems and their performance in
this level is evaluated as the post-test score. In addition, we defined
the Normalized Learning Gain (NLG) as:

NLG = {% post >= pre 9
post=pre
pre post < pre
Therefore, we evaluate students performance based on 1) pre- and
post-test scores, 2) NLG, 3) time and 4) Learning Efficiency (LE o



NLG/Time). In the following, it is important to note that due to
class constraints the pre- and post-tests covered different concepts
and were collected at different times: the pre-test occurred in a
single session before the policies were employed, while the post-
test scores were collected at the end of later levels. Therefore the
two scores cannot be directly aligned.

5.2 Training Corpus

The training corpus for RL policy induction was collected from
training 570 students in DT in the Fall 2014, 15, and 16 semesters
of a Discrete Mathematics course. In these semesters, DT was pro-
grammed to make random decisions when selecting PS and WE.
Note that, when collecting our original training data, DT had al-
ready implemented the action-based constraints requested by the
class instructors. The average number of solved problems in the
form of both PS and WE is 24.1 (SD=2.59). Furthermore, DT recorded
the observation as a set of 133 state features, including 59 discrete
and 74 continuous features, for representing the students’ behaviors
and learning environment. DT calculated level score based on the
last problem in each of training levels 2-6. For simplicity reasons,
the range of level scores is normalized to [0, 100].

When inducing RL policies using learning gain as reward, we
calculated the difference between the student’s current and prior
level scores. If students quit the tutor during the training, we as-
signed a strong negative reward of -300 on the last problem he/she
attempted. When inducing RL policies using time as reward, we
used the negative log of time as the reward for inducing the policy:
that is, when training on DT, the less time a student spent on com-
pleting the entire training portion, the better. There is a significant
correlation between the negative log of times and student post-test
scores: cor = 0.19, p = .006.

5.3 Deep RL Policy

We apply the Deep Q-Network (DQN) algorithm, proposed by Mnih
et al. [16], to construct a strong baseline policy. DON uses a neural
network to map state features to Q-values Q(s, a) for each action.
The neural network consists of three LSTM layers [10] with 1000
units each, followed by a fully connected layer with 2 output units,
one for each action. We trained the network using the DQN algo-
rithm on the training corpus until convergence of the loss function.
When implementing the neural network in the ITS, the action se-
lected for each student was the action with the highest Q-value,
between Q(s, PS) and Q(s, WE).

5.4 Policy Execution

Due to the hard-coded constraints, whenever DT makes a tuto-
rial decision, the baseline policy execution process will first check
whether the selected action violates the hard-coded action-based
constraints shown in Figure 2 (a). If the action is valid then it will
be carried out; otherwise DT uses hard-coded rules to choose an al-
ternative that satisfies the constraints. By contrast, the CAPOMDP
policy execution is shown in Figure 2 (b). Since the action-based
constraints are already incorporated into the policy, we therefore
expect that the induced CAPOMDP policy will be fully carried out
and that the hard-coded rules will not be violated.

@ T student () T student

l ITS l IS

Problem Solving Action a; Problem Solving Action a;
Interface Interface

. # selected
. 7 Observation i
| Baseline policy | actions

# selected I % / \

actions whether a, yes belief constrained
satisfies state state
constraints
no CPOMDP
choose other
action as a,

Figure 2: (a) Baseline policy execution with action-based con-
straints; (b) the CAPOMDP policy execution

5.5 Study Overview

In this work, we investigate two primary research questions: 1)
whether using learning gain or time as reward makes the CAPOMDP
framework induce a more effective pedagogical strategy; and 2)
Can the CAPOMDP framework outperform the Deep Q-learning
approach? We conducted two empirical experiments, involving the
following four policies:

1. CAPOMDPyg: CAPOMDP with learning gain as reward;
2. CAPOMDPrjj,e: CAPOMDP with time as reward,;

3. DONyG: Deep Q-Network with learning gain as reward;
4. Random: Random yet reasonable decision (baseline).

Exp1 implements and compares the CAPOMDPy g and Random poli-
cies, and Exp2 applies the four policies including: CAPOMDP; G,
CAPOMDPrjme, DONi g and Random. However, due to admin-
istration errors, very few students were randomly assigned to
CAPOMDP; g and thus we will mainly focus on comparing the ef-
fectiveness of CAPOMDPrime, DONi g and Random in Exp2. Since
all students are drawn from the same target population, we combine
two CAPOMDP; g groups in Exp1 and Exp2 and also integrate the
two Random groups in Exp1 and Exp2, and then conduct a post-
hoc comparison across two experiments. In order to measure the
Aptitude Treatment Interaction effect, we defined High and Low
groups based on students incoming competence, the pre-test score.
More specifically, we did a single median split of pre-test scores for
all groups in both experiments since all students experienced an
identical procedure. As shown in the following sections, this split
reasonably reflects the incoming competence of the students.

6 EXPERIMENT 1 (EXP1)

6.1 Participants & Conditions

77 students enrolled in the DM course at NCSU in the Fall 2017
and were randomly assigned into two conditions: CAPOMDP] g
(N = 40) and Random (N = 37). They were further divided into the
High and Low groups using the median split on the pre-test scores
as described above. Thus, we have: CAPOMDPyg-High (N = 25),



Table 1: Students’ learning performance in Experiment 1

Measure High Low
CAPOMDP;;  Random CAPOMDP;;  Random
Pre-test  63.37(15.44) 66.02(15.01) 19.71(11.98) 14.87(11.15)
Post-test  54.36(20.34) 59.27(23.56) 57.13(16.77) 38.98(17.63)
NLG -0.08(0.41) -0.03(0.51)  0.46(0.19)  0.23(0.34)
Time 240(1.08)  3.15(1.49)  3.24(1.36)  3.83(1.37)
LE 0.02(0.64) -0.01(0.67)  0.49(0.31)  0.21(0.28)

Note: Mean and SD of Time is in hours.

CAPOMDP;g-Low (N = 15), Random-High (N = 20) and Random-
Low (N = 17). While more students were assigned to CAPOMDP -
High, a y? test shows no significant difference in the distribution
of High vs.Low between conditions: y?(2, N = 77) = 1.5, p = 0.22.

6.2 Results

Table 1 presents the mean and SD for students’ corresponding
learning performance and time in Expl. One-way ANOVA tests
show that no significant difference is found on the pre-test score
either between the two conditions, or between CAPOMDP; -High
and Random-High, or between CAPOMDP; G-Low and Random-Low.
As expected, the High groups (M = 64.44, SD = 15.14) score sig-
nificantly higher than the Low groups (M = 16.95, SD = 11.59):
F(1,75) = 231.2,p < .000 on the pre-test score.

Post-Test: A two-way ANCOVA test using policy {CAPOMDP g,
Random} and incoming competence {High, Low} as factors and the
pre-test scores as covariate shows that there is a significant inter-
action effect on their post-test scores: F(1,72) = 5.78,p = .018. A
one-way ANCOVA shows that no significant difference is found
either between CAPOMDP] and Random, or between the High
and Low groups. Additionally, one-way ANCOVA tests on pol-
icy using pre-test as covariate show that while there is no signifi-
cant difference between the two High groups, a significant differ-
ence was found between the two Low groups: CAPOMDP; g-Low
achieves a significantly higher post-test score than Random-Low:
F(1,32) = 8.65,p = .006 (see Table 1).

NLG: Similarly, a two-way ANOVA test using policy and incom-
ing competence as factors and the pre-test score as covariate yields
a significant interaction effect on NLG: F(1,72) = 4.27,p = .018.
One-way ANOVAs shows that while there is no significant dif-
ference between CAPOMDP;  and Random, there is a significant
between High and Low: F(1,75) = 4.16, p = .045. The Low groups
(M = 0.33, SD = 0.30) achieve a significantly higher NLG than the
High groups (M = —0.06, SD = 0.44). Furthermore, while there is
no significant difference between CAPOMDP; -High and Random-
High, a one-way ANCOVA on policy using pre-test as covariate
shows that CAPOMDP; -Low scores significantly higher NLG than
Random-Low: F(1,33) = 5.46,p = .025 (see Table 1).

Time: A two-way ANOVA test using condition and incoming
competence as factors shows no significant interaction effect on
total time that students spend in the tutor. One-way ANOVA tests
show that there is no significant difference between CAPOMDP; g
and Random, but the Low groups (M = 3.57, SD = 1.28) spend
significantly more time than the High groups (M = 2.70, SD = 1.30):

F(1,75) = 8.84,p = .004. No significant difference is found either
between the two High groups or between the two Low groups.

Learning Efficiency (LE): A two-way ANOVA test using policy
and incoming competence as factors shows no significant inter-
action effect on LE, and a one-way ANOVA test also shows no
significant difference between CAPOMDP; ; and Random, but a
significant difference is found between High and Low groups in
that the Low groups (M = 0.33, SD = 0.32) score significantly
higher than the High groups (M = 0.005, SD = 0.64): F(1,75) =
7.20, p = .009. Despite this, while no significant difference is found
between CAPOMDP; g-High and Random-High, a one-way ANOVA
test shows that CAPOMDP; -Low scores significantly higher LE
than Random-Low: F(1,33) = 7.77,p = .009.

6.3 Discussion

To summarize, we find significant difference between the High and
the Low groups: the latter has significantly higher NLG, spends
significantly longer time on DT, and achieves significantly higher
LE than the High groups. More importantly, Exp1 exhibits an ATI
effect: while no significant difference is found between the two
High groups, significant differences are found between the two
Low groups on post-test score, NLG and LE. In short, for the High
incoming competence students it seems that both their learning
performance and time on task is not impacted by the induced ped-
agogical strategies; for the low incoming competence students,
however, by using LG as reward our CAPOMDP framework sig-
nificantly benefits them more than the baseline Random policy on
post-test, NLG and LE.

7 EXPERIMENT 2 (EXP2)

7.1 Participants & Conditions

139 students enrolled in the DM course at NCSU in Spring 2018 were
randomly assigned into four conditions: CAPOMDPy s (N = 12),
CAPOMDP7ip,e (N = 52), DON; G (N = 34) and Random (N = 41).
Due to administration errors, only 12 students were assigned to
CAPOMDP; ; and thus it is excluded in the following analysis. Sim-
ilar to Expl, students in Exp2 were divided into the High and
Low groups using median split on the pre-test scores. Combin-
ing condition and incoming competence, we have a total of six
groups: CAPOMDPripe-High (N = 34), CAPOMDPTjpe-Low (N =
18), DON;G-High (N = 21), DON;g-Low (N = 13), Random-High
(N = 26) and Random-Low (N = 15). While it seems that High
vs. Low is imbalanced, a y? test shows no significant difference
in the distribution of High vs. Low among the three conditions:
¥2(2,N =139) = 0.12, p = 0.94.

7.2 Results

Table 2 presents the mean (and SD) of students’ corresponding
learning performance and time in Exp2. A one-way ANOVA test
shows no significant difference among the three conditions on their
pre-test. As expected, the High groups (M = 62.26, SD = 16.59)
score significantly higher pre-test than the Low groups (M = 21.55,
SD = 9.08): F(1,137) = 240.6,p < .000. Finally, no significant
difference is found either among the three High groups or among
the three Low groups.



Table 2: Students’ learning performance in Experiment 2

Measure High Low
CAPOMDPripe DOQON; g Random CAPOMDPrime DOQON; g Random
Pre-test  63.33(15.36)  63.72(15.45) 63.88(15.35)  23.26(9.07)  19.09(9.57)  21.63(8.79)
Post-test  55.99(22.01)  57.47(23.81) 64.46(19.11)  52.51(19.01)  45.65(21.84) 50.22(19.02)
NLG -0.06(0.44)  -0.02(0.44)  0.08(0.42)  0.37(0.26)  0.27(0.39)  0.33(0.32)
Time 3.12(1.66) 3.13(1.58)  2.34(0.92)  3.00(1.08)  4.15(1.20)  3.88(1.38)
LE 0.04(0.55) 0.16(0.64)  0.13(0.58)  0.39(0.34)  0.21(0.27)  0.28(0.23)

Note: Mean and SD of Time is in hours; LE denotes the learning efficiency.

Post-test & NLG: Using policy {CAPOMDPripe, DONLG, Random}
and incoming competence {High, Low} as factors and the pre-test
score as covariate, a two-way ANCOVA test shows there is no sig-
nificant interaction effect on either their post-test scores or NLG.
Additionally, one-way ANCOVA tests show that there is no sig-
nificant difference either among conditions, or among the High
groups, or among the Low groups on both post-test and NLG. Fi-
nally, while no significant difference is found between High and
Low on post-test, the Low groups (M = 0.31, SD = 0.29) achieve sig-
nificantly higher NLG than the High groups (M = .08, SD = 0.55):
F(1,137) = 20.52,p < .000. Therefore, much to our surprise, while
DOQNi G is induced using learning gain as reward, it did not outper-
form Random; additionally, while CAPOMDPrjy, is induced using
time as reward, it seems that it does not hurt students’ learning
performance as we are originally concerned about.

Time: To investigate whether CAPOMDPr;y,, would indeed re-
duce student training time as expected, a two-way ANOVA test us-
ing condition and incoming competence as factors yields significant
interaction effect on time: F(2,121) = 4.15,p = .018. While one-
way ANOVA tests show there is no significant difference among
conditions, there is a significant difference between High and Low
groups in that the Low groups (M = 3.61, SD = 1.29) spent sig-
nificantly more time than the High groups (M = 2.87, SD = 1.47):
F(1,125) = 8.10,p = .005. More importantly, one-way ANOVA
tests show that while there is no significant difference among the
three High groups, there is a significant difference among the Low
groups: F(2,43) = 3.90,p = .027. Specifically, pairwise t-tests show
that CAPOMDPt;y,e-Low spent significantly less time than either
Random-Low or DQNyG-Low: p = .045 and p = .013 respectively,
and no significant difference was found between the latter two.

Learning Efficiency (LE): A two-way ANOVA test using con-
dition and incoming competence as factors shows no significant
interaction effect on LE. One-way ANOVAs indicate that there is
no significant difference among the three conditions, but there is
significant difference between High and Low in that the Low groups
(M = 3.61, SD = 1.29) achieve significant higher LE than the High
groups (M = 0.10, SD = 0.57): F(1,125) = 5.11, p = .025. Although
one-way ANOVA tests show that no significant difference is found
among the High groups or among the Low groups, pairwise t-tests
indicate that CAPOMDPrT;p,.-Low scores marginally significantly
higher LE than DQNjG-Low (p = .085) (see Table 2).

7.3 Discussion

To summarize, in Exp2 we mainly focus on evaluating the effective-
ness of the CAPOMDP framework using time as reward against
the DQN using LG as reward and random group. Similar to Exp1,
students are split into High vs. Low based on their pretest scores
and the same patterns are found between the High and the Low
groups: the latter had a significantly higher NLG, spent signifi-
cantly longer time on DT, and achieved a significantly higher LE
than their High peers. More importantly, while Exp1 exhibits an
ATI effect on learning performance (post-test score, NLG and LE),
Exp2 exhibits an ATI effect on time: while no significant differ-
ence is found among the three High groups, significant difference
is found among the three Low groups in that students following
CAPOMDPT;p, spent significantly less time than either DQNj g or
Random. In short, Exp2 shows that for the high incoming compe-
tence students, it seems that both their learning performance and
time on task is not impacted by the induced pedagogical strate-
gies; for the low incoming competence students, CAPOMDP using
time as reward seemingly did not hurt their learning performance
(post-test and NLG) and they indeed spent significantly less time
than their peers under DQN] g and Random. Much to our surprise,
DQN;j g performs closely to Random. One of the possible reasons
is that action-based constraints restrict the effectiveness of the
DOQNf G policy. The DQNj  and Random policies are only carried
out 50.8% (SD = 14.3%) and 51.1% (SD = 11.3%) of the time respec-
tively, while both the CAPOMDP; G and CAPOMDPr;p, policies can
be fully followed.

8 POST-HOC COMPARISONS

In both Exp1 and Exp2, students were drawn from the same target
population and all of them were enrolled in the experiments with
the same method but in different semesters. By assigning students
to each condition randomly, it provides the most rigorous test of
our hypotheses. In this section, we conduct a post-hoc comparison
across the two experiments in the hope that this wider view will
shed some light on our main results. Especially while CAPOMDP; g
outperformed Random in Expl, it is not sure whether the same
results would hold for Exp2 because we only have a small num-
ber of students assigned to CAPOMDP; due to administration
errors. Therefore, we want to combine the two Random groups
into a single Random group and the two CAPOMDP; ; into a single
CAPOMDP; G, and then compare their performance.
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Figure 3: Students’ learning performance across Experiment 1 and 2

Additionally, one-way ANOVA tests show that while there is
no significant difference between two Random groups in Exp1
and Exp2 on pre-test: F(1,76) = 2.76,p = 0.1, NLG: F(1,76) =
0.43,p = 0.52,and LE: F(1,76) = 0.46, p = 0.49, there is a significant
difference on time: F(1,76) = 4.08,p = .046 in that Random in Exp1
(M = 3.51, SD = 1.34) spent significantly more time than Random
in Exp2 (M = 2.90, SD = 1.32), and there is a significant difference
on post-test: F(1,76) = 5.10,p = .027 in that Random in Exp2
(M = 59.25, SD = 20.08) scored a significantly higher post-test than
Random in Exp1 (M = 48.31, SD = 22.71). In short, Random in Exp2
performed better in post-test and spent less time than Random in
Exp1. Therefore, by combining the two Random groups, we get a
stronger baseline condition than Random in Exp1 alone.

We combine the two Random groups into a single Random group
referred as Com-Random (N = 78) and the two CAPOMDP] ; groups
in Exp1 and Exp2 into a single CAPOMDPy  group (N = 52). There-
fore, we have a total of four groups as described in section 5.5.
One-way ANOVA tests show no significant difference among the
four conditions on the pre-test score.

All students were further divided into High and Low using the
same median split described above. Combining policy and incoming
competence, we have a total of eight groups: Random-High (N = 43),
Random-Low (N = 35), CAPOMDPy-High (N = 34), CAPOMDPy -
Low (N = 18), CAPOMDPripe-High (N = 34), CAPOMDPripe-Low
(N = 18), DON;g-High (N = 21), DON;G-Low (N = 13). A y? test
shows no significant difference in the distribution of High vs. Low
among four policy groups: (3, N = 216) = 0.12, p = 0.57.

Pre-test: As expected, the High groups (M = 63.85,SD = 15.11)
score significantly higher than the Low groups (M = 19.68,SD =
10.26): F(1,214) = 554,p < .000 on pre-test. Except that, one-way
ANOVA tests show that there is no significant difference either
among CAPOMDP; g, CAPOMDPTip,e, DON G and Com-Random,
or among the four High groups, or among the four Low groups.

Post-test: Figure 3a presents the post-test scores of High vs. Low
across the four policies. A two-way ANCOVA test using policy and
incoming competence as factors and the pre-test score as covariate,
yields no significant interaction effect on their post-test scores.
Additionally, a two-way ANOVA test using policy and incoming
competence as factors shows a significant interaction effect on
their post-test scores: F(3,208) = 2.81, p = .041. Although one-way
ANOVA tests show there is no significant difference among the
High groups, there is a marginal significant difference among the
Low groups: F(3,80) = 2.29,p = .084. Pairwise t-tests show that

CAPOMDP; g-Low scores the significantly higher post-test than
Random-Low: (p = .018).

NLG: A two-way ANOVA test, using condition and incoming
competence as factors yields no significant interaction effect on
NLG. Additionally, a one-way ANOVA shows no significant dif-
ference among the four High groups, but a significant difference
among the Low groups:F(3, 80) = 3.57,p = .017. Pairwise t-tests
show that CAPOMDP; -Low scores a significantly higher NLG than
Com-Random-Low: p = .043 and a marginally significant higher
NLG than DQNjg-Low: p = .094, shown in Figure 3b.

Time: A two-way ANOVA test using policy and incoming com-
petence as factors shows a marginally significant interaction effect
on time: F(3,208) = 2.50,p = .060. Moreover, one-way ANOVA
tests show that there is no significant difference among the four
High groups, but there is a significant difference among the Low
groups: F(3,80) = 3.19,p = .027. Specifically, pairwise t-tests show
that CAPOMDPrijp,.-Low spends significantly less time than both
Com-Random-Low and DQNj g-Low: p = .020 and p = .012 respec-
tively; CAPOMDP} g-Low spends marginally significantly less time
than DONj g-Low: p = .053, shown in Figure 3c.

Learning Efficiency (LE): A two-way ANOVA test using policy
and incoming competence as factors shows no significant inter-
action effect on LE. Additionally, while one-way ANOVA tests
indicate that there is no significant difference among the High
groups, a significant difference is found among the Low groups:
F(3,80) = 3.57,p = .018. Specifically, pairwise t-tests indicate
that CAPOMDP; g-Low scores significantly higher than both Com-
Random-Low and DQNg-Low: p = .007 and p = .016 respectively;
CAPOMDPT;jpe-Low achieves a marginally significantly higher LE
than Com-Random-Low and DQNjg-Low: p = .065 and p = .083
respectively, shown in Figure 3d.

9 CONCLUSION

We propose the CAPOMDP framework to deal with the action-
based constraints in Deep Thought and we explored our CAPOMDP
framework using both learning gain (LG) and time as rewards. Em-
pirical results show that for the low incoming competence students,
the CAPOMDPy  policy significantly outperforms the baseline ran-
dom policy in terms of post-test score, NLG, and learning efficiency;
the CAPOMDPr;p policy significantly outperforms both DONj g
and Random policies in terms of time. It seems that CAPOMDP
indeed fulfills its promise for the low incoming students’ learning
in that it can improve their learning when using LG as reward and



reduce their time on task when using time as reward. However,
for the high incoming students, both their learning performance
and time are not impacted by either policies using LG as reward or
those using time as reward.

Much to our surprise, DQNj g performs close to Random. One
of the possible reasons is that action-based constraints restrict the
effectiveness of the DQNj g policy. The DON; g and Random poli-
cies are only carried out 50.8% (SD = 14.3%) and 51.1% (SD =
11.3%) of the time respectively, while both the CAPOMDP;  and
CAPOMDPr;p, policies can be fully followed. In future work, we
will integrate the Deep Q-Network framework with the action-
based constraints in our ITS. Moreover, we will induce the policy
which can significantly improve LG as well as reduce the time, con-
sidering the learning gain and time as the objective simultaneously.

REFERENCES

[1] Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. 2017. Constrained
policy optimization. arXiv preprint arXiv:1705.10528 (2017).

[2] Eitan Altman. 1999. Constrained Markov decision processes. Vol. 7. CRC Press.

[3] Joseph Beck, Beverly Park Woolf, and Carole R. Beal. 2000. ADVISOR: A Machine
Learning Architecture for Intelligent Tutor Construction. In AAAIIAAL 552-557.

[4] Yoshua Bengio and Paolo Frasconi. 1995. An input output HMM architecture. In
Advances in neural information processing systems. 427-434.

[5] Min Chi and Kurt VanLehn. 2010. Meta-cognitive strategy instruction in intelli-
gent tutoring systems: how, when, and why. Journal of Educational Technology &
Society 13, 1 (2010), 25.

[6] Benjamin Clement, Pierre-Yves Oudeyer, and Manuel Lopes. 2016. A Comparison
of Automatic Teaching Strategies for Heterogeneous Student Populations. In
EDM 16-9th International Conference on Educational Data Mining.

[7] L. J. Cronbach and R. E. Snow. 1977. Aptitudes and instructional methods: A
handbook for research on interactions. New York: Irvington.

[8] Dmitri Dolgov and Edmund Durfee. 2005. Stationary deterministic policies for
constrained MDPs with multiple rewards, costs, and discount factors. Ann Arbor
1001 (2005), 48109.

[9] Javier Garcia and Fernando Fernandez. 2012. Safe exploration of state and action
spaces in reinforcement learning. Journal of Artificial Intelligence Research 45
(2012), 515-564.

[10] Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long short-term memory. Neural
computation 9, 8 (1997), 1735-1780.

[11] Ana Iglesias, Paloma Martinez, Ricardo Aler, and Fernando Fernandez. 2009. Rein-
forcement learning of pedagogical policies in adaptive and intelligent educational
systems. Knowledge-Based Systems 22, 4 (2009), 266—270. https://doi.org/DOI:
10.1016/j.knosys.2009.01.007 Artificial Intelligence (Al) in Blended Learning -
(AI) in Blended Learning.

[12] Kenneth R Koedinger, John R Anderson, William H Hadley, and Mary A Mark.
1997. Intelligent tutoring goes to school in the big city. (1997).

[13] Michail G Lagoudakis and Ronald Parr. 2003. Least-squares policy iteration.
Journal of machine learning research 4, Dec (2003), 1107-1149.

[14] Jongmin Lee, Youngsoo Jang, Pascal Poupart, and Kee-Eung Kim. 2017. Con-
strained Bayesian Reinforcement Learning via Approximate Linear Programming.
In Proceedings of the Twenty-Sixth International Joint Conference on Artificial In-
telligence.

[15] Travis Mandel, Yun-En Liu, Sergey Levine, Emma Brunskill, and Zoran Popovic.

2014. Offline policy evaluation across representations with applications to educa-

tional games. In Proceedings of the 2014 international conference on Autonomous

agents and multi-agent systems. 1077-1084.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,

Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg

Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.

Nature 518, 7540 (2015), 529.

[17] Behrooz Mostafavi and Tiffany Barnes. 2017. Evolution of an intelligent deduc-
tive logic tutor using data-driven elements. International Journal of Artificial
Intelligence in Education 27, 1 (2017), 5-36.

[18] Zhongxiu Liu Mostafavi Behrooz and Tiffany Barnes. 2015. Data-driven Profi-
ciency Profiling. In Proc. of the 8th International Conference on Educational Data
Mining.

[19] M. Chi, Kurt VanLehn, Diane J. Litman, and Pamela W. Jordan. 2011. Empirically

evaluating the application of reinforcement learning to the induction of effective

and adaptive pedagogical strategies. User Model. User-Adapt. Interact. 21, 1-2

(2011), 137-180.

Karthik Narasimhan, Tejas Kulkarni, and Regina Barzilay. 2015. Language under-

standing for text-based games using deep reinforcement learning. arXiv preprint

=
&

[20

arXiv:1506.08941 (2015).

[21] Pascal Poupart, Aarti Malhotra, Pei Pei, Kee-Eung Kim, Bongseok Goh, and
Michael Bowling. 2015. Approximate Linear Programming for Constrained
Partially Observable Markov Decision Processes.. In AAAIL 3342-3348.

[22] Anna N Rafferty, Emma Brunskill, Thomas L Griffiths, and Patrick Shafto. 2016.
Faster teaching via pomdp planning. Cognitive science 40, 6 (2016), 1290-1332.

[23] Jonathan P Rowe and James C Lester. 2015. Improving student problem solving

in narrative-centered learning environments: A modular reinforcement learning

framework. In International Conference on Artificial Intelligence in Education.

Springer, 419-428.

Shitian Shen and Min Chi. 2016. Reinforcement Learning: the Sooner the Better,

or the Later the Better?. In Proceedings of the 2016 Conference on User Modeling

Adaptation and Personalization. ACM, 37-44.

Kurt Vanlehn. 2006. The behavior of tutoring systems. International journal of

artificial intelligence in education 16, 3 (2006), 227-265.

Pengcheng Wang, Jonathan Rowe, Wookhee Min, Bradford Mott, and James

Lester. 2017. Interactive narrative personalization with deep reinforcement

learning. In Proceedings of the Twenty-Sixth International Joint Conference on

Artificial Intelligence.

[24

[25

[26


https://doi.org/DOI: 10.1016/j.knosys.2009.01.007
https://doi.org/DOI: 10.1016/j.knosys.2009.01.007

	Abstract
	1 Introduction
	2 Related Work
	2.1 Applying RL into Educational Domain
	2.2 Aptitude Treatment Interaction (ATI) Effect

	3 Background
	3.1 Problem Statement
	3.2 POMDP Framework

	4 Constrained Action-based POMDP
	4.1 Factored State Representation
	4.2 Reward Function
	4.3 CAPOMDP Policy Induction

	5 Experiment Setup
	5.1 Intelligent Tutoring System: Deep Thought
	5.2 Training Corpus
	5.3 Deep RL Policy
	5.4 Policy Execution
	5.5 Study Overview

	6 Experiment 1 (Exp1)
	6.1 Participants & Conditions
	6.2 Results
	6.3 Discussion

	7 Experiment 2 (Exp2)
	7.1 Participants & Conditions
	7.2 Results
	7.3 Discussion

	8 Post-Hoc Comparisons
	9 Conclusion
	References

