
Optimal Dynamic Proactive Caching via

Reinforcement Learning

Alireza Sadeghi, Fatemeh Sheikholeslami, and Georgios B. Giannakis

Dept. of Elec. & Comput. Engr. and Digital Technology Center, University of Minnesota, USA

{sadeghi, sheik081, georgios}@umn.edu

Abstract—Storage of popular reusable data at the edge of
a heterogeneous wireless cellular network (HetNet) offers the
premise of shifting the load on low-rate, unreliable backhaul
links during peak traffic hours to off-peak periods. In order to
intelligently capitalize on the limited available caching capacity, a
content-agnostic small base station (SB) needs to proactively learn
what and when to cache. An important challenge in a realistic
network scenario is the spatio-temporal dynamics, inherent to
the unknown content popularity profiles. To cope with such
dynamics, local and global Markov processes are exploited to
model user demands, whose structure and transition probabilities
are assumed unknown. A reinforcement learning framework is
put forth, through which a cache control unit (CCU) at the SB
can continuously learn, track, and possibly adapt to the underlying
dynamics of user demands. A Q-learning algorithm is developed
to solve the proposed reinforcement learning task, unraveling
the optimal caching policy in an online fashion. Simulated tests
demonstrate the effectiveness of the proposed proactive caching
scheme under spatio-temporal dynamic demands.

Index Terms—Proactive caching, dynamic popularity profile,
dynamic user demand, reinforcement learning.

I. INTRODUCTION

The advent of smart phones, tablets, mobile routers and

a massive number of devices connected through the Internet

of Things (IoT) have led to an unprecedented growth in

data demand. Increased number of users undergoing behav-

ioral changes towards video streaming, web browsing, so-

cial networking and online gaming, have urged providers to

pursue new service schemes under which acceptable quality

of experience (QoE) can be provided. Among the emerging

solutions, one promising technique is to densify the network

by deploying small pico- and femtocells, each of which will

be serviced by a low-power, low-coverage small base station

(SB). In this structure, known as heterogeneous cellular net-

works (HetNet), SBs are connected to the backbone network

by a cheap ‘backhaul’ link. While boosting the networking

capacity per area by substantial reuse of scarce resources, e.g.,

frequency, the HetNet architecture is restrained by its low-rate,

unreliable and highly-delayed backhaul links [1].

During peak traffic periods with increased electricity prices,

weak backhaul links can easily become congested, leading

to low QoE for end users. One approach for tackling this

limitation is to shift the excess load from peak traffic to the

off-peak periods. Caching in particular achieves this goal by

fetching the “anticipated” popular contents, i.e., reusable data,

This work was supported by USA NSF grants 1423316, 1508993, 1514056,
1711471.

during off-peak periods, storing this data in memory-enabled

SBs, and reusing them during peak traffic hours [2], [3]. In

order to utilize the caching capacity intelligently, a content-

agnostic SB must exploit available observations to learn what

and when to cache. To this end, machine learning tools can

provide Next-G cellular networks with proactive caching, in

which a “smart” caching control unit (CCU) can learn, track,

and possibly adapt to the dynamics of user demands [2], [4].

Existing efforts in proactive caching are mainly focused

on enabling SBs to learn unknown static content popularity

profiles, and cache the most popular ones accordingly. Multi-

armed bandit formulation [5], its distributed and convexified

versions [6], and utilization of prior information through

transfer-learning [7], [8], are among such recent efforts. Nev-

ertheless, static modeling of popularity profiles is unrealistic

as it neglects the spatio-temporal dynamics of demands. For

instance, the emergence of new contents such as news or the

next El Clásico, along with popularity decay of relatively older

contents cannot be captured by such models. Furthermore, due

to the geographical and temporal variability of cellular data

traffic, global popularity profiles may not always be a good

representative of local demands. Targeting such considerations,

temporal dynamics of user demands have been modeled via

Ornstein-Uhlenbeck process in [9] and tackled through a

mean-field game-theoretic approach. A context-aware proac-

tive caching is studied in [10], [11], where dynamic user

demands are mapped into a pool of prototypical trends.

The present paper introduces a novel approach to account

for spatio-temporal variability of demands casting the task in a

reinforcement learning (RL) framework. Under Markovianity

of the underlying dynamics, RL-enabled caching can learn

the unknown behavior of the network in terms of demand

dynamics and time-varying costs, and consequently unravel

the optimal “caching policy.” The proposed approach is also

capable of differentiating between global and local popularity

patterns, and adapting the caching policy of the local SBs

accordingly. With proper selection of updating stepsize, the

framework is also capable of adaptively tracking demands

driven by non-stationary Morkov chains.

The rest of the paper is organized as follows. System model

and problem formulation are the subject of Section II. Section

III casts the problem in an RL framework, in which an online

solver based on Q-learning is introduced. Section IV presents

simulations for the proposed proactive caching approach, and

Section V delivers concluding remarks.

2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)

978-1-5386-3512-4/18/$31.00 ©2018 IEEE

II. SYSTEM MODEL AND PROBLEM FORMULATION

In order to model a local section of a HetNet, let us consider

a single SB with a low-bandwidth, high-delay, unreliable

backhaul link. The SB is responsible for providing a high

QoE for end users within its coverage area, and is equipped

with a storage capacity of M units of content. Furthermore,

suppose that the network is a time-slotted system with time

intervals t = 1, 2, At the beginning of each interval, the

CCU-enabled SB is to “intelligently” select M files from the

total number of F � M available ones at the backbone, and

cache those for the duration of the upcoming time interval t.

For simplicity, here we assume all contents are of unit size.

Let us define the F × 1 caching-indicator action of CCU at

time interval t by a(t) ∈ A, where A is the set of all feasible

actions defined as A := {a|a ∈ {0, 1}F ,a�1 = M}. That is,

af (t) = 1 indicates that file f is cached for the duration of

time interval t, and af (t) = 0 indicates otherwise.

During time interval t, every local user may request a subset

of available files. For every requested file, if the SB has stored

the content in its cache memory, it will simply transmit the file

to the user, in which case the SB incurs no cost. Conversely,

if the requested content is not available in cache, the SB must

fetch its content through its low-rate backhaul link from the

backbone network, thus incurring certain cost.

According to the received requests by the end of time

interval t, the CCU can compute the local F × 1-vector of

content popularity profile pL(t), whose f -th entry indicates

the expected local demand of file f , that is

[

pL(t)
]

f
=

of local requests for file f at time slot t

Total # of local requests at time slot t
.

Moreover, suppose that the backbone network obtains the F×1
global popularity profile pG(t) similarly, and transmits that to

all the CCUs.

Let us now define the system state at the end of slot t as

s(t) :=
[

p�
G(t),p

�
L (t),a

�(t)
]�

. (1)

In the proposed proactive caching, the goal is to find the

optimal action for the next time interval, namely a∗(t) on

the fly, as the current state s(t) and associated costs are

observed. A schematic of the proposed procedure is depicted

in Fig. 1, and explicit expression of the incurred cost and

analytical formulation of the objective are discussed in the

ensuing subsection.

A. Cost functions and caching strategies

Efficiency of a caching algorithm is measured by how well

it utilizes the available caching capacity in the local SB to

store the most popular files, and how often the demand is met

via fetching through the more expensive backhaul link. There

are multiple types of costs that a CCU may incur during a

time slot t.

The first type of cost pertains to fetching the selected files

and refreshing the cache, denoted by c1,t(a(t),a(t − 1)). In

its most general form, c1,t is a function of the new action

p
G
t

1

M

1a t
Caching Control

Unit (CCU)

p
G

p
G

p
G

Small cell

(fog)

p
L

p
L

p
L

Requests of users

(edge)

Serve files

to edge

p
L
t

Send files

over backhaul

User requests

CCU requests

Global popularity

Markov chain

Local popularity

Markov chain

Network operator

(cloud)

Fig. 1. Schematics of the proposed system model for a caching-enabled SB
in a time-slotted network

a(t), and available contents at the cache, meaning those cached

according to the previous caching action a(t − 1). Note that

the subscript t is to capture the time-varying nature of file

retrieval cost, which can occur due to possible congestion in

the backhaul connection or electricity price surges. A viable

choice of c1,t(·) would be c1,t(a(t),a(t−1)) := λ1,ta
�(t)(1−

a(t−1)), which takes into account possible overlaps between

a(t − 1) and a(t), and essentially counts the number of files

to be fetched and cached prior to time interval t that were not

stored according to previous action a(t− 1).

The second type of cost is incurred during the operational

phase of time slot t for meeting the users’ demands. Denoting

this type of cost by c2,t(s(t)), a proper choice must: i) penalize

requests for cached files significantly less than the ones for

files not stored, and ii) be a non-decreasing function of

popularities [pL]f . Here for simplicity, let us assume that

transmission cost of cached files is negligible, and define

c2,t(s(t)) := λ2,t(1 − a(t))�pL(t), which solely penalizes

the not-cached files proportional to their local popularities.

The third type of cost considered captures how “different”

the caching action a(t) is from the global popularity profile

pG(t). Indeed, it is prudent to consider that the global popu-

larity of files is a good indication of what the profile will look

like in the near future; thus, keeping the caching action close

to pG(t) can reduce future possible costs of caching. These

considerations suggests the third type of cost to be modeled as

c3,t(s(t)) := λ3,t(1− a(t))�pg(t), penalizing the not-cached

files proportional to their global popularities.

Upon taking action a(t), and after the global and lo-

2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)

cal popularity profiles pG(t) and pL(t) are revealed, the

state of SB is updated as s(t), and conditional cost

Ct(s(t − 1),a(t) | pG(t),pL(t)) is incurred. Considering the

peak and off-peak retrieval costs, and time-invariant scenarios

λ1,t = λ1, λ2,t = λ2, and λ3,t = λ3, the overall conditional

cost is

C(s(t− 1),a(t) | pG(t),pL(t))

:= c1 (a(t),a(t− 1)) + c2 (s(t)) + c3(s(t))

= λ1a
�(t)(1− a(t− 1)) + λ2(1− a(t))�pL(t)

+ λ3(1− a(t))�pg(t). (2)

Parameters λ1 and λ2, and λ3 control the proportional

significance of different costs on SB. In general we have

λ1 � λ2, while λ3 is tuned properly to match the interest in

(not)following global popularities in the network. For instance,

if the goal is to solely keep track of the SB’s connected users,

one can set λ3 = 0, while λ3 > 0 is desirable for networks in

which users have high mobility and may change SBs rapidly.

Given the random nature of user demands in local and global

scales, and possible randomness in a(t), the introduced cost

is a random variable, whose mean is given by

E [C (s(t− 1),a(t))]

= EpG(t),pL(t),a(t) [Ct(s(t− 1),a(t) | pG(t),pL(t))]

= λ1 E
[

a�(t)(1− a(t− 1))
]

+ λ2 E
[

(1− a(t))�pL(t)
]

+ λ3 E
[

(1− a(t))�pg(t)
]

(3)

where the expectation is taken with respect to the randomness

in pL(t),pG(t), and a(t).
To outline the proposed Q-learning approach, let us define

policy function π : S → A, which maps any given state s ∈
S into the action set. Thus, under policy π(·), for any state

s(τ), caching is carried out via action a(τ + 1) = π(s(τ))
dictating what files should be cached in the (τ + 1)-st time

slot. Consequently, caching performance is measured via the

state value function defined as

Vπ (s(τ)) := lim
T→∞

E

[

T
∑

t=τ

γt−τC (s(t), π (s(t)))

]

(4)

which is in fact the total cost incurred in an infinite time

horizon, discounted by factor γ ∈ (0, 1). Since taking action

a(t) partially controls the state of SB in the next time slot,

future costs always are effected by previous actions. Discount

factor γ captures this effect, whose tuning trades off current

versus future revenues. Moreover, γ can also capture modeling

uncertainties, as well as imperfections, or dynamics. For

instance, if there is ambiguity about future rewards, or if the

system changes very fast, setting γ to a small value enables one

to prioritize current costs, whereas in a stationary setting one

may prefer to carefully consider future revenues by a larger γ.

The objective of this paper is to find the optimal policy π∗

such that the cost of initial state s0 is minimized, that is,

π∗ = argmin
π∈Π

Vπ (s0) . (5)

where Π denotes the set of all feasible policies. In the ensuing

section, we study the Bellman equations which serve as policy

optimality conditions, and introduce the proposed Q-learning

approach for tackling (5) via reinforcement learning.

III. BELLMAN OPTIMALITY CONDITIONS

By modeling pL(t) and pG(t) as stationary Markov pro-

cesses, and defining [Pa]ss′ as the transition probability of

going from the current state s = s(τ) to the next state

s′ = s(τ + 1) under action a, that is,

P(s′; s,a) := Pr{s(τ + 1) = s′| s(τ) = s, π(s(τ)) = a}

the state value function in (4) can be rewritten in a recursive

fashion as

Vπ (s) = E [C (s, π(s))] + γ
∑

s′∈S

P(s′; s, π(s))Vπ (s
′) , ∀s, s′.

(6)

The set of linear equations in (6) are known as Bellman

equations, and express the value of a state as the superposition

of immediate cost plus a discounted version of future state

values. Were the transition probabilities known, the state value

function for a given policy π could be found by solving the

equations in (6) with complexity O(|S|3).
In the setting of interest however, the transition probabilities

P(s′; s,a) are unknown. The class of adaptive dynamic pro-

gramming algorithms (ADP) aims at learning the transition

probabilities P(s′; s,a) for all s, s′ ∈ S and a ∈ A [12].

Unfortunately, such an approach is often very slow as it

estimates a huge number of |S|2×|A| parameters, which may

not all be necessary. On the other hand, another class of

solvers, known as Q-learning algorithms, aim at learning the

optimal policy π∗ and state-value function in parallel on the

fly as new observations become available; see e.g., [12].

In order to utilize Q-learning solvers, let us first define

the action-state value function Q(s,a) under a given policy

π (·) as

Qπ (s,a) := E [C (s,a))] + γ
∑

s′∈S

P(s′; s,a)Vπ (s
′) (7)

which basically is the instant cost of taking action a when

in state s, followed by the discounted value of the following

states given the future actions are taken according to policy π.

Defining Q∗(s,a) := Qπ∗(s,a) and V ∗(s) := Vπ∗(s), and

using the results in [12], the Bellman equation for the optimal

policy π∗(·) implies

Q∗ (s,a) = E [C (s,a)] + γ
∑

s′∈S

P(s′; s,a) min
a′∈A

Q∗ (s′,a′)

(8)

and the optimal policy is given by

π∗(s) = argmin
a

Q∗(s,a), ∀s ∈ S. (9)

Furthermore, the Q-function and the state value function V (·)
under the optimal policy π∗ are related by

V ∗(s) = min
a

Q∗(s,a). (10)

2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)

Algorithm 1: Proactive caching via Q-learning at CCU

1 Initialize s(0) randomly and Q̂(s,a) = 0 ∀s,a
2 for t=1,2,... do

3 Take action a(t) chosen probabilistically by

a(t) =

{

argmin
a

Q̂ (s(t− 1),a) w.p. 1− εt

random a ∈ A w.p. εt

4 pL(t) and pG(t) are revealed

5 Set s(t) = [pL(t),pG(t),a(t)]
6 Incur cost C(s(t− 1),a(t) | pG(t),pL(t))
7 Update

Q̂t (s(t− 1),a(t)) ← (1− βt)Q̂t−1 (s(t− 1),a(t)) + βt·
[

C (s(t− 1),a(t)|pG(t),pL(t)) + γmin
a

Q̂t−1 (s(t),a)
]

8

Utilizing the optimality conditions in (8)-(10), an online Q-

learning-based solver for finding {π∗(s), Q∗(s,a), V ∗(s)} is

introduced in the ensuing subsection.

A. Optimal proactive caching via Q-learning

Q-learning is an online reinforcement learning method to

jointly estimate the optimal state-action pair value function

Q∗(s,a) ∀s,a, and learn the optimal policy π∗. The pro-

posed Q-learning procedure for proactive caching is out-

lined in the pseudocode tabulated as Algorithm 1. In this

algorithm, the agent updates its estimated Q̂(s(t),a(t + 1))
as C (s(t),a(t+ 1)|pG(t+ 1),pL(t+ 1)) is observed. That

is, given state s(t), Q-learning takes action a(t + 1), ob-

serves the new state s(t + 1), incurs immediate cost of

C (s(t),a(t+ 1)|pG(t+ 1),pL(t+ 1)), and finally updates

its estimated Q̂(s(t),a(t + 1)) while keeping the rest of the

entries in Q̂(·, ·) unchanged. Regarding convergence of the Q-

learning algorithm, i.e., Q̂ (·, ·) → Q∗ (·, ·), a necessary condi-

tion is that all state-action pairs must be continuously updated.

Under this assumption and a variant of the usual stochastic

approximation conditions, Q̂ (·, ·) converges to Q∗ (·, ·) with

probability 1 [12].

To meet the former condition, Q-learning utilizes a proba-

bilistic exploration-exploitation approach in action selection.

That is, at time t, exploitation happens with probability 1− εt
where action a(t) = argmina∈A Q̂(s(t − 1),a) as the antic-

ipated optimal action is chosen, and the exploration happens

with probability εt where SB takes a random exploratory ac-

tion a ∈ A. Parameter εt tunes exploration versus exploitation,

guaranteeing the necessary condition for convergence. During

initial iterations or when the CCU observes considerable shifts

in content popularities, setting εt high promotes exploration in

order to learn the underlying dynamics. On the other hand, in

stationary settings and once “enough” observations are made,

small values of εt promote exploiting the learned Q̂(·, ·) by

taking the estimated optimal action argmina Q̂ (s(t),a).

TABLE I
COST PARAMETERS

Scenario λ1 λ2 λ3

(s1) 10 600 1000
(s2) 600 10 1000
(s3) 10 10 1000
(s4) 0 1000 0
(s5) 0 0 1000

IV. NUMERICAL TESTS

In this section, the performance of the proposed proactive

caching algorithm is assessed via numerical tests. We have

simulated a setup with the total of F = 10 contents and a

caching capacity of M = 3 at the local SB. Moreover, global

popularity profile pG(t) is modeled via a two-state Markov

chain, represented by two popularity profiles p
(1)
G and p

(2)
G ,

each modeled with a Zipf distribution with parameters ηG1 = 1
and ηG2 = 1.5, respectively. That is, for state i ∈ {1, 2}, the

F contents are assigned a random ordering of popularities

and then sorted accordingly in a descending order. Given this

ordering and the Zipf distribution parameter ηGi , the popularity

of the f -th content is equal to

[

p
(i)
G

]

f
=

1

fηG
i

F
∑

l=1

1

l
ηG
i

for i = 1, 2.

The summation term in the denominator normalizes the com-

ponents into a valid probability mass function, and parameter

ηGi ≥ 0 controls the skewness of the popularities. Specifically,

ηGi = 0 yields a uniform spread of popularity among the

contents, while a large value of ηGi generates more skewed

popularities.

The Markov transition probabilities are given by the transi-

tion matrix

τ :=

[

τ1,1 τ1,2
τ2,1 τ2,2

]

=

[

0.6 0.4
0.45 0.55

]

where τi,j indicates transition probability form state i to j,

i, j ∈ {1, 2}.

Similarly, we consider a two-state Markov chain with Zipf

parameters ηL1 = 1.2 and ηL2 = 1.7 to model the local content

popularities. The state transition matrix τ
′ for local popularity

profile is set as

τ
′ :=

[

τ ′1,1 τ ′1,2
τ ′2,1 τ ′2,2

]

=

[

0.35 0.65
0.75 0.25

]

.

In the utilized Q-learning algorithm, βt is set to a constant

β = 0.8, and the exploration-exploitation parameter εt = 0.05.

The proposed algorithm is run with different cost parameters

reported in table. I and the performance is averaged over 1000

independent realizations of the system for each setting.

Fig. 2 plots the evolution of cost versus iteration index for

the proposed approach, demonstrating its convergence to the

cost of optimal offline policy derived with known transition

probabilities. Slower convergence under (s1) is because of

2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)

10
1

10
2

10
3

10
4

10
5

Iteration index

400

600

800

1000

1200

1400

1600

1800
C

o
st

Q-learning

Optimal offline

Scenario 2

Scenario 1

Scenario 3

Fig. 2. Evolution of the overall cost versus iteration index

10
0

10
1

10
2

10
3

10
4

Iteration index

0

5

10

15

20

25

30

%
 o

f
ac

co
m

o
d
at

ed
 r

eq
u
es

ts
 v

ia
 c

ac
h
e

Optimal offline

Q-learning

Fig. 3. Percentage of accommodated requests via cache vs. iteration index

the relatively high local and global mismatch cost parameters

which necessitates learning both the global and local popular-

ity dynamics in order to find the optimal policy. In contrast,

under (s2) λ2 corresponding to local popularity is low, thus

influence of local popularity on optimal policy is reduced, and

faster convergence is obtained. Finally setting λ1 = 10, further

reduces cache refreshing cost and more importance falls on

learning global popularity Markov chain, and a slightly faster

convergence is obtained compared to (s2).

Furthermore, Fig. 3 plots the percentage of requests served

directly via the locally-available cached contents. Observe

that penalizing local-popularity mismatches in (s4) forces the

caching policy to adapt to local request dynamics, while (s5)

prioritizes tracking global popularities, leading to a lower

cache hit rate.

All in all, the conducted simulation tests illustrate the

significance and effectiveness of the proposed online RL-

enabled caching, implemented locally in the SBs. To endow

the algorithm with scalability, and thus enable implementation

in real network scenarios involving large-scale Markov chains

where the size of contents can be very large, function ap-

proximation schemes can be considered instead. An extended

version of this work focusing on linear function approximation

can be found in [13].

V. CONCLUSION

The present work addresses caching in Next-G cellular

networks, in which local and global content popularity profiles

exhibit spatio-temporal dynamics. In this context, proactive

caching is accommodated by casting the problem in a rein-

forcement learning framework, for which an online solver with

optimality guarantees is proposed. Distributed and scalable

approaches for tackling the curse of dimensionality, e.g.,

parametric and non-parametric techniques for Q-function ap-

proximation, are among the future directions we will pursue.

REFERENCES

[1] J. G. Andrews, H. Claussen, M. Dohler, S. Rangan, and M. C. Reed,
“Femtocells: Past, present, and future,” IEEE Journal on Selected Areas

in Communications, vol. 30, no. 3, pp. 497–508, April 2012.
[2] G. Paschos, E. Bastug, I. Land, G. Caire, and M. Debbah, “Wireless

caching: Technical misconceptions and business barriers,” IEEE Com-

munications Magazine, vol. 54, no. 8, pp. 16–22, August 2016.
[3] N. Golrezaei, A. F. Molisch, A. G. Dimakis, and G. Caire, “Fem-

tocaching and device-to-device collaboration: A new architecture for
wireless video distribution,” IEEE Communications Magazine, vol. 51,
no. 4, pp. 142–149, April 2013.

[4] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K.
Soong, and J. C. Zhang, “What will 5G be?” IEEE Journal on Selected

Areas in Communications, vol. 32, no. 6, pp. 1065–1082, June 2014.
[5] P. Blasco and D. Gündüz, “Learning-based optimization of cache content

in a small cell base station,” in IEEE Inte. Conference on Communica-

tions, June 2014, pp. 1897–1903.
[6] A. Sengupta, S. Amuru, R. Tandon, R. M. Buehrer, and T. C. Clancy,

“Learning distributed caching strategies in small cell networks,” in Proc.

of 11th Inte. Symposium on Wireless Communications Systems, August
2014, pp. 917–921.

[7] E. Bastug, M. Bennis, and M. Debbah, “A transfer learning approach
for cache-enabled wireless networks,” in Proc. of 13th International

Symposium on Modeling and Optimization in Mobile, Ad Hoc, and

Wireless Networks, May 2015, pp. 161–166.
[8] B. N. Bharath, K. G. Nagananda, and H. V. Poor, “A learning-based

approach to caching in heterogenous small cell networks,” IEEE Trans-

actions on Communications, vol. 64, no. 4, pp. 1674–1686, April 2016.
[9] H. Kim, J. Park, M. Bennis, S.-L. Kim, and M. Debbah, “Ultra-dense

edge caching under spatio-temporal demand and network dynamics,”
arXiv preprint arXiv:1703.01038, 2017.

[10] S. Mller, O. Atan, M. van der Schaar, and A. Klein, “Context-aware
proactive content caching with service differentiation in wireless net-
works,” IEEE Transactions on Wireless Communications, vol. 16, no. 2,
pp. 1024–1036, February 2017.

[11] S. Li, J. Xu, M. van der Schaar, and W. Li, “Trend-aware video caching
through online learning,” IEEE Transactions on Multimedia, vol. 18,
no. 12, pp. 2503–2516, December 2016.

[12] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
MIT press Cambridge, 1998, vol. 1, no. 1.

[13] A. Sadeghi, F. Sheikholeslami, and G. B. Giannakis, “Optimal and
scalable caching for 5G using reinforcement learning of space-time
popularities,” IEEE Journal of Selected Topics in Signal Processing,
vol. 12, no. 1, pp. 180–190, February 2018.

2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)

