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a  b  s t  r a  c t

This  paper presents the  use of a Restricted Boltzmann  Machine  to develop  an unsupervised  machine

learning  approach to process breathing  sounds to predict  breathing  rates  and  depth  or  length  of breaths.

Breath  detection and  monitoring  has  been  the  subject  of several  studies  involving  the health monitoring

of patients  on respirators.  We  are  proposing  to extend  the  use of non-invasive  techniques  to provide

measures of physical exhaustion  or  activity. The level  of activity or  exhaustion  could be  used to  prevent

accidents or  manage  exposure  to  physically  demanding  environments such  as  firefighting  or  working

underwater.
© 2018 Elsevier  Ltd. All  rights  reserved.

1. Introduction

The use of non-invasive techniques to provide measures of

physical exertion or activity can be used to prevent accidents or

manage exposure to physically demanding environments such as

firefighting or others as working underwater. This work presents

two alternative methods for predicting breathing rates and depth

or length of breaths. Both methods use a  recording of the regulator

from the self-contained breathing apparatus (SCBA).

The first method uses the concept that the regulator sound is  a

colored white noise source. By fitting Linear Predictive Coefficients

(LPC) all pole filter to the regulator sound, it is  possible to trans-

form a white noise source into a regulator colored sound. Using the

poles as zeros (inverting the filter) will amplify frequency elements

not used in coloring the white noise and minimally attenuate the

spectral peaks of the sound. Using this spectral information and the

filter gain (ratio of filtered to unfiltered) it is  possible to  recognize a

regulator sound. The process of recognizing the sound can be auto-

mated using an unsupervised classifier based on probability density

mixture models and hypothesis testing. The recognition filter is

updated using a Levinson–Durbin algorithm on signals identified as

a regulator sound. Thus, the filter adapts to better track changes in

the  systems being used and provides flexibility to allow the system

to  adapt to different users of the same pieces of equipment.
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The second approach uses an unsupervised deep learning

approach to classify the respirator sounds. The deep learning

method uses a  Restricted Boltzmann Machine (RBM) and the

Euclidean distance between two adjacent frames. The overlap

between frames causes the changes in  the distance measure to

lag behind the changes on the observed signal. The lag is such

that frames with similar trends will have a  low distance measure.

Frames of a  respirator sound (colored noise) will have a greater

distance since the new values in the next frame are  driven by a

random process. This information combined with the normalized

spectral power estimates allows for a  robust classification. A  peri-

odic retraining of the RBM allows for adaption. As stated before,

this is essential to  account for differences between users and equip-

ment.

2. Previous works

Medical applications have focused in determining breathing

rates of patients on respirators [1,2], where the data is collected

through a  network of strain gauges that measure chest move-

ment, and that may  be susceptible of variations due to the body

movements. The data is  then processed using an Artificial Neural

Network (ANN) using a  supervised training approach. This learn-

ing approach requires a large enough training set to account for all

possible variations.

Using capnography [3] is another method in the medical arena.

This method uses a nose sensor placed just below the nostril and a

series of gas sensors to sense O2 and CO2. Inhalations are detected

by rapid changes between these two gasses. In a  SCBA mask these
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gasses may  be difficult to measure without contamination for the

firefighting environment. The use of a  nose sensor is  intrusive, and

the gas sensors would need constant recalibration. A primary rea-

son these are not used by the fire departments in  general.

The use of a temperature sensor placed at the base of the nose,

as discussed in Patel et al. [4] measure breath by looking at changes

resulting from expelling air  warmed by  the body and cooler air

inhaled from the environment. The use of a  nose sensor mounted

in the mask is intrusive. Because of the firefighting environment

and the nature of the face mask the temperature differential may

not be as pronounced.

Another method, proposed by  Güder [5],  looks at using a

hydrometer to measure the moisture content in  the breath. The

change in moisture results from the lungs using water to  facili-

tate oxygen exchange. This is intrusive since the hygrometer would

have to be placed near the noise and mouth. Further complications

of  measurement are the confinement of the SCBA mask and the use

of fire hoses spraying water into the air.

The method proposed by Li et al. [6] involves speech samples

collected from sitting subjects in a  quiet environment. Breathing

cycles are determined using the gradient of the recorded speech

signals to determine the start of breathing cycles. The speech intro-

duces additional quasi-cycles and changes to  the nominal breathing

rate. Li automated the duration detection using the local maxima

and minima of the signal and the time duration between them. The

duration of an inhalation is then found as the length of time the

noise is present in the recording.

The intention of other speech related applications is to  iden-

tify breathing artifacts and remove them from the speech using

primary features based on cepstral or Mel  Frequency Cepstral Coef-

ficients (MFCC). Price et al. [7] automatic breath detection methods

of speech signals were based on cepstral coefficients and used the

Gaussian Mixture Model (GMM)  as the classifier. Price achieved a

detection rate of 93% [7], Wightman and Ostendorf algorithm uses

a Bayesian classifier and achieved a  detection rate of 91.3% [8].

Our intention in this work is  to implement and test fast, unsu-

pervised methods that are suitable specifically for this application.

Unsupervised classification is usually based on clustering meth-

ods, that adjust a model for the data likelihood given a  set of

latent variables, each one representing each one of the clusters.

All these methods can be explained in  terms of graphical proba-

bilistic models [9].  The unsupervised classification is performed by

maximizing the class conditional likelihood. K-means, for example,

starts by assigning k mean values to k possible latent variables, and

it updates each one of these means by computing the mean value of

the samples whose distance to  that mean is the minimum. Gaussian

Mixture Models (GMM) are a  more general method that  uses the

Expectation Maximization (EM) algorithm in  order to iteratively

update the mean vector and covariance matrix of all the likeli-

hoods conditional to each latent variable by averaging the samples

weighted with the posterior probability of the latent variable given

the sample. This can be viewed as a  generalization of the K-means.

GMM is adequate when the data is organized in clusters that  can

be easily approximated with Gaussian functions, thus they need at

least to have some central symmetry around their based on means.

In  other cases, the Gaussian functions can be changed by  others that

fit better the shape of non-symmetric conditional distributions for

which the parameters can still be inferred by  Expectation Maxi-

mization. This is the case of the Gamma  functions, which have been

used to model the distribution of the data used in this paper.

In some cases, the distributions are not easy to approximate

with relatively simple functions like Gaussians or Gamma  func-

tions. When this is  the case and the EM cannot be constructed,

variational inference is needed, which results in more computa-

tionally complex algorithms, that preclude the real time usability of

the procedure [10].  Alternative methods that produce approxima-

tions less dependent of a probabilistic class of functions include the

use of copulas [11].  These models can also be interpreted as graph-

ical probabilistic models, but their training computational burden

is high compared to the previous models.

A way  to  represent the data in a  non-model dependent way is

the use of Restricted Boltzmann Machines (RBM) and their Multi-

layer generalizations, the Deep Boltzmann Machines (DBM). These

methods have structures that are identical to those of the standard

Multilayer Perceptron, and they can be  trained in an unsupervised

way. The training is  based on gradient descent to  optimize the

so-called Contrastive Divergence [12,13], and their computational

burden is comparable these of GMM  if the number of layers and

nodes are moderate.

Of the two  approaches used in  our paper, first one uses a  feature

extraction based on an LPC process, which seems to have a  distribu-

tion that fits Gamma functions properly. The second approach uses

a different type of feature extraction, for which the RBM produces

competitive results with comparable computational burden.

The principal advantages of our methodology with respect to

the existing works are the following:

• The final system will process the regulator noise recorded

through the SCBA mask’s microphone using a small digital signal

processing device with a  Bluetooth modem.
• Both the MAP  and RBM are unsupervised training methods and

do not require training sets.
• Firefighters are moving and performing physically demanding

tasks. Their exertion will also create other changes in the breath-

ing rate.
• Our recordings for the study included non-speech and breath

related sounds, gas powered fan noise, breaching of entryways,

water leaving the nozzle, and alarm sounds.

Like in  [6], we will also look at the interval between start

of breath of events. The time difference between starts can be

likened to an instantaneous measure of breathing rate. The med-

ical community uses an average rate of breath over a 1-min

interval.
• The assumption of Gaussian distributions degrades the perfor-

mance since the energy is  non-negative and finite.
• We use a  Gamma  Mixture Model (GaMM), that provides a  mea-

surably better fit to the observed data than GMM.  The use of the

GaMM enhances the algorithm proposed by Kushner, Harton and

Novorita which proposed the use of a fixed threshold chosen in

advance. The GaMM allows for an adaptive thresholding process

and is  a  more robust recognition filter [14].

3. Acoustic properties and effects of  SCBA masks

The investigation focus on monitoring the breathing rate of the

firefighter using a  SCBA. The SCBA system is a  pressure-demand air

delivery system. When a  user inhales, negative pressure within the

mask causes the regulator valve to open. Pressurized air enters the

mask producing a loud broadband hissing noise. This broadband

signal is incoherent and it has a  mostly flat bandwidth between

500 Hz and 5 KHz. The mask (Fig. 1)  is a rigid structure with a

clear plastic face plate. The mask includes a  flexible rubber seal

that contacts the forehead temples, cheeks and chin of the wearer.

The SCBA system noise also include low air  alarms [14].  Previous

measurements in  the context of this work show that the aggre-

gated sonises noise have spectral peaks at 2.6 kHz, 0.3 kHz, 4.5 kHz,

3.5  kHz, 0.9 kHz, and 1.8 kHz (with the strongest peak at 2.6 kHz

and the weakest at 1.8  kHz).
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Fig. 1.  External and internal views of a  commonly used SCBA mask showing the

voicemitter port [14].

4. Methodology

The movement of air in from the tank makes a very distinctive

sound. We examined two methodologies for detecting and mea-

suring the intervals between sounds (instantaneous breathing rate)

and the length of time  (duration) the recorded signal s[n] is present.

The first method is referred to  as the Feature Extraction using LPC.

The second method discussed involves using a  RBM for detection.

4.1. LPC-GaMM classifier

4.1.1. LPC model

As stated in the introduction, the regulator noise can be modeled

as a colored noise source. The set of LPC determines the characteris-

tics of the transfer function that colors or shapes the white noise  to

look like the regulator noise. This model supports the use of LPC to

represent the noise as a  filter. An initial set of filter coefficients can

be generated from an initial off-line training data set [14]. As men-

tioned in the article, these coefficients will be updated each time a

breathing event is  detected. The following equation expresses the

transfer function of the filter model in the z-domain,

V(z) = A
1

N
∑

k=1

akz−k

(1)

where V(z) is the transfer function used to color the white noise

source. A is the gain of the filter and {ak} is a  set of auto-regression

coefficients found by LPC algorithms. The upper limit of summa-

tion, N, is the order of the all-pole filter. There are many methods

to determine the LPC coefficients but the most efficient being the

Levinson–Durbin algorithm.

Once the coefficients have been determined by  fitting the LPC

filter to an offline training set [14], the filter is inverted so that we

have a Finite Impulse Response (FIR) or moving average (MA) filter

which constitutes the noise “recognition” filter �(z).

�(z) =

N
∑

k=1

akz−k (2)

The recognition filter then generates an estimate of the input

signal. Ideally, in  this application, the gain or relative energy mea-

sure of the estimated input to the actual measured output is

computed by

xframe =

(

rms (s[n] ∗ �[n])

rms(s[n])

)2
∣

∣

∣

∣

frame

(3)

where operator rms(·)  computes the root mean square value of a

window of m samples of a given sequence. The relative energy mea-

sure can be thresholded to  determine both breathing interval and

breath duration. In the above mentioned work [14] this thresh-

old was  selected based on observation of the data and engineering

experience. They indicated that the positive detection events would

trigger a moving average filter on the recognition filter coefficients.

Instead of using a  threshold, we  make use of a  GaMM classifier.

4.1.2. GaMM detection criteria

It is  implemented by using an EM algorithm where the data is

modeled by 2 classes of events. The first event class, CN, is  a  non-

regulator noise event (speech, background noises, and recording

noise). The second class of events, CR,  addresses the regulator noise

event. Each of these events is  associated to  data that is  modeled

with a Gamma  distribution. These distributions have two fitting

statistics: a  shape parameter, k, and a  scale parameter, �,  given by

k̂ =
x̄2

�2
(4)

�̂ =
�2

x̄
(5)

where x̄ represents the sample mean and �2 is the sample variance

of the data. These expressions are manipulations of the expectation

functions for the mean, E[x] =  k�, and variance, Var[x] =  k�2 of the

gamma  distribution.

The Expectation Maximization algorithm [9] first performs a  soft

classification of each training data point by finding the probability

contributions from each event’s distribution. Using Bayes’ rule  we

can write the posteriors

p̂(CN |x) ∝ �̂
N

�(x|k̂N, �̂N) (6)

p̂(CR|x) ∝ �̂
R

�(x|k̂R, �̂R) (7)

where �̂N = p(CN) and �̂R = p(CR) are the prior probabilities of the

events, and k̂N, �̂N are  the fitting parameters for the non-regulator

noise class or event and k̂R, �̂R are the parameters for the regulator

noise event.

These probabilities are then normalized to have probability

mass function properties. The next phase of the calculation uses

normalized soft classification values as an estimate of the proba-

bilities p̂(CN |x), p̂(CR|x) of the data point belonging to each class of

events. Since, the mean is  defined as the sum of the products of the

probabilities of occurrence of the data point and the point’s value

we get,

x̄N =

∑N

k=0
p̂(CN |xk)xk

∑N

k=0
p̂(CN |xk)

(8)

x̄R =

∑N

k=0
p̂(CR|xk)xk

∑N

k=0
p̂(CR|xk)

(9)

The variances are also estimated using the definition of  its

expectation as follows

s2
N =

∑N

k=0
p̂(CN |xk)xk

2

∑N

k=0
p̂(CN |xk)

− x̄2
N (10)

s2
R =

∑N

k=0
p̂(CR|xk)xk

2

∑N

k=0
p̂(CR|xk)

− x̄2
R (11)

The resulting calculation values are then used to compute the

estimated fitting statistics using Eqs. (4) and (5) for the next itera-

tion.
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Fig. 2. The recording is  broken into 6.25 ms frames with 6.125 ms overlap and processed by computing the  measure for the frame and then its  probability ratio.

The prior parameters are then updated by marginalizing the

posteriors as

�̂N =
1

N

N
∑

k=0

p̂(CN |xk) (12)

�̂R =
1

N

N
∑

k=0

p̂(CR|xk)  (13)

Finally, the difference or change between the last set of esti-

mated values of the fitting parameters and the current set of

parameters is computed. When this net change falls below the

threshold the iterative process is  halted. The resulting parameter

sets for each event is then used for the classification of the remain-

ing data not used for training.

The experimental data is classified by choosing the event with

the greatest posterior probability as

p̂(CN |x)
R
≷
N

p̂(CR|x) (14)

The resulting classification rule is  then implemented in a  data

flow as shown in Fig. 2.

4.2. Restricted Boltzmann Machine classifier

4.2.1. Structure of an RBM

A Restricted Boltzmann Machine (RBM) is  a  pairwise Markov

Random Field [9] with layers of hidden nodes h ∈ R
dh and visible

nodes v ∈ R
dv [15] restricted so that nodes within the layer are not

connected (Fig. 3).  In this manner, a joint probability distribution

of the states of each node can be factorized, and then the learning

task is tractable [16,12].

The most used configuration of the posterior probability dis-

tribution p(hi|v) or p(vj|h) of a node given the rest is a Bernoulli

distribution, which assumes that the states of the nodes are binary.

In  the context of this work, the hidden nodes are fed with the fea-

ture vector of the noise, which is previously normalized so their

components are between 0 and 1.  The visible nodes are interpreted

as the probability that their state is 1.  The relationship between the

hidden and the visible layers can be written as

v = Wh  + b

h = W�v + c
(15)

where matrix W ∈ R
dn×dh is called the generative matrix, and its

transpose is the recognition matrix, and where b and c are bias

terms. Thus, the vector of posterior probabilities can be approxi-

mated by p(v|h) = sigm(Wh  +  b) and p(h|v) =  sigm(W�h  +  c) where

Fig. 3. The visible layer is composed of v0,  v1, v2 and a  bias node (b). The hidden

layer is composed of h0 and h1 . Each connecting line presents a weighted connection

between nodes wv,h .

sigm is a  sigmoid function. The training method proposed by Hinton

[12,13] consists of reducing the so-called Contrastive Divergence

between both  distributions. Roughly speaking, this can be inter-

preted as the difference between the cross correlation matrix of

the actual values of the visible and hidden nodes and the cross

correlation matrix of values randomly sampled from their proba-

bility distributions. Assuming a set of normalized input patterns vi,

1 ≤ i ≤  N, the training consists of computing values hi for each input

vi. Then, a  set of random values v′
i

and h′
i are sampled from distri-

bution p(h|vi)  and p(v|hi) and the update at iteration k  is computed

as

�Wk
= E(vh�

|vi)  − E(vh�) ≈

∑

i

vihi
�

−

∑

i

v′
ih

′
i
�

Wk = Wk−1 + ��Wk

(16)

The operation for b and c  is analogous. Our implementation

includes the use of two stacked RBMs (Fig. 4), which can be trained

in  a  sequential way  [17].
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Fig. 4. Structure used to detect the respirator noise events.

4.2.2. RBM feature set

The input has three features: similarity between two  adjacent

frames, spectral power in  the upper frequencies (above 3 kHz), and

4th order finite difference of the signal sequence. The first RBM

is used to shatter the three inputs into a higher dimension space.

The second RBM reassembles the information into a  probability

of a respirator sound detected in a  frame (breathing event) and a

probability of a non-respirator sound detected.

The  first visible node for the visible layer is a measure of the

Euclidean distance between two consecutive frames. Let the con-

tents of the frame be represented as a  vector f[n] such that

f[n]  = [s[k − m]. . .s[k  −  p]. . .s[k]]T (17)

where s[·] are the values recorded, m is the frame size, p  denotes the

frame overlap and n is  an arbitrary index for the frame ranging from

instants k − m to k. Thus, index n −  l references the frame between

instants k − m − lp to  k − lp, in particular

f[n  − 1] = [s[k − m − p]. . .s[k − 2p]. . .s[k −  p]]T (18)

Using the sample mean f̄  [n] of each frame, the frames are cen-

tered and the square root of the dot product between every two

adjacent frames is  computed. This measure is  intended to detect

sudden changes between frames.

The 2nd visible node contains the 4th order finite difference

between elements of the signal s[k]. This is equivalent to a  type II

FIR High Pass filter of order 5 with a  cutoff frequency at 2 kHz and

a  group delay of −0.0011 deg/Hz.

The respirator energy is  uniformly distributed across the

100–5000 Hz band, but most of the voice, background sounds and

audible alarms occupy the region from 500 to 3000 Hz but not uni-

Fig. 6. Placement of impromptu data collection system on  outside of the firefighters

SCBA mask [18].

formly as in the case of the respirator noise. So we  chose to  use

upper spectrum (4134–5000 Hz) as well as the lower spectrum

(0–1000 Hz) to indicate the presence of respirator noise. For this

reason, the last visible node uses the total power of the frequency

range from 4.1 kHz to  5 kHz. This sum is estimated by summing the

magnitude of the Fast Fourier Transform (FFT) of the signal frame

for the discrete frequencies given in  this range.

The RBM convergence is sensitive to the variability of the visi-

ble node signals taking considerable more time to converge when

using un-smoothed data than smoothed data. The data had noise

content above the 3 Hz region. We  used a  low pass filter with a

3 dB  bandwidth is  7.694 Hz to  smooth the data before classifying it.

The cutoff frequency is  based on observing that the fastest instan-

taneous rate observed is 70 breaths per minute. Seventy breaths

per minute implies there is 0.8571 s between each start of a  breath.

This interval is equivalent to 1.1667 Hz.

The RBM is  then implemented in a  data flow as shown in  Fig. 5.

5.  Experiments

5.1. Data description

We conducted a series of recordings for six firefighters with ages

between 20 and 30 at New Mexico’s Fire Department Training Facil-

ities. One recording of 5–30 min  from each fire fighter was  obtained.

The net number of sound data points from all six recording is  the

following: sound samples for each regulator and non-regulator:

9,386,267 vs. 21,149,815; inhalation vs. non-inhalation intervals:

1292 vs. 1358. The sample rate is  11,025 samples per second.

The microphone was  taped to  the outside of the SCBA mask in

the lower left corner out of the field of view of the firefighter and

next to  the regulator (Fig. 6). The microphone also recorded the

voices of other firefighters, as well as the background sounds such

Fig. 5. The recording is  broken into 12.5 ms  frames with 12.325 ms overlap and classified using the RBM to determine noise or respirator sounds.
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as breaching the entryway, the sound of the water nozzle, Personal

Alert Safety System (PASS) alarms, ventilation fans used to  clear

smoke from the rooms, and some electronic interference.

The data was then listened to, and intervals where the regula-

tor’s sound is present were annotated using the PRAAT software (a

free computer software package for the scientific analysis of speech

in phonetics) [19]. Each event in  a  recording was assigned a unique

event identification number. The results of this process were then

saved in a textgrid file.

When the classifier runs, the results are inserted into the text

grid file as a new tier. The annotation file  and the recorded data

were then examined in  PRAAT. The breathing events detected by

the classifier were compared with events from the manually scored

tier. The automatically detected events are then manually com-

pared with the had scored events. Automatically scored events are

assigned the label of a  manually scored event, when the Atutomat-

ically scored event’s start and stop times are contained within a

manually scored events interval. Rarely, an automatic event detec-

tion covered multiple manual events. The event was assigned the

label of the first manually scored event. A  “?” label was  used to  iden-

tify automated system predictions that  do  not correspond to  any of

the manually scored events. A  missed event was left unlabeled in

the automated detector tier.

In examining the data, it became evident that the data had a

distinct banding pattern where the respirator noise would occupy

the upper spectrum (4134–5000 Hz) as well as the lower spectrum

(0–1000 Hz). The middle part of the spectrum is used by the voice

or speech related frequencies and audible alarms such as the PASS

alarm (Fig. 7). This division is  evident in Fig. 8,  where the observed

distribution appears to  be bimodal.

The noise produced by the hose makes the detection more

challenging. The respirator detection measure generally reports a

breath duration less than 2 s.  The noise generated by the water

exiting the fire hose nozzle has features similar to the sound of

the compressed air released from the SCBA tank through the respi-

rators valve opening, which produces false respiration detections

longer than 2 s. When such an event occurs, the whole sequence is

re-filtered with a filter constructed as in  Section 4.1, but where the

data used to fit the model contains the hose noise. The compared

results are shown in Fig. 9.

Another refinement involved updating the auto-regression

coefficients each time a breath was detected. The new coef-

ficients were computed using the autocorrelation matrix and

Fig. 7. Two  tier PRAAT textgrid with spectrogram and signal displayed [19].

Fig. 8.  Typical histogram of percent of power in the (4134–5000 Hz)  band.

Levinson–Durbin approach and the set of signal elements just iden-

tified. The blending rule is given by

a+

i
=

ai +  a−

i

2
(19)

Fig. 9.  Example of fire hose noise section.
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Fig. 10. Physiological processing data flow/overview.

Fig. 11. Relative energy value distributions for the training videos. The  upper pane

shows the GMM distributions, and the lower panel shows the  GaMM result.

where ai is the just computed filter coefficient for tap  i, a−

i
is the

previous coefficient value, and a+

i
is the blended coefficient value.

5.2. Gamma  Mixture Model performance

A GaMM and a  GMM  have been trained using the sound track

from a fire fighter training video. The video focused on firefighters

learning how to manage air consumption when the air remaining

in the SCBA air cylinder is below acceptable levels (FIRE-GROUND

Fire Entrapment - Conserving SCBA Air). A histogram of the values

is generated using a bin resolution of 0.01, from 0 to the maximum

observed relative value. The approximations made with both mod-

els are shown in Fig. 11.  The GaMM is a better fit to the observed

distribution. This is primarily due to the finite distribution of the

Gamma  function. The finite tails limit the contribution of each dis-

tribution to a bounded interval. Gaussian distributions have infinite

tails. These tails influence the summat each mean. Their contri-

butions distort the overall shape of the mixture distribution PDF.

Frames consisted of 6.25 ms  with an overlapping of 6.125 ms  (shift-

ing over one sample).

Fig. 12. RBM Classifier Output – the yellow represents the recorded sound for the

frame  being processed. The red and blue lines represent the outputs of the classifier

for  both the 1st and 2nd RBM. (For  interpretation of the references to  color in this

figure legend, the reader is  referred to the web version of the  article.)

5.3. Analysis

A majority of the breathing events are shown as long dura-

tion intervals without temporary splits. The regulator noise split

occurs in  an interval where more than one sound is present. From

a physiological perspective these intervals are the same breath and

need to process as a single event and not as 2 or more extremely

short breaths (Fig. 12). The detection algorithms also found isolated

instances where the indicator is  positive for less than 100 sam-

ples. These are  sounds that do not indicate a  breathing event but

might indicate a tool was  dropped or some speech activity. A  clus-

ter of these short term events usually indicates that  the firefighter

is talking.
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Table  1

Thresholds.

Firefighter Leave One Out Half & Half

1 0.185 0.4

2  0.203 0.516

3  0.344 0.294

4  0.344 0.414

5  0.277 0.353

6  0.242 0.684

All  Samples 0.266 ± 0.068 0.444 ± 0.139

Fig. 13. The upper frequency power alone curve is shown as the blue dashed line.

The  black dotted line is the  RMS alone line. The red dash dot  line shows the curve

for  using the lower frequency probability alone. The solid magenta line is  the ROC

curve for combined measure.

5.3.1. LPC-GaMM training

In experimenting with the LPC-GaMM approach we needed to

develop a threshold based on the ratio of �̂N to �̂R. The ratios

were determined using two approaches, a  Leave One Out Approach

which pooled the data from five of the six recordings (1). The result-

ing ratio was then used to process the recording not included in

the pool. The idea being to  use as much information as possible.

The second approach is  a  half and half strategy where the first half

of the recording was used to develop the ratio (1) for the second

half processing. This approach shows more variability, but it can be

argued is more indicative of individual firefighter. The leave one out

reflects an averaging across multiple individuals. We  conducted 3

different training modalities. The first one is a leave one out training

where five fire fighter’s data is  used for training and 1 left for test.

The average number of training frames was 35.3 million frames. In

the second modality, which is denoted as half and half, the first part

of the data of each fire fighter’s data is used for training and the rest

for test, with and average training size  of 3.5 million samples.

The GaMM Classifier uses three separate measures, percent

power in upper frequency, percent power in lower frequency, and

the RMS  ratio are shown in  the ROC curves shown in Fig. 13.  The

combined measure is  shown as the solid magenta line.  The result-

ing ROC is better than any of the component measures alone. Note

that in the preceding sections we discussed using the RMS  ratio

alone. This turns out to have a linear ROC curve. By using a product

of both the high frequency and low frequency values, we improved

the performance.

Fig. 14. Four consecutive RBM training instances where the hose noise enters and

leaves  the recording. The  blue line indicates the Receiver Operating Characteristic

curve for the current frame using the current trained weights and the red  dashed

the line the weights used on the next frame.

Table 2

Leave One Out (LOO) and Half and Half (H &  H) signal processing overall correct

classifications.

Firefighter RBM LPC LOO LPC H  & H

1 85.96% 88.50% 89.10%

2 88.76% 95.25% 94.68%

3 88.53% 85.03% 88.51%

4 91.68% 86.17% 89.76%

5 70.42% 56.44% 70.49%

6 79.05% 89.79% 90.24%

All  Samples 84.06 ± 7.57% 82.28 ± 14.98% 86.51 ± 8.44%

5.3.2. RBM training

The RBM features are extracted using 12.5 ms frames with a

12.325 ms  overlap. The RBM algorithm was trained incrementally

using 500,000 feature vectors, each vector corresponding to a

frame. The convergence criteria checks for change in  the sum of

the squared incremental differences of second machine’s hidden

node values to be less than 0.00125. We also imposed a limit on the

number of iterations by using 50 epochs of 10 iterations. In most

instances these values converge quickly (4 or  5 epochs or 7 or more

seconds) but when the hose noise or a  gas powered ventilation fan

is  present and the training times increase to take the full 50 epochs

at 7 or more seconds per epoch. As can be seen in  Fig. 14  the noise

changes the basic shape of the ROC curve shifting the optimal point

to  the right. As  the noise begins to leave the frame the curve begins

to shift back to its previous form. A sequence of 500,000 feature

vectors represents 45 s of recorded data and the training time is

350 s or more. We  had hoped to  be able to  implement the training

in  the same time interval as the frame length and use the weights

on the next interval. The structure of the estimator, i.e. the number

of layers and the number of hidden nodes was previously validated

using the independent training set [14]. The structures tested had

1–3 layers. The number of tested nodes in  the hidden layers was

10, 13, 16, 20, 25, 32, 40, 50, 63, 79 and 100. The best results were

obtained for one hidden layer with 50 nodes.

5.3.3. Signal processing results

Table 2 shows the results for each firefighter. It should be noted

that the recording for firefighter 5 is  the poorest due to the micro-
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Fig. 15. Example fire hose noise section.

phone working loose during the training exercise. Overall, the

accuracy (number of correct classifications) are comparable. The

real difference in Table 2 is  in their standard deviations, the RBM

classifier and the Half and Half training have a  significantly lower

standard deviation of 7.9% and 8.4% vs.  13.7% for the Leave One Out

Approach. This indicates that having one universal threshold for

all firefighters and conditions is not  possible and that the classifier

needs to adapt to  each individual and conditions.

5.3.4. Physiological analysis results

The physiological perspective involves correlating the breathing

signal classifications into intervals (Fig. 10). Each interval is used

to  measure depth of breath. The number of intervals in a  minute

represents the frequency or rate of breathing. It  is important to

understand that the physiological measurements depend on the

accuracy of the signal processing. This process requires that the

classifications first be sorted into long (≥2200 samples) and short

duration (<2200 samples). The short duration intervals are  dis-

carded. The remaining longer intervals are checked for adjacency.

The adjacency being defined as the current interval’s sample rising

edge sample number minus preceding interval’s falling edge sam-

ple number. The two intervals are merged into one interval when

the  adjacency values are less than 300 samples. The final interval

check eliminates intervals that are too long (e.g. 2 s or more).

The  resulting set of intervals are then compared to the manu-

ally scored intervals as discussed above. The results are given in

Table 3. In both sets of results, the overall averages and their stan-

dard deviations (All Samples row) is  significantly different. The RBM

Classifier is slightly better and noticeably more consistent (lower

standard deviation values) than the other LPC-GaMM Classifiers.

Fig. 15 depicts the difference between the LPC and RBM

approaches when examined from a  physiological perspective.

There is a noticeable difference when the data is used to predict

breathing rates (bpm) and breath duration. The regions where the

red line is above the blue line indicate that the false detections cause

the estimate of breaths per minute to be higher than expected. Sim-

Table 3

Leave One Out (LOO) and Half and Half (H &  H) physiological processing overall

correct classifications.

Firefighter RBM LPC LOO LPC H &  H

1 88.31% 85.43% 90.47%

2  96.30% 96.30% 97.78%

3  93.95% 80.90% 89.07%

4  97.68% 87.22% 92.42%

5  77.71% 47.50% 64.17%

6  87.50% 83.08% 84.23%

All  Samples 90.21 ± 7.06% 80.07 ± 16.81% 85.49 ± 11.73%

Table 4

Breath per minute RMS  error.

Firefighter RBM LPC LOO LPC H  & H

1 1.787 2.350 1.487

2 1.514 1.894 1.181

3 3.452 3.637 3.973

4 2.123 5.698 4.886

5 1.028 2.166 1.215

6 2.921 4.585 3.942

All Samples 2.135 ± 0.970 3.388 ± 1.525 2.781 ± 1.667

ilarly, when the red line is below the blue line, the processing failed

to  detect breaths.

The comparison of the charts is best summarized in Table 4.

The Root  Mean Squared (RMS) error the difference between the

observed values and the predicted values. The RBM approach is con-

sistently lower as expected given the higher detection percentages

(Table 3).

The breath duration RMS  Data (Table 5) shows a  marked differ-

ence between the average predicted duration estimation times for

the RBM and the LPC GaMM approaches. The cause of the difference

is supported by the inhalation duration times showing a  tendency

to underestimate the times by as much as 0.14 s vs. 0.04 s.  This dif-

ference may  in part be due to the longer frame size used by the RBM
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Table  5

Inhalation duration RMS  error.

Firefighter RBM (s)  LPC LOO LPC H  & H

1 0.251 0.187 0.214

2  0.267 0.126 0.159

3  0.107 0.139 0.123

4  0.113 0.112 0.098

5  0.313 0.318 0.250

6  0.270 0.193 0.151

All  Samples 0.220 ± 0.088 0.179 ± 0.075 0.166 ±  0.057

(twice that of the LPC) making detecting changes less accurate. In

the future we will use the shorter windows.

6. Conclusion

We  have examined three alternative means of predicting

breathing rates and depth or  length of inhalation times from record-

ings from an SCBA system’s regulator noise.

The LPC based methods use an unsupervised classifier based on

probability density mixture models and hypothesis testing. The use

of a Gamma  Mixture Model improved the fitting of the mixture

model by eliminating the infinite tails of the Gaussian distribu-

tions. The classification of individual points in the sound recording

showed an overall accuracy of 80–85% (Table 2) in  detecting the

regulator sound. However, when the classifier outputs are used to

predict breathing rates and breath duration (Table 3), the number

of breathing events detected ranged from 80% to 85%. This is not  as

accurate as the deep learning RBM approach.

In addition, we believe that the mixture models using two  dis-

tributions do not have enough degrees of freedom to capture the

introduction of additional modes resulting from external noise

sources. As discussed in the paper, the presence of the water sound

exiting the nozzle of the fire hoses required the need of a second

recognition filter. The use of two or  more filters introduces an addi-

tional requirement to  manage the detection process. Therefore, we

added an algorithm to  switch between filters. Furthermore, we

introduced spectral power measurements to assist in  the classi-

fication process as demonstrated in Fig. 13.

The deep learning classifier uses Euclidean distance similarity

measure between two adjacent frames. Adjacent frames sharing

similar trends will have a relatively small distance measure due

to the overlap between frames. The measured distance is  greater

in frames containing respirator sound (colored noise). Combining

the  measure with the normalized spectral power estimates clas-

sification yields an overall accuracy of 90.1% (Table 2). Using the

classifier outputs to predict breathing rates and breath duration

(Table 3)  shows an accuracy of 90%. The qualitative difference is

depicted in Fig. 15. The distance measure is  more robust to exter-

nal noise sources and eliminated the need of a second filter trained

with hose noise. Further, the performance of the RBM with the fire-

fighter 5  recording, where the microphone was not  placed as close

to the regulator as  desired, was still reasonable compared to those

of LPC. The classifier out preformed the LPC-GaMM approaches. Its

drawbacks are also clearly illustrated when examining the average

error in predicting the inhalation duration times. Another concern

is that the RBM classifier using 500,000 points takes a  significant

amount of time to retrain and converge to a stable weight set.

Based on these results, we conclude, that it is possible to  moni-

tor respirator sounds to  estimate breathing rate and depth of breath

using a microphone placed on the regulator of an SCBA system and

that our future work will involve optimizing the use of the RBM

approach. It should be noted that the study was performed in the

firefighting environment and not a  clinical setting. Fundamental

aspects as the effect of age, gender and other variables were not

considered here, but they will need to be studied in  the future and, if

needed, included in  the predictive models. We believe that we  can

design a  microphone mount that places the microphone directly

on top of regulator valve and not on the side of the masked near

the regulator. This should greatly reduce capture of back ground

sounds like the fire hose, other firefighter conversations, ventila-

tion fans. Once he we have a  working prototype of a surface mount

microphone, we plan to repeat these experiments.

As discussed in  the conclusions about the RBM approach, we

need to start examining the RBM algorithms convergence criteria

and see if there is a  balance between the precision of the model and

the level convergence. We  also need to revisit the use of frame sizes

and see if using a  smaller frame size would help improve the inhala-

tion duration time  predictions. We can validate these modifications

in the future experimentation with the surface mount microphone

design.

We  are hoping to use this data combined with some data being

collected in  other studies dealing with speech production and heart

rate data. This combination can provide a mechanism for monitor-

ing the level  of exertion, and possibly predict when the individual

is  getting tired or becoming physically exhausted.
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