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This paper presents the use of a Restricted Boltzmann Machine to develop an unsupervised machine
learning approach to process breathing sounds to predict breathing rates and depth or length of breaths.
Breath detection and monitoring has been the subject of several studies involving the health monitoring
of patients on respirators. We are proposing to extend the use of non-invasive techniques to provide
measures of physical exhaustion or activity. The level of activity or exhaustion could be used to prevent
accidents or manage exposure to physically demanding environments such as firefighting or working
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1. Introduction

The use of non-invasive techniques to provide measures of
physical exertion or activity can be used to prevent accidents or
manage exposure to physically demanding environments such as
firefighting or others as working underwater. This work presents
two alternative methods for predicting breathing rates and depth
or length of breaths. Both methods use a recording of the regulator
from the self-contained breathing apparatus (SCBA).

The first method uses the concept that the regulator sound is a
colored white noise source. By fitting Linear Predictive Coefficients
(LPC) all pole filter to the regulator sound, it is possible to trans-
form a white noise source into a regulator colored sound. Using the
poles as zeros (inverting the filter) will amplify frequency elements
not used in coloring the white noise and minimally attenuate the
spectral peaks of the sound. Using this spectral information and the
filter gain (ratio of filtered to unfiltered) it is possible to recognize a
regulator sound. The process of recognizing the sound can be auto-
mated using an unsupervised classifier based on probability density
mixture models and hypothesis testing. The recognition filter is
updated using a Levinson-Durbin algorithm on signals identified as
a regulator sound. Thus, the filter adapts to better track changes in
the systems being used and provides flexibility to allow the system
to adapt to different users of the same pieces of equipment.
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The second approach uses an unsupervised deep learning
approach to classify the respirator sounds. The deep learning
method uses a Restricted Boltzmann Machine (RBM) and the
Euclidean distance between two adjacent frames. The overlap
between frames causes the changes in the distance measure to
lag behind the changes on the observed signal. The lag is such
that frames with similar trends will have a low distance measure.
Frames of a respirator sound (colored noise) will have a greater
distance since the new values in the next frame are driven by a
random process. This information combined with the normalized
spectral power estimates allows for a robust classification. A peri-
odic retraining of the RBM allows for adaption. As stated before,
this is essential to account for differences between users and equip-
ment.

2. Previous works

Medical applications have focused in determining breathing
rates of patients on respirators [1,2], where the data is collected
through a network of strain gauges that measure chest move-
ment, and that may be susceptible of variations due to the body
movements. The data is then processed using an Artificial Neural
Network (ANN) using a supervised training approach. This learn-
ing approach requires a large enough training set to account for all
possible variations.

Using capnography [3] is another method in the medical arena.
This method uses a nose sensor placed just below the nostril and a
series of gas sensors to sense O, and CO,. Inhalations are detected
by rapid changes between these two gasses. In a SCBA mask these
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gasses may be difficult to measure without contamination for the
firefighting environment. The use of a nose sensor is intrusive, and
the gas sensors would need constant recalibration. A primary rea-
son these are not used by the fire departments in general.

The use of a temperature sensor placed at the base of the nose,
as discussed in Patel et al. [4] measure breath by looking at changes
resulting from expelling air warmed by the body and cooler air
inhaled from the environment. The use of a nose sensor mounted
in the mask is intrusive. Because of the firefighting environment
and the nature of the face mask the temperature differential may
not be as pronounced.

Another method, proposed by Giider [5], looks at using a
hydrometer to measure the moisture content in the breath. The
change in moisture results from the lungs using water to facili-
tate oxygen exchange. This is intrusive since the hygrometer would
have to be placed near the noise and mouth. Further complications
of measurement are the confinement of the SCBA mask and the use
of fire hoses spraying water into the air.

The method proposed by Li et al. [6] involves speech samples
collected from sitting subjects in a quiet environment. Breathing
cycles are determined using the gradient of the recorded speech
signals to determine the start of breathing cycles. The speech intro-
duces additional quasi-cycles and changes to the nominal breathing
rate. Li automated the duration detection using the local maxima
and minima of the signal and the time duration between them. The
duration of an inhalation is then found as the length of time the
noise is present in the recording.

The intention of other speech related applications is to iden-
tify breathing artifacts and remove them from the speech using
primary features based on cepstral or Mel Frequency Cepstral Coef-
ficients (MFCC). Price et al. [ 7] automatic breath detection methods
of speech signals were based on cepstral coefficients and used the
Gaussian Mixture Model (GMM) as the classifier. Price achieved a
detection rate of 93% [7], Wightman and Ostendorf algorithm uses
a Bayesian classifier and achieved a detection rate of 91.3% [8].

Our intention in this work is to implement and test fast, unsu-
pervised methods that are suitable specifically for this application.
Unsupervised classification is usually based on clustering meth-
ods, that adjust a model for the data likelihood given a set of
latent variables, each one representing each one of the clusters.
All these methods can be explained in terms of graphical proba-
bilistic models [9]. The unsupervised classification is performed by
maximizing the class conditional likelihood. K-means, for example,
starts by assigning k mean values to k possible latent variables, and
it updates each one of these means by computing the mean value of
the samples whose distance to that mean is the minimum. Gaussian
Mixture Models (GMM) are a more general method that uses the
Expectation Maximization (EM) algorithm in order to iteratively
update the mean vector and covariance matrix of all the likeli-
hoods conditional to each latent variable by averaging the samples
weighted with the posterior probability of the latent variable given
the sample. This can be viewed as a generalization of the K-means.
GMM is adequate when the data is organized in clusters that can
be easily approximated with Gaussian functions, thus they need at
least to have some central symmetry around their based on means.
In other cases, the Gaussian functions can be changed by others that
fit better the shape of non-symmetric conditional distributions for
which the parameters can still be inferred by Expectation Maxi-
mization. This is the case of the Gamma functions, which have been
used to model the distribution of the data used in this paper.

In some cases, the distributions are not easy to approximate
with relatively simple functions like Gaussians or Gamma func-
tions. When this is the case and the EM cannot be constructed,
variational inference is needed, which results in more computa-
tionally complex algorithms, that preclude the real time usability of
the procedure [10]. Alternative methods that produce approxima-

tions less dependent of a probabilistic class of functions include the
use of copulas [11]. These models can also be interpreted as graph-
ical probabilistic models, but their training computational burden
is high compared to the previous models.

A way to represent the data in a non-model dependent way is
the use of Restricted Boltzmann Machines (RBM) and their Multi-
layer generalizations, the Deep Boltzmann Machines (DBM). These
methods have structures that are identical to those of the standard
Multilayer Perceptron, and they can be trained in an unsupervised
way. The training is based on gradient descent to optimize the
so-called Contrastive Divergence [12,13], and their computational
burden is comparable these of GMM if the number of layers and
nodes are moderate.

Of the two approaches used in our paper, first one uses a feature
extraction based on an LPC process, which seems to have a distribu-
tion that fits Gamma functions properly. The second approach uses
a different type of feature extraction, for which the RBM produces
competitive results with comparable computational burden.

The principal advantages of our methodology with respect to
the existing works are the following:

e The final system will process the regulator noise recorded
through the SCBA mask’s microphone using a small digital signal
processing device with a Bluetooth modem.

e Both the MAP and RBM are unsupervised training methods and
do not require training sets.

e Firefighters are moving and performing physically demanding

tasks. Their exertion will also create other changes in the breath-

ing rate.

Our recordings for the study included non-speech and breath

related sounds, gas powered fan noise, breaching of entryways,

water leaving the nozzle, and alarm sounds.

Like in [6], we will also look at the interval between start
of breath of events. The time difference between starts can be
likened to an instantaneous measure of breathing rate. The med-
ical community uses an average rate of breath over a 1-min
interval.

The assumption of Gaussian distributions degrades the perfor-

mance since the energy is non-negative and finite.

e We use a Gamma Mixture Model (GaMM), that provides a mea-
surably better fit to the observed data than GMM. The use of the
GaMM enhances the algorithm proposed by Kushner, Harton and
Novorita which proposed the use of a fixed threshold chosen in
advance. The GaMM allows for an adaptive thresholding process
and is a more robust recognition filter [14].

3. Acoustic properties and effects of SCBA masks

The investigation focus on monitoring the breathing rate of the
firefighter using a SCBA. The SCBA system is a pressure-demand air
delivery system. When a user inhales, negative pressure within the
mask causes the regulator valve to open. Pressurized air enters the
mask producing a loud broadband hissing noise. This broadband
signal is incoherent and it has a mostly flat bandwidth between
500Hz and 5KHz. The mask (Fig. 1) is a rigid structure with a
clear plastic face plate. The mask includes a flexible rubber seal
that contacts the forehead temples, cheeks and chin of the wearer.
The SCBA system noise also include low air alarms [14]. Previous
measurements in the context of this work show that the aggre-
gated sonises noise have spectral peaks at 2.6 kHz, 0.3 kHz, 4.5 kHz,
3.5kHz, 0.9kHz, and 1.8 kHz (with the strongest peak at 2.6 kHz
and the weakest at 1.8 kHz).
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Voicemitter Ports

Fig. 1. External and internal views of a commonly used SCBA mask showing the
voicemitter port [14].

4. Methodology

The movement of air in from the tank makes a very distinctive
sound. We examined two methodologies for detecting and mea-
suring the intervals between sounds (instantaneous breathing rate)
and the length of time (duration) the recorded signal s[n] is present.
The first method is referred to as the Feature Extraction using LPC.
The second method discussed involves using a RBM for detection.

4.1. LPC-GaMM classifier

4.1.1. LPC model

As stated in the introduction, the regulator noise can be modeled
as a colored noise source. The set of LPC determines the characteris-
tics of the transfer function that colors or shapes the white noise to
look like the regulator noise. This model supports the use of LPC to
represent the noise as a filter. An initial set of filter coefficients can
be generated from an initial off-line training data set [14]. As men-
tioned in the article, these coefficients will be updated each time a
breathing event is detected. The following equation expresses the
transfer function of the filter model in the z-domain,

V)= A1 (1)

N
E akz—k
k=1

where V(z) is the transfer function used to color the white noise
source. A is the gain of the filter and {ay} is a set of auto-regression
coefficients found by LPC algorithms. The upper limit of summa-
tion, N, is the order of the all-pole filter. There are many methods
to determine the LPC coefficients but the most efficient being the
Levinson-Durbin algorithm.

Once the coefficients have been determined by fitting the LPC
filter to an offline training set [14], the filter is inverted so that we
have a Finite Impulse Response (FIR) or moving average (MA) filter
which constitutes the noise “recognition” filter A(z).

N
A@Z) = Zakz”‘ 2)
k=1

The recognition filter then generates an estimate of the input
signal. Ideally, in this application, the gain or relative energy mea-
sure of the estimated input to the actual measured output is
computed by

rms (s[n] * A[n]) 2
rms(s[n]) )

Xpame = ( (3)

frame

where operator rms(-) computes the root mean square value of a
window of m samples of a given sequence. The relative energy mea-

sure can be thresholded to determine both breathing interval and
breath duration. In the above mentioned work [14] this thresh-
old was selected based on observation of the data and engineering
experience. They indicated that the positive detection events would
trigger a moving average filter on the recognition filter coefficients.
Instead of using a threshold, we make use of a GaMM classifier.

4.1.2. GaMM detection criteria

It is implemented by using an EM algorithm where the data is
modeled by 2 classes of events. The first event class, Cy, is a non-
regulator noise event (speech, background noises, and recording
noise). The second class of events, Cg, addresses the regulator noise
event. Each of these events is associated to data that is modeled
with a Gamma distribution. These distributions have two fitting
statistics: a shape parameter, k, and a scale parameter, 0, given by

5(2
o2

=

(4)

R 2
] (5)
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where X represents the sample mean and o2 is the sample variance
of the data. These expressions are manipulations of the expectation
functions for the mean, E[x]=k6, and variance, Var[x] =k6#? of the
gamma distribution.

The Expectation Maximization algorithm [9] first performs a soft
classification of each training data point by finding the probability
contributions from each event’s distribution. Using Bayes’ rule we
can write the posteriors

P(Clx) o ﬁnxu‘w, %) (6)
P(Crlx) o gr(xu?R, Or) (7)

where py = p(Cy) and pg = p(Cg) are the prior probabilities of the
events, and ky, Oy are the fitting parameters for the non-regulator
noise class or event and IAcR, QR are the parameters for the regulator
noise event.

These probabilities are then normalized to have probability
mass function properties. The next phase of the calculation uses
normalized soft classification values as an estimate of the proba-
bilities p(Cy|x), p(Cgr|x) of the data point belonging to each class of
events. Since, the mean is defined as the sum of the products of the
probabilities of occurrence of the data point and the point’s value
we get,

. SN oP(Clxi X
N = <N ~, -~
Zgzop(CN |XI<)

N =
— Z,<:OP(CR|XIc)xk
XR="N %

> keoP(Crlxi)

The variances are also estimated using the definition of its
expectation as follows

Zl]:lzoﬁ(CN Xge )Xk2 _x2
S oP(Cnlxe)

N .

Zk=0p(CR|Xk)xk2 =2

_ X
Zk=0p(CR|xk)

The resulting calculation values are then used to compute the

estimated fitting statistics using Eqs. (4) and (5) for the next itera-
tion.

(8)

(9)

3= (10)

(11)

2 _
Sg =
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Fig. 2. The recording is broken into 6.25 ms frames with 6.125 ms overlap and processed by computing the measure for the frame and then its probability ratio.

The prior parameters are then updated by marginalizing the
posteriors as

N
N 1 o
Py = > _PCulxi) (12)
k=0
1 N
Pr=5 D P(CrIxe) (13)
k=0

Finally, the difference or change between the last set of esti-
mated values of the fitting parameters and the current set of
parameters is computed. When this net change falls below the
threshold the iterative process is halted. The resulting parameter
sets for each event is then used for the classification of the remain-
ing data not used for training.

The experimental data is classified by choosing the event with
the greatest posterior probability as

ﬁ(cmx)%ﬁ(cm (14)

The resulting classification rule is then implemented in a data
flow as shown in Fig. 2.

4.2. Restricted Boltzmann Machine classifier

4.2.1. Structure of an RBM

A Restricted Boltzmann Machine (RBM) is a pairwise Markov
Random Field [9] with layers of hidden nodes h € R% and visible
nodesv € R% [15] restricted so that nodes within the layer are not
connected (Fig. 3). In this manner, a joint probability distribution
of the states of each node can be factorized, and then the learning
task is tractable [16,12].

The most used configuration of the posterior probability dis-
tribution p(h;|v) or p(v;/h) of a node given the rest is a Bernoulli
distribution, which assumes that the states of the nodes are binary.
In the context of this work, the hidden nodes are fed with the fea-
ture vector of the noise, which is previously normalized so their
components are between 0 and 1. The visible nodes are interpreted
as the probability that their state is 1. The relationship between the
hidden and the visible layers can be written as

v=Wh+b

15
h=WTv+c (15)

where matrix W e R%*dn is called the generative matrix, and its
transpose is the recognition matrix, and where b and c are bias
terms. Thus, the vector of posterior probabilities can be approxi-
mated by p(v|h)=sigm(Wh+b) and p(h|v)=sigm(WTh+c) where

Fig. 3. The visible layer is composed of vg, v1, v2 and a bias node (b). The hidden
layer is composed of hg and h;. Each connecting line presents a weighted connection
between nodes w,, j,.

sigm is a sigmoid function. The training method proposed by Hinton
[12,13] consists of reducing the so-called Contrastive Divergence
between both distributions. Roughly speaking, this can be inter-
preted as the difference between the cross correlation matrix of
the actual values of the visible and hidden nodes and the cross
correlation matrix of values randomly sampled from their proba-
bility distributions. Assuming a set of normalized input patterns v;,
1 <i <N, the training consists of computing values h; for each input
v;. Then, a set of random values v; and h; are sampled from distri-
bution p(h|v;) and p(v|h;) and the update at iteration k is computed
as

Aw, =E(vhT|v;)—E(vh")~ Y vih," = vh,'
k Z Z o (16)
Wi = W1 + pAw,

The operation for b and ¢ is analogous. Our implementation
includes the use of two stacked RBMs (Fig. 4), which can be trained
in a sequential way [17].
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Fig. 4. Structure used to detect the respirator noise events.

4.2.2. RBM feature set

The input has three features: similarity between two adjacent
frames, spectral power in the upper frequencies (above 3 kHz), and
4th order finite difference of the signal sequence. The first RBM
is used to shatter the three inputs into a higher dimension space.
The second RBM reassembles the information into a probability
of a respirator sound detected in a frame (breathing event) and a
probability of a non-respirator sound detected.

The first visible node for the visible layer is a measure of the
Euclidean distance between two consecutive frames. Let the con-
tents of the frame be represented as a vector f[n] such that

f[n] = [s[k — m]. . .s[k — p]. . .s[k]]" (17)

where s[-] are the values recorded, m is the frame size, p denotes the
frame overlap and n is an arbitrary index for the frame ranging from
instants k — m to k. Thus, index n — I references the frame between
instants k —m — Ip to k — Ip, in particular

fln—1] =[s[k —m —p]...s[k—2p]...s[k —p]]T (18)

Using the sample mean f[n] of each frame, the frames are cen-
tered and the square root of the dot product between every two
adjacent frames is computed. This measure is intended to detect
sudden changes between frames.

The 2nd visible node contains the 4th order finite difference
between elements of the signal s[k]. This is equivalent to a type II
FIR High Pass filter of order 5 with a cutoff frequency at 2 kHz and
a group delay of —0.0011 deg/Hz.

The respirator energy is uniformly distributed across the
100-5000 Hz band, but most of the voice, background sounds and
audible alarms occupy the region from 500 to 3000 Hz but not uni-

Microphone
Location

Fig. 6. Placement of impromptu data collection system on outside of the firefighters
SCBA mask [18].

formly as in the case of the respirator noise. So we chose to use
upper spectrum (4134-5000Hz) as well as the lower spectrum
(0-1000Hz) to indicate the presence of respirator noise. For this
reason, the last visible node uses the total power of the frequency
range from 4.1 kHz to 5 kHz. This sum is estimated by summing the
magnitude of the Fast Fourier Transform (FFT) of the signal frame
for the discrete frequencies given in this range.

The RBM convergence is sensitive to the variability of the visi-
ble node signals taking considerable more time to converge when
using un-smoothed data than smoothed data. The data had noise
content above the 3 Hz region. We used a low pass filter with a
3 dB bandwidth is 7.694 Hz to smooth the data before classifying it.
The cutoff frequency is based on observing that the fastest instan-
taneous rate observed is 70 breaths per minute. Seventy breaths
per minute implies there is 0.8571 s between each start of a breath.
This interval is equivalent to 1.1667 Hz.

The RBM is then implemented in a data flow as shown in Fig. 5.

5. Experiments
5.1. Data description

We conducted a series of recordings for six firefighters with ages
between 20 and 30 at New Mexico’s Fire Department Training Facil-
ities. One recording of 5-30 min from each fire fighter was obtained.
The net number of sound data points from all six recording is the
following: sound samples for each regulator and non-regulator:
9,386,267 vs. 21,149,815; inhalation vs. non-inhalation intervals:
1292 vs. 1358. The sample rate is 11,025 samples per second.

The microphone was taped to the outside of the SCBA mask in
the lower left corner out of the field of view of the firefighter and
next to the regulator (Fig. 6). The microphone also recorded the
voices of other firefighters, as well as the background sounds such

Z-l > u2 First RBM I Second RBM
I ©, Not
espirator -
Sound - Build > u2 Detected
Recording Frame + __)®
4
> d S/dt4
>
| Perform | Compute Squared
4 FFT Mag for High Freq Detected

Fig. 5. The recording is broken into 12.5 ms frames with 12.325 ms overlap and classified using the RBM to determine noise or respirator sounds.
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as breaching the entryway, the sound of the water nozzle, Personal
Alert Safety System (PASS) alarms, ventilation fans used to clear
smoke from the rooms, and some electronic interference.

The data was then listened to, and intervals where the regula-
tor’s sound is present were annotated using the PRAAT software (a
free computer software package for the scientific analysis of speech
in phonetics) [19]. Each event in a recording was assigned a unique
event identification number. The results of this process were then
saved in a textgrid file.

When the classifier runs, the results are inserted into the text
grid file as a new tier. The annotation file and the recorded data
were then examined in PRAAT. The breathing events detected by
the classifier were compared with events from the manually scored
tier. The automatically detected events are then manually com-
pared with the had scored events. Automatically scored events are
assigned the label of a manually scored event, when the Atutomat-
ically scored event’s start and stop times are contained within a
manually scored events interval. Rarely, an automatic event detec-
tion covered multiple manual events. The event was assigned the
label of the first manually scored event. A “?” label was used to iden-
tify automated system predictions that do not correspond to any of
the manually scored events. A missed event was left unlabeled in
the automated detector tier.

In examining the data, it became evident that the data had a
distinct banding pattern where the respirator noise would occupy
the upper spectrum (4134-5000 Hz) as well as the lower spectrum
(0-1000Hz). The middle part of the spectrum is used by the voice
or speech related frequencies and audible alarms such as the PASS
alarm (Fig. 7). This division is evident in Fig. 8, where the observed
distribution appears to be bimodal.

The noise produced by the hose makes the detection more
challenging. The respirator detection measure generally reports a
breath duration less than 2s. The noise generated by the water
exiting the fire hose nozzle has features similar to the sound of
the compressed air released from the SCBA tank through the respi-
rators valve opening, which produces false respiration detections
longer than 2 s. When such an event occurs, the whole sequence is
re-filtered with a filter constructed as in Section 4.1, but where the
data used to fit the model contains the hose noise. The compared
results are shown in Fig. 9.

Another refinement involved updating the auto-regression
coefficients each time a breath was detected. The new coef-
ficients were computed using the autocorrelation matrix and

365.404000

Spectrogram

2l P I?| | Detector Results
4l 3] |4

20 12] |2 ° Manual Score

4| 4] |4

Visible part 30.000000 s
Total duration 503. 787000

Fig. 7. Two tier PRAAT textgrid with spectrogram and signal displayed [19].
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Fig. 8. Typical histogram of percent of power in the (4134-5000 Hz) band.

Levinson-Durbin approach and the set of signal elements just iden-
tified. The blending rule is given by

+_4tq

4 =— (19)
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Fig. 9. Example of fire hose noise section.



E.E. Hamke et al. / Biomedical Signal Processing and Control 48 (2019) 1-11 7
A
<
c[n]=1,¢c[n—1]=0,c[n—-2]=1
LPC-GaMM [ ] [ ] [ ] )#
or heck f
RERA c[n] Check for yes_ set o
o momentary > cn—-1=1 —
Classifier transitions B no —>
Outputs I
no ﬂ N
A .| Checkfor | no | Checkfor |Y®S_| Record S
“| Falling Edge RisingEdge |  ”| Rising Edge I
vesy 1
Compute | ChecklIf yes -~
Duration Too Short i
no J, A
< Check If yes o
Too Long 4
o § 0
1\ Check Time Between no_ Compute t.IITIE Check If
ﬂr Current and Last Between Rising >} Too Short ves
Intervals is Too Short Edges
iyes A ¢ ho
no
Merge Record
Intervals Interval
Update LPC | _Y®S | If using LPC L |
Filter approach -

Fig. 10. Physiological processing data flow/overview.

T T T T
Histogram(x)

e
®
T

Non-Respirator Noise

e
&

Respirator Noise

Normalized Counts
2
;

°
»

Normalized Values

Non-Respirator Noise

Histogram{x)

Gammat ||

Gamma2
——Combined | |

Respirator Noise

Normalized Counts

o 02 0.4 06 08 1 12 14 16 18 2
Normalized Values

Fig. 11. Relative energy value distributions for the training videos. The upper pane
shows the GMM distributions, and the lower panel shows the GaMM result.

where g; is the just computed filter coefficient for tap i, a; is the
previous coefficient value, and a,fr is the blended coefficient value.

5.2. Gamma Mixture Model performance

A GaMM and a GMM have been trained using the sound track
from a fire fighter training video. The video focused on firefighters
learning how to manage air consumption when the air remaining
in the SCBA air cylinder is below acceptable levels (FIRE-GROUND
Fire Entrapment - Conserving SCBA Air). A histogram of the values
is generated using a bin resolution of 0.01, from O to the maximum
observed relative value. The approximations made with both mod-
els are shown in Fig. 11. The GaMM is a better fit to the observed
distribution. This is primarily due to the finite distribution of the
Gamma function. The finite tails limit the contribution of each dis-
tribution to a bounded interval. Gaussian distributions have infinite
tails. These tails influence the summat each mean. Their contri-
butions distort the overall shape of the mixture distribution PDF.
Frames consisted of 6.25 ms with an overlapping of 6.125 ms (shift-
ing over one sample).

Speech or

Loud Noise
=, &

0.5 — T T T T

Speech or Loud Noise
S—Regulator Noise Split

Isolated Detection

04—

03

02F 5l

0.3 u

05 . . . 1 . .
4.1 4.2 4.3 4.4 45 4.6 4.7 4.8 49 5

Sample In Frame x10°%

Fig. 12. RBM Classifier Output - the yellow represents the recorded sound for the
frame being processed. The red and blue lines represent the outputs of the classifier
for both the 1st and 2nd RBM. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of the article.)

5.3. Analysis

A majority of the breathing events are shown as long dura-
tion intervals without temporary splits. The regulator noise split
occurs in an interval where more than one sound is present. From
a physiological perspective these intervals are the same breath and
need to process as a single event and not as 2 or more extremely
short breaths (Fig. 12). The detection algorithms also found isolated
instances where the indicator is positive for less than 100 sam-
ples. These are sounds that do not indicate a breathing event but
might indicate a tool was dropped or some speech activity. A clus-
ter of these short term events usually indicates that the firefighter
is talking.
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Table 1
Thresholds.
Firefighter Leave One Out Half & Half
1 0.185 04
2 0.203 0.516
3 0.344 0.294
4 0.344 0.414
5 0.277 0.353
6 0.242 0.684
All Samples 0.266 +£0.068 0.444+£0.139
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Fig. 13. The upper frequency power alone curve is shown as the blue dashed line.
The black dotted line is the RMS alone line. The red dash dot line shows the curve
for using the lower frequency probability alone. The solid magenta line is the ROC
curve for combined measure.

5.3.1. LPC-GaMM training

In experimenting with the LPC-GaMM approach we needed to
develop a threshold based on the ratio of py to pg. The ratios
were determined using two approaches, a Leave One Out Approach
which pooled the data from five of the six recordings (1). The result-
ing ratio was then used to process the recording not included in
the pool. The idea being to use as much information as possible.
The second approach is a half and half strategy where the first half
of the recording was used to develop the ratio (1) for the second
half processing. This approach shows more variability, but it can be
argued is more indicative of individual firefighter. The leave one out
reflects an averaging across multiple individuals. We conducted 3
different training modalities. The first one is a leave one out training
where five fire fighter’s data is used for training and 1 left for test.
The average number of training frames was 35.3 million frames. In
the second modality, which is denoted as half and half, the first part
of the data of each fire fighter’s data is used for training and the rest
for test, with and average training size of 3.5 million samples.

The GaMM Classifier uses three separate measures, percent
power in upper frequency, percent power in lower frequency, and
the RMS ratio are shown in the ROC curves shown in Fig. 13. The
combined measure is shown as the solid magenta line. The result-
ing ROC is better than any of the component measures alone. Note
that in the preceding sections we discussed using the RMS ratio
alone. This turns out to have a linear ROC curve. By using a product
of both the high frequency and low frequency values, we improved
the performance.
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Fig. 14. Four consecutive RBM training instances where the hose noise enters and
leaves the recording. The blue line indicates the Receiver Operating Characteristic
curve for the current frame using the current trained weights and the red dashed
the line the weights used on the next frame.

Table 2

Leave One Out (LOO) and Half and Half (H & H) signal processing overall correct

classifications.

Firefighter RBM LPC LOO LPCH&H

1 85.96% 88.50% 89.10%

2 88.76% 95.25% 94.68%

3 88.53% 85.03% 88.51%

4 91.68% 86.17% 89.76%

5 70.42% 56.44% 70.49%

6 79.05% 89.79% 90.24%

All Samples 84.06+7.57% 82.28 +14.98% 86.51+8.44%

5.3.2. RBM training

The RBM features are extracted using 12.5ms frames with a
12.325 ms overlap. The RBM algorithm was trained incrementally
using 500,000 feature vectors, each vector corresponding to a
frame. The convergence criteria checks for change in the sum of
the squared incremental differences of second machine’s hidden
node values to be less than 0.00125. We also imposed a limit on the
number of iterations by using 50 epochs of 10 iterations. In most
instances these values converge quickly (4 or 5 epochs or 7 or more
seconds) but when the hose noise or a gas powered ventilation fan
is present and the training times increase to take the full 50 epochs
at 7 or more seconds per epoch. As can be seen in Fig. 14 the noise
changes the basic shape of the ROC curve shifting the optimal point
to the right. As the noise begins to leave the frame the curve begins
to shift back to its previous form. A sequence of 500,000 feature
vectors represents 45s of recorded data and the training time is
350 s or more. We had hoped to be able to implement the training
in the same time interval as the frame length and use the weights
on the next interval. The structure of the estimator, i.e. the number
of layers and the number of hidden nodes was previously validated
using the independent training set [14]. The structures tested had
1-3 layers. The number of tested nodes in the hidden layers was
10, 13, 16, 20, 25, 32, 40, 50, 63, 79 and 100. The best results were
obtained for one hidden layer with 50 nodes.

5.3.3. Signal processing results
Table 2 shows the results for each firefighter. It should be noted
that the recording for firefighter 5 is the poorest due to the micro-
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Fig. 15. Example fire hose noise section.

phone working loose during the training exercise. Overall, the
accuracy (number of correct classifications) are comparable. The
real difference in Table 2 is in their standard deviations, the RBM
classifier and the Half and Half training have a significantly lower
standard deviation of 7.9% and 8.4% vs. 13.7% for the Leave One Out
Approach. This indicates that having one universal threshold for
all firefighters and conditions is not possible and that the classifier
needs to adapt to each individual and conditions.

5.3.4. Physiological analysis results

The physiological perspective involves correlating the breathing
signal classifications into intervals (Fig. 10). Each interval is used
to measure depth of breath. The number of intervals in a minute
represents the frequency or rate of breathing. It is important to
understand that the physiological measurements depend on the
accuracy of the signal processing. This process requires that the
classifications first be sorted into long (>2200 samples) and short
duration (<2200 samples). The short duration intervals are dis-
carded. The remaining longer intervals are checked for adjacency.
The adjacency being defined as the current interval’s sample rising
edge sample number minus preceding interval’s falling edge sam-
ple number. The two intervals are merged into one interval when
the adjacency values are less than 300 samples. The final interval
check eliminates intervals that are too long (e.g. 2 s or more).

The resulting set of intervals are then compared to the manu-
ally scored intervals as discussed above. The results are given in
Table 3. In both sets of results, the overall averages and their stan-
dard deviations (All Samples row) s significantly different. The RBM
Classifier is slightly better and noticeably more consistent (lower
standard deviation values) than the other LPC-GaMM Classifiers.

Fig. 15 depicts the difference between the LPC and RBM
approaches when examined from a physiological perspective.
There is a noticeable difference when the data is used to predict
breathing rates (bpm) and breath duration. The regions where the
red line is above the blue line indicate that the false detections cause
the estimate of breaths per minute to be higher than expected. Sim-

Table 3
Leave One Out (LOO) and Half and Half (H & H) physiological processing overall
correct classifications.

Firefighter RBM LPC LOO LPCH&H

1 88.31% 85.43% 90.47%

2 96.30% 96.30% 97.78%

3 93.95% 80.90% 89.07%

4 97.68% 87.22% 92.42%

5 77.71% 47.50% 64.17%

6 87.50% 83.08% 84.23%

All Samples 90.21 +£7.06% 80.07 £16.81% 85.49+11.73%
Table 4
Breath per minute RMS error.

Firefighter RBM LPC LOO LPCH&H

1 1.787 2.350 1.487

2 1.514 1.894 1.181

3 3.452 3.637 3.973

4 2.123 5.698 4.886

5 1.028 2.166 1.215

6 2.921 4.585 3.942

All Samples 2.135+0.970 3.388+1.525 2.781+1.667

ilarly, when the red line is below the blue line, the processing failed
to detect breaths.

The comparison of the charts is best summarized in Table 4.
The Root Mean Squared (RMS) error the difference between the
observed values and the predicted values. The RBM approach is con-
sistently lower as expected given the higher detection percentages
(Table 3).

The breath duration RMS Data (Table 5) shows a marked differ-
ence between the average predicted duration estimation times for
the RBM and the LPC GaMM approaches. The cause of the difference
is supported by the inhalation duration times showing a tendency
to underestimate the times by as much as 0.14 s vs. 0.04 s. This dif-
ference may in part be due to the longer frame size used by the RBM
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Table 5
Inhalation duration RMS error.
Firefighter RBM (s) LPC LOO LPCH&H
1 0.251 0.187 0.214
2 0.267 0.126 0.159
3 0.107 0.139 0.123
4 0.113 0.112 0.098
5 0.313 0.318 0.250
6 0.270 0.193 0.151
All Samples 0.220+£0.088 0.179+£0.075 0.166 +£0.057

(twice that of the LPC) making detecting changes less accurate. In
the future we will use the shorter windows.

6. Conclusion

We have examined three alternative means of predicting
breathing rates and depth or length of inhalation times from record-
ings from an SCBA system’s regulator noise.

The LPC based methods use an unsupervised classifier based on
probability density mixture models and hypothesis testing. The use
of a Gamma Mixture Model improved the fitting of the mixture
model by eliminating the infinite tails of the Gaussian distribu-
tions. The classification of individual points in the sound recording
showed an overall accuracy of 80-85% (Table 2) in detecting the
regulator sound. However, when the classifier outputs are used to
predict breathing rates and breath duration (Table 3), the number
of breathing events detected ranged from 80% to 85%. This is not as
accurate as the deep learning RBM approach.

In addition, we believe that the mixture models using two dis-
tributions do not have enough degrees of freedom to capture the
introduction of additional modes resulting from external noise
sources. As discussed in the paper, the presence of the water sound
exiting the nozzle of the fire hoses required the need of a second
recognition filter. The use of two or more filters introduces an addi-
tional requirement to manage the detection process. Therefore, we
added an algorithm to switch between filters. Furthermore, we
introduced spectral power measurements to assist in the classi-
fication process as demonstrated in Fig. 13.

The deep learning classifier uses Euclidean distance similarity
measure between two adjacent frames. Adjacent frames sharing
similar trends will have a relatively small distance measure due
to the overlap between frames. The measured distance is greater
in frames containing respirator sound (colored noise). Combining
the measure with the normalized spectral power estimates clas-
sification yields an overall accuracy of 90.1% (Table 2). Using the
classifier outputs to predict breathing rates and breath duration
(Table 3) shows an accuracy of 90%. The qualitative difference is
depicted in Fig. 15. The distance measure is more robust to exter-
nal noise sources and eliminated the need of a second filter trained
with hose noise. Further, the performance of the RBM with the fire-
fighter 5 recording, where the microphone was not placed as close
to the regulator as desired, was still reasonable compared to those
of LPC. The classifier out preformed the LPC-GaMM approaches. Its
drawbacks are also clearly illustrated when examining the average
error in predicting the inhalation duration times. Another concern
is that the RBM classifier using 500,000 points takes a significant
amount of time to retrain and converge to a stable weight set.

Based on these results, we conclude, that it is possible to moni-
tor respirator sounds to estimate breathing rate and depth of breath
using a microphone placed on the regulator of an SCBA system and
that our future work will involve optimizing the use of the RBM
approach. It should be noted that the study was performed in the
firefighting environment and not a clinical setting. Fundamental
aspects as the effect of age, gender and other variables were not
considered here, but they will need to be studied in the future and, if

needed, included in the predictive models. We believe that we can
design a microphone mount that places the microphone directly
on top of regulator valve and not on the side of the masked near
the regulator. This should greatly reduce capture of back ground
sounds like the fire hose, other firefighter conversations, ventila-
tion fans. Once he we have a working prototype of a surface mount
microphone, we plan to repeat these experiments.

As discussed in the conclusions about the RBM approach, we
need to start examining the RBM algorithms convergence criteria
and see if there is a balance between the precision of the model and
the level convergence. We also need to revisit the use of frame sizes
and see if using a smaller frame size would help improve the inhala-
tion duration time predictions. We can validate these modifications
in the future experimentation with the surface mount microphone
design.

We are hoping to use this data combined with some data being
collected in other studies dealing with speech production and heart
rate data. This combination can provide a mechanism for monitor-
ing the level of exertion, and possibly predict when the individual
is getting tired or becoming physically exhausted.
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