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Abstract. The effectiveness of Intelligent Tutoring Systems (ITSs) of-
ten significantly depends upon their pedagogical strategies, the policies
used to decide what action to take next in the face of alternatives. In
this work, we evaluate two general RL frameworks for policy induction,
POMDP &. MDP, and two alternative policy execution models, stochas-
tic & deterministic, through two empirical studies where they are com-
pared against a random yet reasonable baseline policy. Results show that
when the contents are controlled to be equivalent, effective RL-induced
policies can improve students’ learning significantly more than the ran-
dom baseline and POMDP is more suitable for the task of pedagogical
strategy induction than MDP. Post-hoc comparisons suggest that while
no significant difference is found between deterministic and random pol-
icy execution, stochastic execution is more effective than random execu-
tion.
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1 Introduction

Reinforcement Learning (RL) offers one of the most promising approaches to
applying data-driven decision-making to improve student learning in Interactive
Learning Environments. RL algorithms are designed to induce effective policies
that determine the best action for an agent to take in any given situation so as to
maximize a cumulative reward. Intelligent Tutoring Systems (ITSs) are a type of
highly interactive e-learning environment that facilitates learning by providing
step-by-step support and contextualized feedback to individual students [6, 19].
These step-by-step behaviors can be viewed as a sequential decision process
where at each step the system chooses an action (e.g. give a hint, show an
example) from a set of options. Pedagogical strategies are policies that are used
to decide what action to take next in the face of alternatives.

In recent years a number of researchers have applied RL to induce effective
pedagogical polices for ITSs [2, 4, 7, 13]: some apply Markov Decision Processes



2 Shitian Shen, Behrooz Mostafavi, Collin Lynch, Tiffany Barnes, and Min Chi

(MDPs) thus treating the user-system interactions as fully observable processes
[8, 17] while others utilize partially-observable MDPs (POMDPs) [14, 20, 21] to
account for hidden states. However, so far as we know, no prior research has
directly compared and empirically evaluated the effectiveness of POMDPs and
MDPs for the induction of pedagogical strategies. In this work, we focus on
pedagogical decisions and report on two empirical studies that are designed to
compare POMDPs vs. MDPs directly from two aspects: state-space representa-
tion and policy execution.

State space representation: In RL success depends upon using an effec-
tive state representation. When a student trains on an ITS, there are many
factors that may affect whether or not they benefit from the experience. Thus,
applying RL to induce effective pedagogical policies is often complicated by the
fact that the state space may be large and continuous. In this work, for example,
we consider 133 state features. This severely limits the effectiveness of tabular
MDP methods. Most of the prior work with MDPs has relied on smaller set of
predefined state representations which consist of features suggested by the learn-
ing literature. While the literature provides useful guidance on what factors to
consider, there are many alternatives, some of which are ITS-specific. Moreover,
many of the relevant factors such as motivation, affect, and prior knowledge, can-
not be observed directly nor are they described explicitly. POMDPs, on the other
hand, model unobserved factors by using a belief state space. Thus POMDPs
for ITSs can explicitly represent two sources of uncertainty: non-determinism in
the control process and partial observability of the students’ knowledge levels. In
the former case the outcome of the tutorial actions and the students’ knowledge
levels are represented by a probability distribution, and in the latter case, the
underlying knowledge levels are observed indirectly via incomplete or imperfect
observations. In short, using the belief state space gives POMDP two potential
advantages over MDPs: better handling of uncertainty in the state representa-
tion, and the ability to incorporate a large range of state features. As a result,
we believe that POMDPs will be more effective than tabular MDPs for ITSs.

Policy execution: Most of the prior research on RL for ITSs has used
deterministic policy execution. That is, when evaluating the effectiveness of RL-
induced policies, the system would strictly carry out the actions determined
by the policies. In this work, we explore stochastic policy execution where at
each decision point there is a small probability that the system will deviate
from the policy and take a randomly-selected action. We argue that stochastic
execution can be more effective than deterministic execution for two reasons.
First, stochastic execution continues to explore the state space. If the policy is
sub-optimal, there is a chance to try other actions and thus students’ learning
would not be limited. Second, in cases where the decision is crucial, stochastic
execution ensures the policy is followed (see section 3.3 for details). Thus if the
policy is optimal, students can still benefit from it. We empirically compare
stochastic and deterministic policy execution for both the POMDP and MDP
frameworks and we hypothesize that stochastic execution can be more effective.
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In short, our goal is to fully evaluate the effectiveness of POMDPs vs. tab-
ular MDPs for the induction of pedagogical strategies and the effectiveness of
stochastic vs. deterministic policy execution through two studies. In both stud-
ies, we employ a simple baseline pedagogical policy where the system randomly
decides whether to present the next problem as Worked Example (WE) or as
Problem Solving (PS). Because both PS and WE are always considered to be
reasonable educational intervention in our learning context, we refer to such
policy as random yet reasonable policy or random in the following.

2 Related Work

MDP for ITSs. Iglesias et al. [5] applied MDP-based RL in an ITS that teaches
students database design. Their goal was to provide students with direct nav-
igational support through the system’s content. They showed that while stu-
dents using the induced policies had more effective usage behaviors than their
non-policy peers, there was no substantive difference in student learning perfor-
mance. Chi et al. [10] applied the Value Iteration approach to induce pedagogical
policies in a physics ITS. They found that the induced RL policy did not outper-
form the random policy. Similarly, Shen et al.[16] utilized the MDP framework
to induce policies based upon both immediate and delayed rewards in a rule-
based ITS for deductive logic. They found no significant difference in learning
performance between the immediate-reward, delayed-reward, and random poli-
cies. In short, most prior work on the application of MDP to ITSs has found
no significant learning differences between the induced RL policies and baseline
random policies. One potential explanation for this is that MDP relies on a small
set of pre-defined state representations, which may not fully represent the real
interactive learning environments.

POMDPs for ITSs. Mandel et al. [9] applied POMDPs in combination
with a feature compression approach that can handle a wide range of state fea-
tures to induce policies for an educational game. Their results showed that the
induced POMDP policies outperformed both random and expert-designed po-
lices in both simulated and empirical evaluations. Additionally, Rafferty et al.
[12] applied POMDP to represent students’ latent knowledge through combining
graphical models for concept learning with interpreted belief states in the do-
main of alphabet arithmetic. They found that the POMDP policies significantly
outperformed the random policy. Similarly, Clement et al. [3] constructed a stu-
dent model to track students’ individual mastery of each knowledge component,
and then combined it with POMDP to induce instructional policies. Their re-
sults showed that the POMDP policies outperformed the theory-based policies
in terms of students’ knowledge levels and time on task.

In short, prior research on applying POMDPs to induce pedagogical strate-
gies has shown that POMDPs can be more effective than both random baseline
policies and expert-designed or domain theory-based policies. However, as far as
we know, none of these studies has directly compared and empirically evaluated
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POMDP and MDP frameworks, nor have they investigated whether stochastic
execution will be more effective than deterministic execution in this context.

3 Methods

3.1 MDP vs. POMDP

An MDP can be defined as a 4-tuple 〈S ,A,T ,R〉, where S denotes the ob-
servable state space, defined by a set of features that represent the interactive
learning environment; A denotes the space of possible actions for the agent to ex-
ecute; T represents the transition probability where p(s, a, s′) is the probability of
transiting from state s to state s ′ by taking action a. Finally, the reward function
R represents the immediate or delayed feedback: r(s, a, s′) denotes the expected
reward of transiting from state s to state s ′ by taking action a. The optimal
policy π∗ for an MDP can be generated via dynamic programming approaches,
such as Value Iteration. This algorithm operates by finding the optimal value for
each state V ∗(s), which is the expected discounted reward that the agent will
gain if it starts in s and follows the optimal policy to the goal. Generally speak-
ing, V ∗(s) can be obtained by the optimal value function for each state-action
pair Q∗(s, a) which is defined as the expected discounted reward the agent will
gain if it takes an action a in a state s and follows the optimal policy to the end.
The optimal state value V ∗(s) and value function Q∗(s, a) can be obtained by
iteratively updating V (s) and Q(s, a) via equations 1 and 2 until they converge:

Q(s, a) :=
∑
s′

p(s, a, s′) [r(s, a, s′) + γVt−1(s′)] (1)

V (s) := max
a

Q(s, a) (2)

where 0 ≤ γ ≤ 1 is a discount factor. When the process converges, the
optimal policy π∗ can be induced corresponding to the optimal Q-value function
Q∗(s, a), represented as:

π∗(s) = argmaxaQ
∗(s, a) (3)

In the context of an ITS, this induced policy represents the pedagogical strat-
egy by specifying tutorial actions using the current state.

POMDPs are an extension of MDPs, defined by a 7-tuple 〈 S, A, R, Ph , Po,
B, prior 〉, where A and R have the same definitions as in MDPs. S represents
the hidden state space {s1, s2..., sK}. Ph denotes the transition probability where
ph(si, a, sj) is the probability of transiting from the hidden state si to sj by
taking the action a. Po is the conditional observation probability where po(o, a, s)
is the probability of the observation o given a hidden state s and the action a.
Prior denotes the prior probability distribution of hidden states. B denotes the
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belief state space, where Bt(sk) = p(sk|o1:t) is the probability of the underlying
state sk at a particular time t given the historical observation sequence o1:t and
we have:

Bt(sk) =
1

Z

∑
si

Bt−1(si)ph(si, at, sk)po(ot, at, sk) (4)

where Z is the normalization factor. In this work we use an Input-Output Hidden
Markov Model (IOHMM) [1] to construct the belief state space. In particular,
for a given action (input) and observable variables (output) at a time step, its
corresponding belief state is calculated by equation 4 via the forward-backward
algorithm. Note that the observable variables can be represented in different ways
which we will discuss in Sec 3.2. We treat the last observation in each trajectory
as the end state in order to evaluate the transition probability from hidden
states to the terminal states. The IOHMM parameters are estimated through
Expectation-Maximization (EM) algorithm. When training the IOHMM, we run
the EM algorithm 10 times with different randomly assigned initial parameter
settings in order to avoid local optima and treat the highest likelihood as the
global maximum.

The POMDP policy induction procedure can be divided into three steps.
First, we transform the training corpus into the hidden state space through the
Viterbi algorithm. Second, we implement Q-learning to estimate the Q-values
for each hidden state and action pair: (s, a). Third, we estimate the Q value of
belief state b and action a at time step t as:

Qt(b, a) =
∑
s

Bt(s) ·Q(s, a) (5)

Thus, Qt(b, a) is a linear combination of the Q(s, a) for each hidden state with
its corresponding belief Bt(s). When the process converges, π∗ is induced by
taking the optimal action a at time t associated with the highest Qt(b, a).

3.2 Feature Transformation – FAMD

As part of the data pre-processing step, we apply Factor Analysis for Mixed
Data (FAMD) to transform our original state feature space which contains both
continuous and categorical variables into a principle subspace while maintaining
the majority of the relevant information and removing redundancy. When apply-
ing FAMD, we standardize the continuous variables and transform categorical
variables into a complete disjunctive table which is then scaled by the equation:
x

′

d = (xd − wd)/
√
wd, where xd denotes a dimension in the disjunctive table,

and wd = 1
N

∑N
i=1 xdi. Here wd refers to the mean of the corresponding xd. This

scaling method balances the impact of variable types on the subsequent analysis.
After the features are scaled, we apply Principle Component Analysis (PCA) on
the scaled space to extract the important components.
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3.3 Policy Execution: Stochastic vs. Deterministic

Once the policies have been induced from either the MDP or POMDP frame-
works, most existing ITSs execute them deterministically. That is, the tutor
always selects the action with the highest Q-value given the current state. In
stochastic policy execution, we generalize this approach by using a softmax func-
tion [18] which transforms the Q-values into the probability of taking an action
a in the current state s by the acceptance probability function:

p(s, a) =
eτ ·Q(s,a)∑

a′∈A e
τ ·Q(s,a′)

(6)

Here τ is a positive parameter, which controls the variance of probabilities for
the state and action pair. In general, when τ → 0, the stochastic policy execu-
tion is close to random decision-making. When τ → +∞, the stochastic policy
execution becomes deterministic. In order to determine the optimal τ , we use
Importance Sampling [11] which can mathematically evaluate the effectiveness of
policies with different τ values and the best value of τ is 0.06 for both the MDP-
and POMDP-based RL. Moreover, it is important to note that based on equa-
tion 6, for a given state s: if the Q-value of the optimal action a∗ is much higher
than the Q-values of other alternative suboptimal actions, then the stochastic
policy execution becomes deterministic in that the probability of carrying out
the optimal action would be closer to 1; if the difference between them is small,
then the stochastic policy execution becomes closer to random.

4 Deep Thought & Procedure

Deep Thought (DT) is a data-driven ITS used in undergraduate-level Dis-
crete Mathematics (DM) course at North Carolina State University (NCSU).
DT provides students with a graph-based representation of logic proofs which
allows students to solve problems by adding rule applications (represented as
nodes). The system automatically verifies proofs and provides immediate feed-
back on logical errors. Every problem in DT can be presented in the form of
either Worked Example (WE) or Problem Solving (PS). In WE (shown in Fig-
ure 1), students are given a detailed example showing the expert solution for the
problem or were shown the best step to take given their current solution state.
In PS (shown in Figure 2), by contrast, students are tasked with solving the
same problem using the ITS or completing an individual problem-solving step.
By focusing on the pedagogical decisions of choosing WE vs. PS, which would
allow us to strictly control the content to be equivalent for all students.

The problems in DT are organized into six strictly ordered levels and in each
level students are required to complete 3–4 problems. In the pre-test(level 1),
all participants receive the same set of PS problems and students performance
in this level is used to measure their incoming competence. In the following five
training levels 2–6, before the students proceed to a new problem, the system
followed the corresponding RL-induced or random policies to decide whether to
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Fig. 1. Worked Example (WE) GUI Fig. 2. Problem Solving (PS) GUI

present it as PS or WE. The last question on each level is a PS without DT’s
help and thus functioned as a mini-post-test for evaluating students’ knowledge
on the concepts of that level. Since the bulk of the relevant content is covered
in levels 3–6, the student scores on these four levels are used as our post-test
to measure their post-training performance. More specifically, we calculated the
score as posttest =

∑6
i=3 LevelScore(i)/4. In addition to the pre- and post-test

scores, we also evaluated students performance based on Normalized Learning
Gain (NLG = posttest−pretest

100−pretest ) where 100 is the maximum post-test score. In
the following, it is important to note that due to class constraints the pre- and
post-tests covered different concepts and were collected at different times: the
pre-test occurred in a single session before the policies were employed, while the
post-test scores were collected at the end of later levels. Therefore the two scores
cannot be directly aligned.

4.1 Training Corpus

Our training corpus was collected in the Fall 2014 and Spring 2015 semesters. All
students used the same ITS, followed the same general procedure, studied the
same training materials, and worked through the same set of training problems.
The only substantive difference was the presentation of the materials, WE or
PS, randomly decided.

The training dataset contained the interaction logs of 306 students and the
average number of problems solved by students was 23.7 and the average time
that students spent in the tutor was 5.29 hours. From the interaction logs, we
extracted a total of 133 state feature variables, 59 discrete and 74 continuous, to
represent the students’ behaviors and the interactive learning environment. In
addition, we calculated student level scores based on their performance on last
problem in each of levels 1–6. For the sake of simplicity, level scores were nor-
malized to [0, 100] and reward functions were defined as the difference between
the current and previous level scores.

4.2 Research Questions and Study Overview

In this work, we investigated two primary research questions: 1) Is POMDP
more effective than MDP for pedagogical strategy induction in our ITS? and 2)
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Is stochastic policy execution more effective than deterministic execution? We
conducted two empirical experiments, involving the following six policies:

1. MDP-det: MDP using 6 features selected via RL-based feature selection
methods in [15]; deterministic policy execution.

2. MDP-sto: MDP using the same 6 features above; stochastic.
3. POMDP-det: POMDP using the same 6 features above; deterministic.
4. FPOMDP-det: POMDP using FAMD on 133 features; deterministic.
5. FPOMDP-sto: POMDP using FAMD on 133 features; stochastic.
6. Random: Random yet reasonable decision (baseline).

Experiment 1 compared the MDP-det, POMDP-det and Random policies and
Experiment 2 compared the FPOMDP-sto, FPOMDP-det, MDP-sto and Ran-
dom policies. Since all students were drawn from the same target population and
no significant difference was found between the two Random groups in Experi-
ment 1 and 2, we conducted a post-hoc comparison across two experiments.

5 Experiment 1 (Exp1)

105 undergraduate students who enrolled in the DM course at NCSU in Fall
2016 were randomly assigned to one of three conditions: MDP-det (N = 45),
POMDP-det (N = 35), Random (N = 30).

Learning performance. The middle columns in Table 1 show the mean
(and SD) for students’ corresponding learning performance in Exp1. A one-way
ANOVA test showed no significant difference among the three conditions on the
pre-test score: F (2, 102) = 0.33, p = 0.72. Much to our surprise, no significant
difference was found on the post-test score and the NLG. Table 1 shows, although
POMDP-det had slightly higher post-test score and NLG than MDP-det, the
differences were not significant. More surprisingly, both POMDP-det and MDP-
det scored lower than Random on the NLG even though the differences were
not significant. Note that all of the three conditions’ NLGs were not high and it
suggested that all three policies may not be very effective.

Behaviors. The last three columns in Table 1 show the total time (in hours)
that students spent in DT, and the number of PSs and WEs that were determined
by the policies. Note that there were extra 9 problems determined by hard-
coded pre-defined rules rather than polices. A one-way ANOVA test showed no
significant difference on time among the three conditions nor on the number of
WE. But there was significant difference on the number of PSs: F (2, 102) = 6.82,
p = .001. The Tukey HSD test 1 suggested that POMDP-det solved significantly
less PSs than both MDP-det (p = .012) and Random (p = .003).

Discussion. Consistent with prior research on applying MDP to ITSs, Exp1
showed that the MDP policy performed no better than the baseline Random
policy. However, unlike prior research on applying POMDP to ITSs, our POMDP
policy did not outperform the Random policy. One possible explanation is that

1 Post hoc comparisons using the Tukey HSD test with Bonferroni correction
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Table 1. Learning Performance and Behaviors in Experiment 1

Learning Performance Behaviors
Policy pre-test post-test NLG Time #PS #WE

POMDP-det 40.46(20.89) 49.01(16.37) 0.042(0.50) 3.0(1.8) 5.1(1.7) 6.3(0.9)
MDP-det 41.98(21.21) 45.28(16.21) -0.094(0.56) 3.7(1.9) 6.2(1.8) 5.9(1.2)
Random 37.83(21.75) 48.0(15.01) 0.066(0.51) 3.4(2.3) 6.4(1.5) 5.8(1.3)

the state representation was limited. In Exp1, we strictly controlled the state
features used in MDP to be the same as the observation space for POMDP
so that the primary difference between two models was that POMDP used the
belief state space. As our MDP policy was not effective, simply adding the belief
state space did not make a substantive difference. In other words, by limiting the
number of state features in POMDP, we may restricted its full power. Therefore
in Experiment 2, we expanded POMDP by generating the belief state space with
a large range of features and then compared it against MDP and Random.

6 Experiment 2 (Exp2)

181 students enrolled in the DM course at NCSU in the Spring 2017 semester
were randomly assigned into four conditions: FPOMDP-sto (N = 45), FPOMDP-
det (N = 46), MDP-sto (N = 46), and Random (N = 44).

6.1 Results

The middle columns in of Table 2 show the students’ learning performance in
Exp2. No significant difference was found among the four conditions on pre-test
score: F (3, 179) = 2.01, p = 0.11.

Post-test Score & NLG. A one-way ANCOVA test using the pre-test score
as a covariate showed a significant difference among the four conditions on the
post-test score: F (3, 178) = 3.87, p = .010. Similarly, a one-way ANOVA test
showed a significant difference among them on the NLG: F (3, 179) = 4.47, p =
.004. The Tukey HSD tests showed that on the post-test score, FPOMDP-sto
scored significantly higher than Random: p = .008 with the effect size d2 = 0.62
and FPOMDP-det scored marginally significant higher than Random p = .090,
d = 0.41; on the NLG, the two FPOMDP conditions performed closely and both
scored significantly higher than Random: p = .009, d = 0.63 for FPOMDP-
sto and p = .011, d = 0.65 for FPOMDP-det respectively. Finally, no significant
difference was found either between the two FPOMDP conditions and MDP-sto,
or MDP-sto and Random.

To summarize, Exp2 shows that FPOMDP-sto > Random on both post-test
score and NLG, and FPOMDP-det > Random on the NLG. Similar to Exp1,

2 Cohen’s d is defined as the mean learning gain of the experimental group minus the
mean learning gain of the control group, divided by the groups’ pooled standard
deviation.
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Table 2. Learning Performance and Behaviors in Exp2

Learning Performance Behaviors
Policy pre-test post-test NLG Time #PS #WE

FPOMDP-sto 45.03(22.29) 60.58(21.55) 0.253(0.56) 2.4(1.1) 8.6(1.7) 5.1(0.5)
FPOMDP-det 35.03(20.55) 55.09(15.03) 0.247(0.49) 2.0(0.8) 7.8(2.1) 5.5(0.9)

MDP-sto 41.86(23.20) 52.18(21.07) 0.042(0.71) 2.2(1.1) 4.1(1.3) 7.7(1.3)
Random 45.04(23.99) 48.23(18.01) -0.175(0.77) 2.0(0.9) 6.3(1.3) 5.9(0.9)

no significant difference was found between MDP-sto and Random on either
post-test score or NLG.

Behaviors. The last three columns in Table 2 show the total time (in hours)
that students spent and the number of PSs and WEs which were determined by
policies. A one-way ANOVA test showed that there was no significant difference
among the four conditions on time. Additionally, one-way ANOVA tests showed
a significant difference on the number of PSs: F (3, 179) = 69.79, p < .000 and
WEs: F (3, 179) = 69.69, p < .000. Specifically, MDP-sto solved the least PS
but the most WE among the four conditions. The Tukey HSD test indicated
that FPOMDP-sto solved significantly more PSs than MDP-sto (p < .000) and
Random (p < .000) respectively. Thus, we concluded that students under various
conditions indeed performed significantly different. However, it is hard to directly
make a connection between the behaviors and the learning performance. Further
research is needed to assess this in detail.

6.2 Conclusions

While Exp1 shows that POMDP-det is no more effective than either MDP-det or
Random, Exp2 indicates that by incorporating a large range of both continuous
and categorical state features into the POMDP framework through FAMD, the
FPOMDP-det and FPOMDP-sto polices outperform the Random policy while
the MDP-sto policy does not. Therefore, our results support that the POMDP
framework is more suitable for the task of pedagogical strategy induction than
the tabular MDP framework because the former is able to handle a large range
of state features.

7 Post-Hoc Comparisons

In both Exp1 and Exp2, the students were drawn from the same target popu-
lation and were assigned to each condition randomly, thus providing the most
rigorous test of our hypotheses. In this section, we conducted a post-hoc com-
parison across the two experiments in the hope that this wider view will shed
some light on our main results. All of the participants were enrolled in the ex-
periments with the same method but in different semesters. One-way ANOVA
tests indicated that there was no significant difference between the two Ran-
dom groups on the pre-test score: F (1, 72) = 1.73, p = 0.19, the post-test score:
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Table 3. Comparisons Results Across Experiment 1 and 2

Measure Com-POMDP Com-MDP Com-Random Com-Stochastic Com-Deterministic

pre-test 40.08(21.92) 41.92(22.17) 42.12(23.23) 43.46(22.68) 38.26(21.03)
post-test 57.87(18.71) 48.97(19.17) 48.14(16.75) 56.43(21.61) 50.53(16.26)

NLG 0.251(0.53) -0.021(0.65) -0.076(0.68) 0.14(0.65) 0.08(0.55)

F (1, 72) = .003, p = 0.95, and the NLG: F (1, 72) = 2.28, p = 0.14. Thus, for
the purposes of this analysis, we combined the two Random groups into a single
Random group (N = 74). Therefore, we have a total of six groups as described
in section 4.2. A one-way ANOVA test showed no significant difference among
the six groups on the pre-test score: F (6, 281) = 1.19, p = 0.31.

Post-test Scores & NLGs Across Six Groups. A one-way ANCOVA test
using the pre-test score as a covariate found a significant difference among the six
groups on the post-test score: F (5, 281) = 4.65, p = .000. Similarly, a one-way
ANOVA test found a significant difference among the six groups on the NLG:
F (5, 282) = 3.13, p = .009. Specifically, the Tukey HSD tests found that on the
post-test, both FPOMDP-sto and FPOMDP-det scored significantly higher than
MDP-det: p = .001, d = 0.81 and p = .037, d = 0.63 respectively; FPOMDP-
sto also scored significantly higher than the combined Random: p = .004, d =
0.64 and marginally significantly higher than POMDP-det: p = .072, d = 0.60.
Additionally, the Tukey HSD tests found that on NLG, both FPOMDP-sto and
FPOMDP-det scored marginally significantly higher than MDP-det: p = .085,
d = 0.62 and p = .052, d = 0.65 respectively; FPOMDP-sto scored significantly
higher than the combined Random: p = .032, d = 0.53, while FPOMDP-det
scored marginally significantly higher than the combined Random: p = .098, d =
0.54. No significant difference was found for other pairs of conditions. Thus, the
post-hoc comparisons across six groups on post-test score found that FPOMDP-
sto, FPOMDP-det > MDP-det and FPOMDP-sto > Random.

Group Combination. To compare POMDP vs. MDP, we combined FPOMDP-
sto and FPOMDP-det as the combined POMDP group (N = 93), and MDP-sto
and MDP-det as the combined MDP group (N = 86). Note that POMDP-det
was not included in the combined POMDP group because POMDP-det did not
use the full power of the POMDP framework of incorporating a large range of
state features into consideration. Moreover, to compare Stochastic vs. Deter-
ministic, we combined FPOMDP-sto and MDP-sto as the combined Stochastic
group (N= 93), and FPOMDP-det and MDP-det as the combined Deterministic
group (N=86). Table 3 shows the pre- and post-test scores, and the NLGs of the
combined POMDP, the combined MDP, the combined Random, the combined
Stochastic, and the combined Deterministic groups respectively.

7.1 POMDP vs. MDP Framework

A one-way ANOVA test indicated no significant difference on pre-test score
among the combined POMDP, the combined MDP and the combined Random
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groups. A one-way ANCOVA test using the pre-test score as a covariate on the
post-test score showed that there was a significant difference among the three
groups: F (2, 249) = 8.85, p = .000. Similarly, a one-way ANOVA test found that
there was a significant difference among them on the NLG: F (2, 250) = 6.97,
p = .002. Tukey HSD tests showed that the combined POMDP significantly
outperformed the combined MDP on the post-test score: p = .001, d = 0.47
and the NLG: p = .011, d = 0.46; and the combined POMDP also significantly
outperformed the combined Random on the post-test score: p = .000, d = 0.55
and the NLG: p = .009, d = 0.54. However, no significant difference was found
between the combined MDP and the combined Random on either the post-
test score or the NLG. These results are consistent with Exp2 results in that
POMDPs are more suitable than MDPs for pedagogical policy induction.

7.2 Stochastic vs. Deterministic Policy Execution

A one-way ANOVA test showed no significant difference on the pre-test score
among the combined Stochastic, the combined Deterministic, the combined Ran-
dom groups. A one-way ANCOVA test using the pre-test score as a covariate
on the post-test score found a significant difference among the three groups:
F (2, 249) = 5.04, p = .007. A one-way ANOVA test found a marginally sig-
nificant difference among them on the NLG: F (2, 250) = 2.78, p = .064. More
specifically, while no significant difference was found between the combined De-
terministic group and the combined Random on either the post-test score or the
NLG, the Tukey HSD tests showed that the combined Stochastic group scored
significantly higher than the combined Random: p = .005, d = 0.43 on the
post-test score and marginally significantly on the NLG: p = .056, d = 0.32. In
short, our post-hoc comparisons suggested that while no significant difference
was found between deterministic and random policy execution, stochastic policy
execution can be more effective than random execution.

8 Conclusions and Future Work

We empirically evaluate the effectiveness of POMDP vs. tabular MDP for the
induction of pedagogical strategies and stochastic vs. deterministic for the policy
execution. Our results show that: POMDPs can be more effective than tabular
MDPs but their effectiveness does not appear to stem from the belief state space
alone. Rather it stems from the POMDPs’ ability to incorporate a larger range
of state features. Furthermore, our results suggest that while no significant dif-
ference is found between deterministic and random policy execution, stochastic
policy execution can outperform random execution. This may be caused by the
fact that our RL-induced policies may still be sub-optimal. Stochastic policy
execution provides a chance for the system to explore alternative actions and
to obtain better performance, while deterministic policy execution cannot. In
future work, we will empirically compare the effectiveness of POMDP with the
continuous MDP using the same large set of features, in order to verify whether
the belief state space representation is a crucial advantage of POMDP.
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