
Securing IoT Apps with Fine-grained Control of Information

Flows

Davino Mauro Junior1, Kiev Gama1, Atul Prakash2

1Centro de Informática (CIn) – Universidade Federal de Pernambuco (UFPE)

Recife, PE, Brazil

2Department of Electrical Engineering and Computer Science – University of Michigan

Ann Arbor, Michigan, U.S.

{dmtsj,kiev}@cin.ufpe.br, aprakash@umich.edu}

Abstract. Internet of Things is growing rapidly, with many connected devices

now available to consumers. With this growth, the IoT apps that manage the

devices from smartphones raise significant security concerns. Typically, these

apps are secured via sensitive credentials such as email and password that need

to be validated through specific servers, thus requiring permissions to access the

Internet. Unfortunately, even when developers of these apps are well-intentioned,

such apps can be non-trivial to secure so as to guarantee that user’s credentials

do not leak to unauthorized servers on the Internet. For example, if the app relies

on third-party libraries, as many do, those libraries can potentially capture and

leak sensitive credentials. Bugs in the applications can also result in exploitable

vulnerabilities that leak credentials. This paper presents our work in-progress on

a prototype that enables developers to control how information flows within the

app from sensitive UI data to specific servers. We extend FlowFence to enforce

fine-grained information flow policies on sensitive UI data.

1. Introduction

The Internet of Things (IoT) is growing rapidly, with 8 billion of “things” connected

in 2017, and 20 billion expected by 2020. Among these, the consumer segment is the

largest, with 63% of installed devices in 2017, in contrast with business-specific domains

[Gartner 2017]. Security has been a key concern, with research focusing on both hardware

(smart devices) and software (IoT frameworks/platforms) to avoid events like the Mirai

Botnet attack, which affected 100,000 IoT devices around the world [Guardian 2016].

Mobile applications targeting IoT devices are commonly developed using IoT

frameworks, which provide a set of guiding protocols and standards that simplify the

implementation of IoT applications. They enable developers to build apps that compute

on data emitted by IoT devices (e.g., camera, heart-rate, and temperature sensors). IoT

devices typically rely on cloud services to allow users to monitor and control the devices

remotely from their smartphones, requiring users to authenticate to the cloud services or,

in some cases, to the device and, under typical permission models used for apps, to grant

the app full access to the Internet.

This permission model is too permissive from a security standpoint as it controls

what sources and sinks the app can access, but not how information flows between sources

and sinks. For example, a permission which grants the permission to send camera data

a
rX

iv
:1

8
1
0
.1

3
3
6
7
v
3

[c

s.
C

R
]

 3
 N

o
v
 2

0
1
8

(source) to the network (sink) can leak data to arbitrary malicious servers, as the permission

does not state which flows of this kind are allowed. In the case of sensitive user-interface

(UI) data, such as userid/passwords for cloud services or devices, existing platforms do not

even provide a mechanism to tag the UI data as sensitive and thus the sensitive UI data can

be arbitrarily leaked to any authorized sink.

Fernandes et al. [Fernandes et al. 2016b] proposed in prior work FlowFence, a

framework based on taint analysis which forces an app developer to declare–through flow

policies–the intended flows of sources and sinks allowed for that app. These policies are

dynamically enforced by FlowFence, which checks whether a flow from source to sink is

allowed. While FlowFence enables developers to secure data flows between sources and

sinks, it did not provide (1) ability to declare User-Interface (UI) fields as sensitive sources

and (2) ability to constrain the network addresses to be used as sinks.

To illustrate the importance of these features, consider, for example, a sensitive UI

field in the app, say a password field, that is used to authenticate into a legitimate server.

Unfortunately, FlowFence cannot prevent an unwanted flow of this field to a NETWORK

sink. This is because (1) the password field could not be declared as a sensitive source; and

(2) even if the password field was declared as sensitive source, FlowFence would allow

the flow anyway, as it cannot enforce flow policies to NETWORK sinks in a fine-grained

manner, i.e., a declared flow of SOURCE->NETWORK permit a flow of SOURCE to every

server on the NETWORK, not just some specific server.

The fundamental problem is that current solutions cannot control information

flows between sources and sinks in a fine-grained manner. Also, they do not treat UI

values as sensitive sources, as to avoid leaking these values to unwanted sinks (e.g., SMS,

NETWORK).

The main contributions of this work are: (1) we enable developers to tag UI fields

holding sensitive data as sensitive sources, enforcing flow policies upon those sources to

sinks; (2) we provide mechanisms for declaring flow policies that secure network requests

to custom endpoints; and (3) though our work was motivated by (in)security of IoT apps,

our prototype is Android-based and broadly applicable for helping developers protect

sensitive credentials in other Android apps as well.

2. Motivating Example

To better understand the importance of securing UI values and network requests in apps,

consider the following scenario. Figure 1 illustrates a screen that may be displayed when a

user wishes to control an IoT device remotely. After looking at 32 consumer best-selling

IoT brands including Nest, Ring, August Home and TP-Link, we found that all of them

presented a login screen. The user is prompted to enter his credentials and authenticate to

the device manufacturer’s cloud server so he can access IoT devices that were registered

on the user’s account. These credentials usually include an email and password, consisting

of sensitive data that, if leaked, could compromise the IoT device being accessed.

On Android, the app needs permission to access NETWORK, as the login process

involves validating the user credentials to a server. This permission is too coarse-grained,

as the data could be sent to any untrusted server if the app was compromised.

Figure 2 shows pseudocode of an IoT app illustrating this scenario. Line 2 shows

The fundamental problem of the permission model resides on information flows not

being controlled once permission to access different sources of data are granted on the apps.

To mitigate this problem, previous studies used information flow techniques to identify po-

tential threats. Some of those techniques used static and dynamic analysis to tackle the prob-

lem [Gordon et al. 2015, Enck et al. 2014, Arzt et al. 2014, Bell and Kaiser 2014]. For

instance, Gordon et al. presented DroidSafe, a static analyzer that used taint tracking to

identify malicious flows between sources and sinks upon installation of the app. Albeit ef-

fective, techniques like DroidSafe have problems dealing with dynamic code injection and

implicit flows [Gordon et al. 2015]. Other techniques proposed were based on flow policies

to control information flow on the program [Viet et al. 2010, Fernandes et al. 2016b].

Building on the idea of using flow policies to control data flows within the app,

Fernandes et al. presented FlowFence, a framework that enables the development of secure

apps under the Android platform [Fernandes et al. 2016b]. Its main concept relies on

developers making the app’s use patterns explicit through flow policies. These policies

are then enforced by FlowFence to control flows of sensitive sources to sinks within the

app [Fernandes et al. 2016b]. Albeit proving to be an effective solution, FlowFence did

not cover UI as sensitive sources. Also, it did not provide mechanisms to control network

requests in a fine-grained manner. In the following, we briefly discuss FlowFence’s design

in Section 4 and how we extend FlowFence to cover such scenarios in Section 5.

4. Background of FlowFence

FlowFence is a framework built for mobile development that enables definition and en-

forcement of information flow policies under the Android platform. Designed with the IoT

architecture in mind, Fernandes et al. introduced a new information flow model referred

as Opacified Computation. This model enables developers to tag sensitive data with taint

labels within the app structure, declaring information flow policies bound to these labels.

The rationale is that, once sensitive data is tagged, any computation using this data must run

in a sandbox, which are separated processes managed by FlowFence. On these sandboxes,

taints are automatically tracked following the defined flow policies. We briefly describe

the architecture of FlowFence and how its main components are used for enforcement of

information flow policies below.

4.1. FlowFence Architecture

FlowFence consists of two major components: (1) Developer-written functions (Quar-

antine Modules) that operate on sensitive data inside FlowFence-created sandboxes and

(2) A Service (Trusted Service) that manages these sandboxes and mediate data flows

between sources and sinks, also enforcing statically defined policies and providing APIs

for accessing sensitive sinks, e.g., NETWORK, SMS.

Quarantine Modules. Quarantine Modules (QM) consist of developer-written

functions that operate on sensitive data and execute only in FlowFence-created sandboxes,

i.e., processes created and managed by the Trusted Service. These QM functions take

serializable data as parameters and return opaque handles, which are references to sensitive

data that can only be declassified by other QMs or via trusted service.

Trusted Service/API. A service responsible for: (1) creation and management of

sandboxes; (2) control of all data flows between QMs tagged by taint labels, enforcing

policy rules linked to these labels; and (3) providing APIs to sensitive sinks that can only

be used within QMs.

Flow Policies. Flow policies are declared in the app manifest. For every sensitive

data, a taint label is defined in the form (appID, name), where appID is the unique identifier

of the app (represented by package name in the FlowFence implementation) and the name

being the taint label itself. Within the declared label, a sensitive source of data is defined

with its intended flows in the form TaintLabel->Sink. For example, one could define a

taint label (com.package.camera_app, TaintCamera) and declare its intended flows, e.g.,

TaintCamera->Network.

5. Our Approach

One of the key challenges of developing secure apps is that there is no official security

guidelines to obtain UI data from the user. Developers often need to send this data through

the network, so securing data flows between sensitive UI sources and network sinks is

crucial. Broadly speaking, our approach is developer-driven in the sense that it enables

developers to secure data flows involving sensitive UI fields and network requests against

dynamic code execution, e.g., malicious third-party libraries. To describe our approach,

we use the scenario presented in Section 2 throughout the rest of this section.

5.1. Sensitive UI.

To secure sensitive UI data, we extend FlowFence so that UI components can be defined

as sensitive sources. For that, we developed new UI components (SensitiveUI) that

extend the Android SDK ones such that default behavior remains intact, but accessing the

value of the components can only be done in a secure manner. Consider an Android UI

component like EditText, for example. To get or set its value programmatically, one

needs to call the getText/setText method in a reference object to that component. As

the created SensitiveUI components extend the Android-based ones, they include both

methods. However, accessing these methods is considered sensitive code and needs to be

executed within a FlowFence QM. For instance, trying to access the getText without

using FlowFence would return an empty value.

Inspired by FlowFence, we use a Key-Value mechanism to store UI values. Each

SensitiveUI component has its value associated with an ID and taint label in the form

(<id, sensitive_value, taint_label>), with taint_label being declared in a

developer-written QM and serving the purpose of tagging the sensitive data to enforce

information flow policies.

Figure 3 shows pseudo-code of the example app, only this time using the Sensi-

tiveUI component instead of the default Android one. Because we build on FlowFence, we

need to split sensitive code into QMs as described in Section 4. Lines 4-6 show a QM

that calls the Trusted API to obtain UI values. FlowFence’s infrastructure ensures that

whenever a QM is called, the return value is converted to an opaque handle. The value

that this opaque handle holds can only be accessed by declassifying the handle within a

FlowFence-created sandbox, thus running in a secure environment. Line 8 shows another

QM responsible for the login process, receiving as parameter opaque handles holding a

reference to email and password values. Lines 11 and 12 show how the UI values are

recovered, with the QM being called. Finally, line 13 shows both email and password

opaque handles being used as parameters to the QM responsible for the login. Notice

that calling the getText method upon any SensitiveUI reference is pointless (line 14),

as the value can only be accessed within a QM. By using this component, the developer

can specify which flows are permitted using the sensitive UI values as sources with flow

policies. FlowFence would then proceed to enforce these policies while blocking all

undeclared flows that use sensitive UI values.

1: application SmartApp

2: SensitiveUI emailUI, passwordUI;

3:

4: String QM_getUIValue(id):

5: value = TrustedAPI.sensitiveUI.getText(id);

6: return value;

7:

8: void QM_login(email, password):

9: // Continue the log in process

10:

11: email = QM.call (QM_getUIValue, emailUI.id);

12: password = QM.call (QM_getUIValue, passwordUI.id);

13: QM.call (QM_login, email, password);

14: password = passwordUI.getText(); // This call returns an empty value

Figure 3. Pseudo-code of a Smart App using secure UI components in a login

screen.

5.2. Secure Network Requests.

To make secure network requests possible using FlowFence infrastructure, we start by

extending the Trusted API so it can execute network requests to custom URLs. For that,

we extend FlowFence’s flow policy language to allow filtering of custom URLs through

the definition of flow policies in a fine-grained manner, which we discuss next.

With FlowFence original implementation, the developer could only specify a flow

of SOURCE to NETWORK, therefore permitting flows to any URL. Now, the developer

can also specify which URL it wants the source data to sink to, declaring the rule in the

form (TaintLabel -> NETWORK, URL). FlowFence policy checker would then compute

the rule, also checking the URL of the request, either granting or denying the flow.

Figure 4 shows pseudocode of the example app described earlier. Line 3 shows the

definition of a policy that specifies a flow between UI sources and network sink, but only

to a specific cloud server’s URL. Line 11 shows how the Trusted API is used to make a

network request responsible for logging in. After obtaining opaque handles referencing

the user’s credentials (line 13 and 14), the QM responsible for login is called passing the

credentials, server’s URL, and taint label as parameters. With the Trusted API, the URL

and taint labels are not considered when checking which network flows are permitted on

the app. Line 16 shows how an unauthorized request to an untrusted server would be

denied, as FlowFence policy checker would validate the requested URL to the declared

flow policy.

Let’s reconsider the scenario in Section 2 and show how the above mechanisms

help reduce the attack surface available to untrusted third-party libraries. Malicious code

that could be executed either by third-party libraries or through dynamic code injection

1: application SmartApp

2: taint_label Taint_UI;

3: allow { Taint_UI -> NETWORK, http://appcloudserver.com }

4: SensitiveUI emailUI, passwordUI;

5:

6: String QM_getUIValue(id):

7: value = TrustedAPI.sensitiveUI.getText(id);

8: return value;

9:

10: void QM_login(email, password, url):

11: TrustedAPI.network.post(email, password, url);

12:

13: email = QM.call (QM_getUIValue, emailUI.id);

14: password = QM.call (QM_getUIValue, passwordUI.id);

15: QM.call (QM_login, email, password, http://appcloudserver.com, Taint_UI);

16: QM.call (QM_login, email, password, http://untrustedserver.com, Taint_UI); // This request would be

denied, as there is no policy specifying a flow between UI source and this URL as sink.

Figure 4. Pseudo-code of a Smart App using secure UI components to send

data through the network.

outside a QM would not gain read access to sensitive UI data in the FlowFence-protected

sandbox due to standard FlowFence mechanisms. Even if injected code manages to

execute inside a QM, it would not be able to leak intercepted credentials to arbitrary

servers due to fine-grain network policy. A limitation of our work that remains is that

we do not prevent phishing attacks that use a fake UI screen generated from outside a

QM by injected code. We plan to address the limitation in our future work. A possible

approach is to extend the mechanisms for protecting against UI deception described

in [Fernandes et al. 2016a, Bianchi et al. 2015] to assist the user in distinguishing the

sensitive UI fields that are generated from within a QM and those that are not.

6. Conclusions

Controlling how data flows within IoT apps in a fine-grained manner is crucial to avoid data

leakage. In this work, we presented our work in progress on a solution for the limitations

of the permission-based model which are often used in current IoT and smartphone

frameworks. We addressed how developers can secure sensitive sources of UI and control

network flows in a fine-grained manner. As future work, we envision the evaluation of our

approach with developers, quantifying both effort to port IoT apps as well as performance

impact. We also plan to develop further ideas for controlling information flows within

mobile apps.

7. Acknowledgements

This reserach is supported by NSF under grants No. 1740897 and 1740916, and by RNP

under grant No. 002951. The authors thank the anonymous reviewers and also Luís Melo

and Harvey Lu as well as professors Darko Marinov and Marcelo d’Amorim for their

valuable feedback.

References

Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., Le Traon, Y., Octeau,

D., and McDaniel, P. (2014). Flowdroid: Precise context, flow, field, object-sensitive

and lifecycle-aware taint analysis for android apps. In Proceedings of the 35th ACM

SIGPLAN Conference on Programming Language Design and Implementation, PLDI

’14, pages 259–269, New York, NY, USA. ACM.

Backes, M., Bugiel, S., and Derr, E. (2016). Reliable third-party library detection in android

and its security applications. In Proceedings of the 2016 ACM SIGSAC Conference

on Computer and Communications Security, CCS ’16, pages 356–367, New York, NY,

USA. ACM.

Bell, J. and Kaiser, G. (2014). Phosphor: Illuminating dynamic data flow in commodity

jvms. In Proceedings of the 2014 ACM International Conference on Object Oriented

Programming Systems Languages & Applications, OOPSLA ’14, pages 83–101, New

York, NY, USA. ACM.

Bianchi, A., Corbetta, J., Invernizzi, L., Fratantonio, Y., Kruegel, C., and Vigna, G. (2015).

What the app is that? deception and countermeasures in the android user interface.

2015:931–948.

Enck, W., Gilbert, P., Han, S., Tendulkar, V., Chun, B.-G., Cox, L. P., Jung, J., McDaniel, P.,

and Sheth, A. N. (2014). Taintdroid: An information-flow tracking system for realtime

privacy monitoring on smartphones. ACM Trans. Comput. Syst., 32(2):5:1–5:29.

Fang, Z., Han, W., and Li, Y. (2014). Permission based android security: Issues and

countermeasures. Computers and Security, 43:205 – 218.

Felt, A. P., Chin, E., Hanna, S., Song, D., and Wagner, D. (2011). Android permis-

sions demystified. In Proceedings of the 18th ACM Conference on Computer and

Communications Security, CCS ’11, pages 627–638, New York, NY, USA. ACM.

Fernandes, E., Chen, Q. A., Paupore, J., Essl, G., Halderman, J. A., Mao, Z. M., and

Prakash, A. (2016a). Android UI deception revisited: Attacks and defenses. In Financial

Cryptography and Data Security - 20th International Conference, FC 2016, Christ

Church, Barbados, February 22-26, 2016, Revised Selected Papers, pages 41–59.

Fernandes, E., Paupore, J., Rahmati, A., Simionato, D., Conti, M., and Prakash, A. (2016b).

Flowfence: Practical data protection for emerging iot application frameworks. In

25th USENIX Security Symposium (USENIX Security 16), pages 531–548, Austin, TX.

USENIX Association.

Gartner (2017). Gartner says 8.4 billion connected "things" will be in use in 2017, up 31

percent from 2016.

Gordon, M. I., Kim, D., Perkins, J. H., Gilham, L., Nguyen, N., and Rinard, M. C. (2015).

Information flow analysis of android applications in droidsafe.

Guardian, T. (2016). https://www.theguardian.com/technology/2016/oct/26/ddos-attack-

dyn-mirai-botnet.

Sun, M. and Tan, G. (2014). Nativeguard: Protecting android applications from third-party

native libraries. In Proceedings of the 2014 ACM Conference on Security and Privacy

in Wireless & Mobile Networks, WiSec ’14, pages 165–176, New York, NY, USA.

ACM.

Viet, V., Tong, T., Clark, A., and Mé, L. (2010). Specifying and enforcing a fine-grained

information flow policy: Model and experiments. 1.

