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Abstract—Kernel-based methods enjoy powerful generaliza-
tion capabilities in learning a variety of pattern recognition
tasks. When such methods are provided with sufficient training
data, broadly-applicable classes of nonlinear functions can be
approximated with desired accuracy. Nevertheless, inherent to
the nonparametric nature of kernel-based estimators are compu-
tational and memory requirements that become prohibitive with
large-scale datasets. In response to this formidable challenge,
the present work puts forward a low-rank, kernel-based, feature
extraction approach that is particularly tailored for online opera-
tion. A novel generative model is introduced to approximate high-
dimensional (possibly infinite) features via a low-rank nonlinear
subspace, the learning of which lends itself to a kernel function
approximation. Offline and online solvers are developed for the
subspace learning task, along with affordable versions, in which
the number of stored data vectors is confined to a predefined
budget. Analytical results provide performance bounds on how
well the kernel matrix as well as kernel-based classification and
regression tasks can be approximated by leveraging budgeted
online subspace learning and feature extraction schemes. Tests
on synthetic and real datasets demonstrate and benchmark
the efficiency of the proposed method for dynamic nonlinear
subspace tracking as well as online classification and regressions
tasks.

Index Terms—Online nonlinear feature extraction, kernel
methods, classification, regression, budgeted learning, nonlinear
subspace tracking.

I. INTRODUCTION

KERNEL-BASED expansions can boost the generaliza-

tion capability of learning tasks by powerfully modeling

nonlinear functions, when linear functions fall short in prac-

tice. When provided with sufficient training data, kernel meth-

ods can approximate arbitrary nonlinear functions with desired

accuracy. Although “data deluge” sets the stage by providing

the “data-hungry” kernel methods with huge datasets, limited

memory and computational constraints prevent such tools from

fully exploiting their learning capabilities. In particular, given

N training D × 1 vectors {xν}Nν=1, kernel regression or

classification machines take O(N2D) operations to form the

N × N kernel matrix K, memory O(N2) to store it, and

O(N3) computational complexity to find the sought predictor

or classifier.
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In this context, several efforts have been made in dif-

ferent fields of stochastic optimization, functional analysis,

and numerical linear algebra to speed up kernel machines

for “big data” applications [9], [12], [21], [26], [33], [41],

[52]. A common approach to scaling up kernel methods is to

approximate the kernel matrix K by a low-rank factorization;

that is, K ' K̂ := Z>Z, where Z ∈ R
r×N with r (� N)

is the reduced rank, through which storage and computational

requirements go down to O(Nr) and O(Nr2), respectively.

Kernel (K)PCA [38] provides a viable factorization for a such

low-rank approximation, at the cost of order O(N2r) compu-

tations. Alternatively, a low-rank factorization can be effected

by randomly selecting r training vectors to approximate the

kernel matrix [23]. Along these lines, Nystrom approximation

[52], and its advanced renditions [12], [22], [44], [48], [54] are

popular among this class of randomized factorizations. They

trade off accuracy in approximating K with K̂, for reducing

KPCA complexity from O(N2r) to O(Nr). Their merits are

well-documented for nonlinear regression and classification

tasks performed offline [1], [8], [55]. Rather than factorizing

K, one can start from high-dimensional (lifted) feature vectors

φ(xν) whose inner product induces the kernel κ(xi,xj) :=
〈φ(xi),φ(xj)〉 [25], [26], [33], [42], [53]. Approximating

φ(x) through an r × 1 vector z, the nonlinear kernel can be

approximated by a linear one as κ(xi,xj) ' z>i zj . Exploiting

the fast linear learning machines [13], [41], the kernel-based

task then reduces to learning a linear function over features

{zν}Nν=1, which can be achieved in O(Nr) operations. Such a

computationally attractive attribute is common to both kernel

matrix factorization and lifted feature approximation. Note

however, that online Nystrom-type schemes are not available,

while feature approximation algorithms are randomized, and

thus they are not data driven.

Different from kernel matrix and feature approximations

performed in batch form, online kernel-based learning algo-

rithms are of paramount importance. Instead of loading the

entire datasets in memory, online methods iteratively pass over

the set from an external memory [5], [18], [20], [21], [40],

[41], [45]. This is also critical when the entire dataset is not

available beforehand, but is acquired one datum at a time.

For large data streams however, as the number of data in-

creases with time, the support vectors (SVs) through which the

function is estimated, namely the set S in the approximation

f(x) ' f̂(x) =
∑

i∈S αiκ(xi,x), also increases in size. Thus,

the function evaluation delay as well as the required memory

for storing the SV set eventually become unaffordable. Efforts

have been devoted to reducing the number of SVs while trying
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to maintain performance on unseen data (a.k.a. generalization

capability) [11]. In more recent attempts, by restricting the

maximum number of SVs to a predefined budget B, the growth

of algorithmic complexity is confined to an affordable limit,

that is maintained throughout the online classification [10],

[49], [50] or regression [47] task.

The present work builds a generative model according to

which the high (possibly infinite)-dimensional features are

approximated by their projection onto a low-rank subspace,

thus providing a linear kernel function approximation (Sec-

tion II). In contrast to [12], [25], [33], [54], where due to the

nature of randomization the number of required features for

providing an accurate kernel function approximation is often

large, systematically learning the ambient nonlinear subspace

yields an accurate approximation through a smaller number of

extracted features.

Offline and online solvers for subspace learning are devel-

oped, and their convergence is analyzed in Sections III and IV

respectively. In order to keep the complexity and memory

requirements affordable, budgeted versions of the proposed

algorithms are devised in Section V, in which the number

of stored data vectors is confined to a predefined budget B.

Budget maintenance is performed through a greedy approach,

whose effectiveness is corroborated through simulated tests.

This is the first work to address dynamic nonlinear (kernel-

based) feature extraction under limited memory resources.

Analytical results in Section VI provide performance

bounds on how well the kernel matrix as well as kernel-based

classification and regression can be approximated by leverag-

ing the novel budgeted online subspace-learning and feature-

extraction approach. Finally, Section VII presents experiments

on synthetic and real datasets, demonstrating the efficiency of

the proposed methods in terms of accuracy and run time.

II. PRELIMINARIES AND PROBLEM STATEMENT

Consider N real data vectors {xν}Nν=1 of size D × 1. As

large values of D and N hinder storage and processing of

such datasets, extracting informative features from the data

(a.k.a. dimensionality reduction) results in huge savings on

memory and computational requirements. This fundamentally

builds on the premise that the informative part of the data is

of low dimension r < D, and thus the data {xν}Nν=1 are well

represented by the generative model

xν = Lqν + vν , ν = 1, . . . , N (1)

where the tall D × r matrix L has rank r < D; vector qν is

the r × 1 projection of xν onto the column space of L; and

vν denotes zero-mean additive noise.

Pursuit of the subspace L and the low-dimensional features

{qν}Nν=1 is possible using a blind least-squares (LS) criterion

regularized by a rank-promoting term using e.g., the nuclear

norm of X̂ = LQN , where QN := [q1, ...,qN ] [35].

Albeit convex, nuclear-norm regularization is not attractive for

sequential learning.

To facilitate reducing the computational complexity, it is

henceforth assumed that an upper bound on the rank of matrix

X̂ is given ρ ≥ rank(X̂). 1 Thus, building on the work of [29]

by selecting r ≥ ρ, and to arrive at a scalable subspace tracker,

here we surrogate the nuclear norm with the summation of the

Frobenious-norms of L and QN , which yields (cf. Prop. 1 in

[29] for proof on equivalence)

min
L,{qν}N

ν=1

1

2N

n
∑

ν=1

‖xν − Lqν‖22 +
λ

2N

(

‖L‖2F + ‖QN‖2F
)

(2)

where λ controls the tradeoff between LS fit and rank reg-

ularization [28]. Principal component analysis (PCA) - the

“workhorse” of dimensionality reduction- solves (2) when the

rank regularization is replaced with orthonormality constraints

on L. Undoubtedly, the accuracy of any linear dimensionality

reduction method is dictated by how well the model (1) fits a

given dataset, which is related to how well the corresponding

data covariance matrix can be approximated by a low-rank

matrix [17, p. 534].

In practice however, low-rank linear models often fail to

accurately capture the datasets. A means to deal with non-

linearities in pattern recognition tasks, is to first map vectors

{xν}Nν=1 to a higher D̄-dimensional space using a function

φ : RD → R
D̄ (possibly with D̄ =∞), and subsequently seek

a linear function over the lifted data φ(x). This map induces a

so-termed kernel function κ(xi,xj) = φ>(xi)φ(xj). Select-

ing the kernel to have a closed-form expression circumvents

the need to explicitly know {φ(xν)}Nν=1 - what is referred

to as the “kernel trick.” Similarly, the norm corresponding

to the reproducing kernel Hilbert space (RKHS) is defined

as ‖φ(x)‖2H := 〈φ(x),φ(x)〉 = κ(x,x). Upon defining the

D̄ ×N matrix ΦN := [φ(x1), ...,φ(xN )], the N ×N kernel

matrix related to the covariance of the lifted data is formed

with (i, j) entry κ(xi,xj) as K(x1:N ,x1:N ) = Φ>
NΦN , where

x1:N := vec[x1,x2, ...,xN ]. Its computation and storage

incurs complexity O(N2D) and O(N2) respectively, which

is often not affordable when N � and/or D �.

Fortunately, K for large data sets in practice has approxi-

mately low rank. This fact is exploited in e.g., [12], [53] and

[52] to approximate K via a low-rank factorization, hence

reducing the evaluation and memory requirements of offline

kernel-based learning tasks from O(N2) down to O(Nr).
Here, we further build on this observation to deduce that the

low-rank property of K = Φ>
NΦN implies that ΦN can also

be approximated by a low-rank matrix, thus motivating our

pursuit of online low-rank factorization of ΦN . To this end,

instead of projecting {xν}s onto the columns of L as in (2),

we will project {φ(xν)}s on L̄ ∈ R
D̄×r, whose columns span

what we refer to as “virtual” column subspace since D̄ can

be infinite. Specifically, we consider [cf. (2)]

min
L̄,{qν}N

ν=1

1

2N

N
∑

ν=1

‖φ(xν)− L̄qν‖2H+
λ

2N

(

‖L̄‖2HS+‖QN‖2F
)

(3)

where the `2-norm has been substituted by the H-

norm in the D̄-dimensional Hilbert space. Similarly, let

the Hilbert–Schmidt operator be defined as ‖L̄‖HS =

1In practice, the rank is controlled by tuning regularization parameter, as
it can be made small enough for sufficiently large λ.
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√

Tr(L̄>L̄) :=
√

∑r
c=1
‖̄lc‖2H with l̄c denoting the c-th

column of L̄. Note that for Euclidean spaces, the Hilbert-

Schmidt norm reduces to the Frobenious norm.

Observe also that similar to the linear model in (2), upon

removing the regularization terms and adding the orthonor-

mality constraints on the columns of L̄, (3) reduces to that

of KPCA (without centering) in primal domain [38, p. 429].

The present formulation in (3) however, enables us to develop

sequential learning algorithms, which will later be enhanced

with a tracking capability for dynamic datasets.

For a fixed QN , the criterion in (3) is minimized by

L̄N = ΦNQ>
N

(

QNQ>
N + λI

)−1

:= ΦNA (4)

where the N × r factor A can be viewed as “morphing’ the

columns of ΦN to offer a flexible basis for the lifted data.

Substituting (4) back into (3) and exploiting the kernel trick,

we arrive at

min
A,{qν}N

ν=1

1

2N

N
∑

ν=1

(

κ(xν ,xν)− 2k>(x1:N ,xν)Aqν (5)

+ q>
ν A

>K(x1:N ,x1:N )Aqν

)

+
λ

2N

(

tr{A>K(x1:N ,x1:N )A}+
N
∑

ν=1

‖qν‖22
)

where the N × 1 vector k(x1:N ,xn) in (5) is the n-th

column of K(x1:N ,x1:N ), and since A has size N × r, the

minimization in (5) does not depend on D̄.

Our goal is to develop and analyze batch as well as online

solvers for (5). By pre-specifying an affordable complexity for

the online solver, we aim at a low-complexity algorithm where

subspace learning and feature extraction can be performed

on-the-fly for streaming applications. Furthermore, we will

introduce a novel approach to extracting features on which the

kernel-based learning tasks of complexity O(N3) can be well

approximated by linear counterparts of complexity O(rN),
hence realizing great savings in memory and computation

while maintaining performance. A remark is now in order.

Remark 1. The subspace L̄N in (4) can be thought as a

dictionary whose atoms are morphed via factor A. Sparse

representation over kernel-based dictionaries have been con-

sidered [16], [30], [37], [46]. Different from these approaches

however, the novelty here is on developing algorithms that can

process streaming datasets, possibly with dynamic underlying

generative models. Thus, our goal is to efficiently learn and

track a dictionary that adequately captures streaming data

vectors, and can afford a low-rank approximation of the

underlying high-dimensional map.

III. OFFLINE KERNEL BASED FEATURE EXTRACTION

Given a dataset {xν}Nν=1 and leveraging the bi-convexity of

the minimization in (5), we introduce in this section a batch

solver, where two blocks of variables (A and {qν}Nν=1) are

updated alternately. The following two updates are carried out

iteratively until convergence.

Algorithm 1 BKFE: Batch Kernel-based Feature Extraction

Input {xν}Nν=1, λ
Initialize A[1] at random

For k = 1, . . . do

S[k+1] =
(

A>[k]K(x1:N ,x1:N )A[k] +λIr

)−1

A>[k]

Q[k + 1] = S[k + 1]K(x1:N ,x1:N )

A[k + 1] = Q>
N [k + 1]

(

QN [k + 1]Q>
N [k + 1] + λIr

)−1

Repeat Until Convergence

Return A[k], {qν [k]}Nν=1

Update 1. With A[k] given from iteration k, the projection

vectors {qν}Nν=1 in iteration k + 1 are updated as

qν [k + 1] = argmin
q

`(xν ;A[k],q;x1:N ) +
λ

2
‖q‖22 (6a)

where the fitting cost `(.) is given by [cf. (3)-(5)]

`(xν ;A[k],q;x1:N ) :=
1

2
‖φ(xν)−ΦNA[k]q‖2H (6b)

= κ(xν ,xν)− 2k>(x1:N ,xν)A[k]q

+ q>A>[k]K(x1:N ,x1:N )A[k]q .

The minimizer of (6a) yields the features as regularized

projection coefficients of the lifted data vectors onto the virtual

subspace L̄N [k] = ΦNA[k], and is given in closed form by

qν [k + 1] = (A>[k]K(x1:N ,x1:N )A[k] + λIr)
−1

×A>[k]k(x1:N ,xν), ν = 1, ..., N . (7)

Update 2. With {qν [k + 1]}Nν=1 fixed and after dropping

irrelevant terms, the subspace factor is obtained as [cf. (5)]

A[k + 1] = argmin
A

1

N

N
∑

ν=1

`(xν ;A,qν [k + 1];x1:N )

+
λ

2N
tr{A>K(x1:N ,x1:N )A} . (8)

Since K is positive definite in practice, (8) involves a strictly

convex minimization. Equating the gradient to zero, yields the

wanted subspace factor in closed form

A[k+1] = Q>
N [k+1]

(

QN [k+1]Q>
N [k+1]+λIr

)−1

. (9)

Algorithm 1 provides the pseudocode for the update rules (7)

and (9) of the batch solver, and the following proposition gives

a guarantee on the convergence of the proposed solver to a

local stationary point.

Proposition 1. For positive definite kernels and λ > 0, the

sequence {A[k],QN [k]} generated by Algorithm 1 converges

to a stationary point of the minimization in (5).

Proof : Since the minimizations in (6a) and (8) are strictly

convex with unique solutions, the result follows readily from

[3, p. 272]. �

Since matrix inversions in (7) and (9) cost O(r3), and QN

and A have size r×N and N×r, respectively, the per iteration

cost is O(N2r+Nr2+r3). Although the number of iterations
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needed in practice for Algorithm 1 to converge is effectively

small, this per iteration complexity can be unaffordable for

large datasets. In addition, datasets are not always available

offline, or due to their massive volume, can not be uploaded

into memory at once. To cope with these issues, an online

solver for (5) is developed next, where the updates are carried

out by iteratively passing over the dataset one datum at a time.

IV. ONLINE KERNEL BASED FEATURE EXTRACTION

This section deals with low-cost, on-the-fly updates of the

‘virtual’ subspace L̄, or equivalently its factor A as well as

the features {qν} that are desirable to keep up with streaming

data. For such online updates, stochastic gradient descent

(SGD) has well-documented merits, especially for parametric

settings. However, upon processing n data vectors, A has

size n × r, which obviously grows with n. Hence, as the

size of A increases with the number of data, the task of

interest is a nonparametric one. Unfortunately, performance of

SGD on nonparametric learning such as the one at hand is an

uncharted territory. Nevertheless, SGD can still be performed

on the initial formulation (3), where solving for the virtual L̄

constitutes a parametric task, not dependent on n.

Starting with an update for L̄, an update for A will be

derived first, as an alternative to those in [9], [41], and [49].

Next, an SGD iteration for A will be developed in subsection

IV-B, while in subsection IV-C a connection between the

two update rules will be drawn, suggesting how SGD can be

broadened to learning nonparametric models as well.

A. SGD on “parametric” subspace tracking

Suppose that xn is acquired at time n, posing the overall

joint subspace tracking and feature extraction problem as [cf.

(3)]

min
L̄,{qν}n

ν=1

1

2n

n
∑

ν=1

‖φ(xν)− L̄qν‖2H+
λ

2n

(

‖L̄‖2HS+‖Qn‖2F
)

.

(10)

Using an alternating minimization approach, we update

features and the subspace per data vector as follows.

Update 1. Fixing the subspace estimate at its recent value

L̄[n − 1] := Φn−1A[n − 1] from time n − 1, the projection

vector of the new data vector xn is found as [cf. (6a)]

q[n] = argmin
q

`(xn;A[n− 1],q;x1:n−1) +
λ

2
‖q‖22 (11a)

which through the kernel trick readily yields

q[n] =(A>[n− 1]K(x1:n−1,x1:n−1)A[n− 1] + λIr)
−1

×A>[n− 1]k(x1:n−1,xn) . (11b)

Although (11b) can be done for all the previous features

{qν}n−1
ν=1 as well, it is skipped in practice to prevent exploding

complexity. In the proposed algorithm, feature extraction is

performed only for the most recent data vector xn.

Update 2. Having obtained q[n], the subspace update is

given by solving

min
L̄

1

n

n
∑

ν=1

L̄(xν ; L̄,q[ν]) (12)

where L̄(xν ; L̄,q[ν]) :=
1

2
‖φ(xν)− L̄q[ν]‖2H +

λ

2n
‖L̄‖2HS .

Solving (12) as time evolves, becomes increasingly complex,

and eventually unaffordable. If data {xν}nν=1 satisfy the law of

large numbers, then (12) approximates minL̄ E[L̄(xν ; L̄,qν)],
where expectation is with respect to the unknown probability

distribution of the data. To reduce complexity of the minimiza-

tion, one typically resorts to stochastic approximation solvers,

where by dropping the expectation (or the sample averaging

operator), the ‘virtual’ subspace update is

L̄[n] = L̄[n− 1]− µn,LḠn (13)

with µn,L denoting a preselected stepsize, and Ḡn the gradient

of the n-th summand in (12) given by

Ḡn := ∇L̄L̄(xn; L̄[n− 1],q[n])

= −
(

φ(xn)− L̄[n− 1]q[n]
)

q>[n] +
λ

n
L̄[n− 1]

= Φn

[

A[n− 1]q[n]q>[n]
−q>[n]

]

+
λ

n
Φn

[

A[n− 1]
01×r

]

.

(14)

Because L̄[n] has size D̄ × r regardless of n, iteration (13)

is termed “parametric” Using (4) to rewrite L̄[n] = ΦnA[n],
and substituting into (13), yields

ΦnA[n] =Φn

[

A[n− 1]
01×r

]

− µn,LΦn

[

A[n− 1]
(

q[n]q>[n] +
λ

n
Ir

)

−q>[n]

]

(15)

which suggests the following update rule for factor A

A[n] =

[

A[n− 1]− µn,LA[n− 1]
(

q[n]q>[n] +
λ

n
Ir

)

µn,Lq
>[n]

]

.

(16)

Even though (16) is not the only iteration satisfying (15),

it offers an efficient update of the factor A. The update

steps for the proposed parametric tracker are summarized as

Algorithm 2. Note that the multiplication and inversion in (9)

are avoided. However, per data vector processed, the kernel

matrix is expanded by one row and one column, while the

subspace factor A grows accordingly by one row.

B. SGD for “nonparametric” subspace tracking

In this subsection, the feature extraction rule in (11b) is

retained, while the update rule (16) is replaced by directly

acquiring the SGD direction along the gradient of the instan-

taneous objective term with respect to A. Since, in contrast

to the fixed-size matrix L̄, the number of parameters in

A grows with n, we refer to the solver developed in this

subsection as a nonparametric subspace tracker. Furthermore,

the connection between the two solvers is drawn in subsection

IV-C, and convergence of the proposed algorithm is analyzed

in subsection IV-D.

At time instance n, subproblem (12) can be expanded using
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Algorithm 2 Online kernel-based feature extraction with

parametric update rule

Input {xν}nν=1, λ
Initialize A[1] = 11×r , K(x1,x1) = κ(x1,x1)
For n = 2, . . . do

q[n] = (A>[n− 1]K(x1:n−1,x1:n−1)A[n− 1] + λIr)
−1

×A>[n− 1]k(x1:n−1,xn)

K(x1:n,x1:n) =

[

K(x1:n−1,x1:n−1) k(x1:n−1,xn)
k>(x1:n−1,xn) κ(xn,xn)

]

A[n] =

[

A[n− 1]− µn,LA[n− 1]
(

q[n]q>[n] +
λ

n
Ir

)

µn,Lq
>[n]

]

Return A[n], {q[ν]}nν=2

the kernel trick as

min
A∈Rn×r

1

n

n
∑

ν=1

L(xν ;A,q[ν];x1:n)} (17)

where

L(xν ;A,q[ν];x1:n) := `(xν ;A,q[ν];x1:n)

+
λ

2n
tr{A>K(x1:n,x1:n)A} (18)

with `(.) given by (6b). Stochastic approximation solvers of

(17) suggest the update

A[n] =

[

A[n− 1]
0>
r×1

]

− µn,AGn (19a)

where µn,A denotes the user-selected step size, and Gn

denotes the gradient of the n-th summand in (17) with respect

to A that is given by

Gn :=∇AL(xn; [A
>[n− 1],0r×1]

>,q[n];x1:n)

=K(x1:n,x1:n)

[

A[n− 1]
0>
r×1

]

q[n]q>[n] (19b)

− k(x1:n,xn)q
>[n] +

λ

n
K(x1:n,x1:n)

[

A[n− 1]
0>
r×1

]

.

Substituting (19b) into (19a) yields the desired update of A

which together with (11b) constitute our nonparametroc solver,

tabulated under Algorithm 3.

C. Parametric vis-a-vis nonparametric SGD updates

Considering that L̄[n] = ΦnA[n] holds for all n, it is

apparent from (19b) and (14) that Gn = Φ>
n Ḡn. The latter

implies that the update rule in (19a) amounts to performing

SGD on L̄ with a matrix stepsize Dn = ΦnΦ
>
n ; that is,

L̄[n] = L̄[n− 1]− µn,ADnḠn . (20)

It is important to check whether this Dn constitutes a valid

descent direction, which is guaranteed since

Ḡ>
nDnḠn = H>

nK
>(x1:n,x1:n)K(x1:n,x1:n)Hn < 0

(21)

Algorithm 3 Online kernel-based feature extraction with

nonparametric update rule

Input {xν}nν=1, λ
Initialize A[1] = 11×r , K(x1,x1) = κ(x1,x1)
For n = 2, . . . do

q[n] = (A>[n− 1]K(x1:n−1,x1:n−1)A[n− 1] + λIr)
−1

×A>[n− 1]k(x1:n−1,xn)

K(x1:n,x1:n) =

[

K(x1:n−1,x1:n−1) k(x1:n−1,xn)
k>(x1:n−1,xn) κ(xn,xn)

]

Gn =K(x1:n,x1:n)

[

A[n− 1]
0>
r×1

]

q[n]q>[n]

− k(x1:n,xn)q
>[n] +

λ

n
K(x1:n,x1:n)

[

A[n− 1]
0>
r×1

]

A[n] =

[

A[n− 1]
0>
r×1

]

− µn,AGn

Return A[n], {q[ν]}nν=2

where

Hn :=

[

A[n− 1](qnq
>
n +

λ

n
Ir)

−q>
n

]

.

For positive-definite e.g., Gaussian kernel matrices, we have

Ḡ>
nDnḠn � 0, which guarantees that −DnḠn is a descent

direction [3, p. 35]. Leveraging this link, Algorithm 3 will be

shown next to enjoy the same convergence guarantee as that

of Algorithm 2.

Remark 2. Although the SGD solver in Algorithm 3 can

be viewed as a special case of Algorithm 2, developing the

parametric SGD solver in Algorithm 2 will allow us to analyze

convergence of the two algorithms in the ensuing subsections.

D. Convergence analysis

The cost in (10) can be written as

Fn(L̄) :=
1

n

n
∑

ν=1

min
q

fν(xν ; L̄,q) (22)

with fν(xν , L̄,q) := L̄(xν ; L̄,q) + (λ/2)‖q‖22, and L̄ as

in (12). Thus, the minimization in (10) is equivalent to

minL̄ Fn(L̄). To ensure convergence of the proposed algo-

rithms, the following assumptions are adopted.

(A1) {xν}nν=1 independent identically distributed; and

(A2) The sequence {‖L̄[ν]‖HS}∞ν=1 is bounded.

Data independence across time is standard when studying

the performance of online algorithms [28], while boundedness

of the iterates {‖L̄[ν]‖HS}∞ν=1, corroborated by simulations,

is a technical condition that simplifies the analysis, and in

the present setting is provided due to the Frobenious-norm

regularization. In fact, rewriting subspace update in Alg. 2

yields

L̄[n] = L̄[n− 1]
(

I− µn,L(q[n]q
>[n] +

λ

n
Ir)

)

+ µn,Lφnq
>,
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which consists of: i) contraction of the most recent subspace

iterate; and, ii) an additive term. Thus, with proper selection

of the diminishing step size µn,L, A2 is likely to hold. The

following proposition provides convergence guarantee for the

proposed algorithm.

Proposition 2. Under (A1)-(A2), if µn,L = 1/γ̄n with

γ̄n :=
∑n

ν=1
γν and γν ≥ ‖∇2L̄(xν ; L̄,q[ν])‖H ∀n, then

the subspace iterates in (13) satisfy limn→∞∇Fn(L̄[n]) = 0

almost surely; that is, Pr{ lim
n→∞

∇L̄Fn(L̄[n]) = 0} = 1, thus

the sequence {L̄[ν]}∞ν=1 falls into the stationary point of (10).

Proof : Proof is inspired by [27], and a sketch of the required

modifications can be found in the Appendix.

So far, we have asserted convergence of the SGD-based

algorithm for the “virtual” L̄ provided by Algorithm 2. A

related convergence result for Algorithm 3 is guaranteed by

the following argument.

Proposition 3. Under (A1)-(A2) and for positive definite

radial kernels, if µn,A = 1/ξ̄n with ξ̄n :=
∑n

ν=1
ξn

and ξn ≥ nγn, then the subspace iterates in (19a)

satisfy limn→∞∇Cn(L̄[n]) = 0 almost surely; that is,

Pr{limn→∞∇Cn(L̄[n]) = 0} = 1 , and the subspace iterates

will converge to the stationary point of (10).

Proof: The proof follows the steps in Proposition 2, with an

extra step in the construction of the appropriate surrogate cost

in Step 1. In particular, using that ∀n the optimal subspace

is of the form L̄n = ΦnA, the objective f̃ν can be further

majorized over the subset of virtual subspaces L̄ = ΦnA, by

f̌n(xn;Φn,A,q[n]) := fn(xn; L̄[n− 1],q[n])

+ tr{∇L̄fn(xn; L̄[n− 1],q[n])(ΦnA− L̄[n− 1])>}

+
ξn
2
‖A−

[

A[n− 1]
01×r

]

‖2F

for which we have

f̃n(xn; L̄,q[n])− f̌ν(xν ;Φn,A,qν)

=
γn
2
‖L̄− L̄[n− 1]‖2HS −

ξn
2
‖A−

[

A[n− 1]
01×r

]

‖2F .

The Cauchy-Schwarz inequality implies that

‖L̄− L̄[n− 1]‖2HS = ‖ΦnA−Φn

[

A[n− 1]
01×r

]

‖2HS

≤ ‖Φn‖2HS‖A−
[

A[n− 1]
01×r

]

‖2F

and by choosing ξn ≥ ‖Φn‖2F γn = nγn, we will have

f̃n(xn; L̄,q[n]) ≤ f̌ν(xν ;Φn,A,qν). Selecting now f̌ν(.) as

the new surrogate whose minimizer coincides with the update

rule in (19a), the rest of the proof follows that of Prop. 2. �

V. REDUCED-COMPLEXITY OK-FE ON A BUDGET

Per data vector processed, the iterative solvers of the

previous section have one column of Φn and one row of

A added, which implies growing memory and complexity

requirements as n grows. The present section combines two

means of coping with this formidable challenge: one based on

censoring uninformative data, and the second based on budget

maintenance. By modifying Algorithms 2 and 3 accordingly,

memory and complexity requirements are rendered affordable.

A. Censoring uninformative data

In the LS cost that Algorithms 2 and 3 rely on, small

values of the fitting error can be tolerated in practice without

noticeable performance degradation. This suggests modifying

the LS cost so that small fitting errors (say up to ±ε) induce no

penalty, e.g., by invoking the ε−insensitive cost that is popular

in support vector regression (SVR) settings [17].

Consider henceforth positive-definite kernels for which low-

rank factors offer an approximation to the full-rank ker-

nel matrix, and lead to a generally nonzero LS-fit ‖Φn −
L̄Qn‖2H. These considerations suggest replacing the LS cost

`(xn;A[n− 1],q;x1:n−1) with

ˇ̀(xn;A[n− 1],q;x1:n−1) (23)

:=

{

0 if `(xn;A[n− 1],q;x1:n−1) < ε

`(xn;A[n− 1],q;x1:n−1)− ε otherwise.

By proper choice of ε, the cost ˇ̀(.) implies that if

`(xn;A[n−1],qn;x1:n−1) < ε, the virtual φ(xn) is captured

well enough by the virtual current subspace L̄[n − 1] =
Φn−1A[n− 1], and the solver will not attempt to decrease its

LS error, which suggests skipping the augmentation of Φn−1,

provided by the new lifted datum φ(xn) [4].

In short, if the upper branch of (23) is in effect, φ(xn)
is deemed uninformative, and it is censored for the subspace

update step; whereas having the lower branch deems φ(xn)
informative, and augments the basis set of the virtual subspace.

The latter case gives rise to what we term online support

vectors (OSV), which must be stored, while ‘censored’ data

are discarded from subsequent subspace updates.

In order to keep track of the OSVs, let Sn−1 denote the

set of indices corresponding to the SVs revealed up to time

n. Accordingly, rewrite L̄[n − 1] = ΦSn−1
A[n − 1], and the

modified LS cost as ˇ̀(xn;A[n− 1],q;xSn−1
), depending on

which of the following two cases emerges.

C1. If ˇ̀(xn;A[n − 1],q;xSn−1
) ≤ ε, the OSV set will not

grow, and we will have Sn = Sn−1; or,

C2. If ˇ̀(xn;A[n−1],q;xSn−1
) > ε, the OSV set will grow,

and we will have Sn = Sn−1 ∪ {n}.
The subspace matrix per iteration will thus take the form

L̄[n] = ΦSn
A[n], where ΦSn

:= [φn1
, ...,φn|Sn|

], with

Sn := {n1, n2, ..., n|Sn|}, and A ∈ R
|Sn|×r. Upon replacing

x1:n in Algorithm 3 with xSn
, Algorithm 4 gives the pseu-

docode for our reduced-complexity online kernel-based feature

extraction (OK-FE), which also includes a budget maintenance

module that will be presented in the ensuing Section V-B.

Modifying the LS-fit in (23) and discarding the censored

data, certainly reduce the rate at which the memory and

complexity requirements increase. In practice, thresholding is

enforced after the budget is exceeded, when one needs to

discard data. Regarding the selection of the threshold value,

the later may be initialized at zero and be gradually increased

until the desired censoring rate is reached ( final threshold

value will depend on the average fitting error and desired

censoring rate) ; see also [4] for related issues. Albeit at a

slower rate, |Sn| may still grow unbounded as time proceeds.

Thus, one is motivated to restrict the number of OSVs to a
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prescribed affordable budget, |Sn| ≤ B, and introduce a solver

which maintains such a budget throughout the iterations. To

this end, we introduce next a greedy ‘budget maintenance’

scheme.

B. Budget maintenance

When inclusion of a new data vector into the OSV set

pushes its cardinality |Sn| beyond the prescribed budget B, the

budget maintenance module will discard one SV from the SV

set. The removal strategy is decided according to a predefined

rule. In the following, we will describe two strategies for

budget maintenace.

1) Minimum-distortion removal rule: In this scheme, the

SV whose exclusion distorts the subspace L̄[n] minimally will

be discarded. Specifically, with Φn\i and A\i[n] denoting Φn

and A[n] devoid of their i-th column and row, respectively,

our rule for selecting the index to be excluded is

i∗ = arg min
i∈Sn

‖ΦnA[n]−Φn\iA\i[n]‖2HS

= arg min
i∈Sn

tr{A>[n]K(xSn
,xSn

)A[n] (24)

− 2A>
\i[n]K(xSn\i,xSn

)A[n]

+A>
\i[n]K(xSn\i,xSn\i)A\i[n]} .

Enumeration over Sn and evaluation of the cost incurs com-

plexity O(B3) for solving (24). Hence, in order to mitigate the

computational complexity, a greedy scheme is put forth. Since

exclusion of an SV will result in removing the corresponding

row from the subspace factor, discarding the SV corresponding

to the row with the smallest `2−norm suggests a reasonable

heuristic greedy policy. To this end, one needs to find the index

î∗ = arg min
i=1,2,...,B+1

‖ai[n]‖2 (25)

where a>i [n] denotes the i−th row of A[n]. Subsequently, î∗
as well as the corresponding SV are discarded from Sn and the

SV set respectively, and an OSV set of cardinality |Sn| = B
is maintained.

Remark 3. In principle, methods related to those in [49],

including replacement of two SVs by a linear combination of

the two, or projecting an SV on the SV set and discarding the

projected SV, are also viable alternatives. In practice however,

their improved performance relative to (25) is negligible and

along with their increased complexity, renders such alterna-

tives less attractive for large-scale datasets.

2) Recency-aware removal rule: This policy is tailored for

tracking applications, where the subspace capturing the data

vectors can change dynamically. As the subspace evolves,

the fitting error will gradually increase, indicating the gap

between the true and learned subspace, thus requiring incor-

poration of new vectors into the subspace. In order for the

algorithm to track a dynamic subspace on a fixed budget, the

budget maintenance module must gradually discard outdated

SVs inherited from “old” subspaces, and include new SVs.

Therefore, apart from “goodness-of-fit” (cf. (25)), any policy

tailored to tracking should also take into account “recency”

when deciding which SV is to be discarded.

To this end, corresponding to the i-th SV, let ηi denote

the recency factor whose value is initialized to 1. For every

inclusion of a new SV, the recency ηi of the current SVs will

be degraded by a forgetting factor 0 < β ≤ 1; that is, ηi will be

replaced by βηi. Consequently, older SVs will have smaller ηi
value whereas recent vectors will have ηi ' 1. To incorporate

this memory factor into the budget maintenance module, our

idea is to choose the SV to be discarded according to

î∗ = arg min
i=1,2,...,B+1

ηi‖ai[n]‖2 (26)

which promotes discarding older SVs over more recent ones.

By tuning β, the proposed memory-aware budget mainte-

nance module can cover a range of different schemes. For

large values of β h 1, it follows that ηi ≈ ηj ∀i, j ∈ S ,

and (26) approaches the minimum distortion removal rule

in (25), which is tailored for learning static subspaces. On

the other hand, for small β, the discarding rule is heavily

biased towards removing old SVs rather than the newly-

included ones, thus pushing the maintenance strategy towards

a first-in-first-out (FIFO) approach, which is often optimal for

applications with fast-varying subspaces. Algorithms 4 and

5 tabulate the updates and the greedy budget maintenance

scheme, respectively. Budget maintenance strategy in (25) is

a special case of Alg. 5 with β = 1.

Algorithm 4 Online Kernel-based Feature Extraction on a

Budget (OKFEB)

Input {xν}nν=1, λ
Initialize A[1] at random and S1 = {1}
For n = 2, . . . do

q[n] =(A>[n− 1]K(xSn−1
,xSn−1

)A[n− 1] + λIr)
−1

×A>[n− 1]k(xSn−1
,xn)

`n = k(xn,xn)− 2k>(xSn−1
,xn)A[n− 1]q[n]

+ q>
nA

>[n− 1]K(xSn−1
,xSn−1

)A[n− 1]q[n]

if `n < ε then Sn = Sn−1

else

Sn = Sn−1 ∪ {n}
Ǧn =K(xSn

,xSn
)

[

A[n− 1]
0>
r×1

]

q[n]q>[n]

− k(xSn
,xn)q

>[n] +
λ

n
K(xSn

,xSn
)

[

A[n− 1]
0>
r×1

]

A[n] =

[

A[n− 1]
0>
r×1

]

− µn,AǦn

if |Sn| > B then Run budget maintenance module

end if

end if

EndFor

Return A[n],Sn, {q[ν]}nν=1

C. Complexity analysis

Computational complexity of the proposed OK-FEB is

evaluated in the present section. The computations required

by the n−th iteration of Alg. 4 for feature extraction and
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Algorithm 5 Budget maintenace module

Input {S,A , {ηi}i∈S}
ηi ← βηi ∀i ∈ S
î∗ = argmini∈S ηi‖a>i ‖2
S ← S \ {̂i∗}
Discard the î∗-th row of A and ηî∗
Return {S,A, {ηi}i∈S}

parameter update depend on B, r, and D, as well as the

censoring process outlined in Section V-A. Specifically, com-

puting Ǧn and performing the first-order stochastic update

that yields A[n] requires O(B2r) multiplications, a cost that

is saved for skipped instances when `n < ε. Regarding the

computation of q[n], Br(B+ r) multiplications are needed to

form A>[n−1]K(xSn−1
,xSn−1

)A[n−1], and O(r3) multipli-

cations for the inversion of A>[n−1]K(xSn−1
,xSn−1

)A[n−
1] + λIr. Fortunately, the aforementioned computations can

also be avoided for iteration n, if the previous iteration

performs no update on A[n − 1]; in this case, (A>[n −
1]K(xSn−1

,xSn−1
)A[n − 1] + λIr)

−1 remains unchanged

and can simply be accessed from memory. Nevertheless, a

“baseline” of computations is required for feature extraction

related operations that take place regardless of censoring.

Indeed, forming A>[n − 1]k(xSn−1
,xn) requires Br mul-

tiplications for the matrix-vector product, and O(BD) for the

evaluation of B kernels in k(xSn−1
,xn); the matrix-vector

product that remains for obtaining q[n] requires r2 additional

multiplications.

Overall, running OK-FEB on N data and with a value

of ε such that Ň ≤ N data are used for updates requires

O(Ň(Br(B + r) + r3) +N(B(D + r) + r2)). Alternatively,

tuning ε such that Pr{`n > ε} = E[Ň/N ] := ρ yields an ex-

pected complexity O(N(Br(ρ(B+r)+1)+(ρr+1)r2+BD)).
As simulation tests will corroborate, the budget parameter B
can be chosen as B = cr with c ∈ [1.5, 5]. Thus, we can sim-

plify the overall complexity order as O(Nr2(ρr+1)+NDr).

VI. STABILITY OF KERNEL APPROXIMATION

In this section, the effect of low-rank approximation of

the lifted vectors on kernel-matrix approximation as well

as kernel-based classification and regression is analytically

quantified. Recall that given {xν}Nν=1, the virtual subspace

obtained by running OK-FEB is L̄ = ΦSA ∈ R
D̄×r, and

the corresponding projection coefficients are QN . By defining

the random variables ei := ‖φ(xi) − φ̂(xi)‖2H = ‖φ(xi) −
L̄qi‖2Hcapturing the LS error, we have the following result.

Proposition 4. If the random variables ei ∈ [0 , 1] are i.i.d.

with mean ē := E[ei], then for kernels satisfying |κ(xi,xj)| ≤
1, the matrix K = Φ>Φ can be approximated by K̂ := Φ̂>Φ̂,

and with probability at least 1− 2e−2Nt2 , it holds that

1

N
‖K− K̂‖F ≤

√
ē+ t (

√
ē+ t+ 2) . (27)

Proof: Upon defining Ē := Φ̂−Φ, one can write

‖K− K̂‖F = ‖Φ>Φ− Φ̂>Φ̂‖F
= ‖Φ>Φ− (Φ+ Ē)

>
(Φ+ Ē)‖F

= ‖2Ē>Φ+ Ē>Ē‖F
≤ 2‖Ē‖HS‖Φ‖HS + ‖Ē‖2HS (28a)

≤ 2
√
N‖Ē‖HS + ‖Ē‖2HS (28b)

where in (28a) we used the triangle inequality for the Frobe-

nious norm along with the property ‖BC‖F ≤ ‖B‖F ‖C‖F ,

and (28b) holds because for, e.g., radial kernels satisfying

|κ(xi,xj)| ≤ 1, we have

‖Φ‖HS :=
√

tr(Φ>Φ) =

√

√

√

√

N
∑

i=1

κ(xi,xi) ≤
√
N .

Furthermore, since ‖Ē‖F :=
√

∑N
i=1

ei, and ēN :=

(1/N)
∑N

i=1
ei with ei ∈ [0, 1], Hoeffding’s inequality yields

Pr
(

ēN − ē ≥ t
)

≤ e−2Nt2 , which in turn implies

Pr
( 1

N
‖Ē‖2F ≥ ē+ t

)

= Pr
(

ēN ≥ ē+ t
)

≤ e−2Nt2 . (29)

Finally, taking into account (28b), it follows that with proba-

bility at least 1− 2e−2Nt2 , we have

‖K− K̂‖F ≤ N(2
√
ē+ t+ (ē+ t)) .� (30)

Proposition 4 essentially bounds the kernel approximation

mismatch based on how well the projection onto the subspace

approximates the lifted data φ(x).

Remark 4. Consider now decomposing the kernel matrix as

K̂ := Φ̂>Φ̂ =(L̄Q)>(L̄Q) = Q>A>Φ>
SΦSAQ

=Q>A>KSAQ = Z>Z (31)

where matrix Z := K
1/2
S AQ has size |S| × N , and S

denotes the budgeted SV set. This factorization of K̂ could

have resulted from a linear kernel over the |S| × 1 training

data vectors forming the N columns of Z. Thus, for kernel-

based tasks such as kernel classification, regression, and

clustering applied to large datasets, we can simply map the

D × N data X to the corresponding features Z trained via

the proposed solvers, and then simply rely on fast linear

learning methods to approximate the original kernel-based

learning task; that is to approximate the function f(x) =
∑

i∈S ciκ(x,xi) by the linear function g(z) = w>z expressed

via the extracted features. Since linear pattern recognition

tasks incur complexity O(NB2), they scale extremely well

for large datasets (with N �), compared to kernel SVM that

incurs complexity O(N3). Furthermore, in the testing phase,

evaluation of function f(x) requires κ(xν ,xi) for ∀i ∈ S
to be evaluated at complexity O(|S|D), where |S| is the

number of SVs that typically grows with N . In contrast, if

approximated by the linear g(z), function evaluation requires

O(BD +Br) operations including the feature extraction and

function evaluation. Setting the budget B to 1.5 to 5 times

the rank parameter r, our complexity is of order O(rD+ r2),
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which represents a considerable decrease over O(|S|D).
Subsequently, we wish to quantify how the performance

of linear classification and regression based on the features

K
1/2
S AQ compares to the one obtained when training with

the exact kernel matrix K.

A. Stability analysis for kernel-based classification

Kernel-based SVM classifiers solve [38, p. 205]

α∗ = argmin
α

1

2
α>YKYα− 1>α (32)

s.t. y>α = 0 0 ≤ α ≤ C

N
1N

where Y is the diagonal matrix with the i-th label yi as its

i-th diagonal entry, y> := [y1, y2, ..., yN ], and 1N is an n× 1
vector of 1’s. Solution (32) corresponds to the dual variables

of the primal optimization problem, which yields

w̄∗ = arg min
w̄∈RD̄

1

2
‖w̄‖2H +

C

N

N
∑

i=1

max{0, 1− yiw̄
>φ(xi)} .

(33)

Here, parameter C controls the trade-off between maximiza-

tion of the margin 1/‖w‖H, and minimization of the misclas-

sification penalty, while the solution of (33) can be expressed

as w̄∗ =
∑N

i=1
α∗
i yiφ(xi) [38, p.187].

Exploiting the reduced memory requirement offered through

the low-rank approximation of the kernel matrix via OK-FEB,

the dual problem can be approximated as

α̂∗ = argmin
α

1

2
α>YK̂Yα− 1>α (34)

s.t. y>α = 0 ,0 ≤ α ≤ C

N
1N .

Viewing K̂ as a linear kernel matrix over {φ̂(xi)}s (cf.

Remark 4), similar to (32), the minimization (34) can be re-

written in the primal form as

ˆ̄w∗ = argmin
w̄

1

2
‖w̄‖2H +

C

N

N
∑

i=1

max{0, 1− yiw̄
>φ̂(xi)}

(35)

for which we have ˆ̄w∗ =
∑N

i=1
α̂∗
i yiφ̂(xi). Upon defining

the random variable ξi := ‖φ(xi) − φ̂(xi)‖H with expected

value ξ̄ := E[ξi], the following proposition quantifies the gap

between w̄∗ and ˆ̄w∗.

Proposition 5. If ξi ∈ [0 , 1] are i.i.d., with mean ξ̄, the

mismatch between the linear classifiers given by (33) and (35)

can be bounded, and with probability at least 1− e−2Nt2 , we

have

‖∆w‖2H := ‖w̄∗ − ˆ̄w∗‖2H ≤ 2C3/2
(

ξ̄ + t
)

. (36)

Proof: It clearly holds that

‖∆w‖2H ≤
C

N
(‖w̄∗‖H + ‖ ˆ̄w‖H)

N
∑

i=1

‖φ(xi)− φ̂(xi)‖H

≤ 2C3/2

N

N
∑

i=1

‖φ(xi)− φ̂(xi)‖H ≤ 2C3/2(ξ̄ + t)

where the first inequality relies on the strong convexity of

(33), (35), and the fact that ‖w̄∗‖H ≤
√
C and ‖ ˆ̄w∗‖H ≤√

C [41]; while the second inequality holds with probability

at least 1 − e−2Nt2 using Hoeffding’s inequality for ξ̄N :=
(1/N)

∑N
i=1

ξi. �

Note that under the i.i.d. assumption on ei := ‖φ(xi) −
φ̂(xi)‖2H, random variables ξi are also i.i.d., rendering the

conditions of Propositions 4 and 5 equivalent.

Next, we study the performance of linear SVMs trained on

the set {zi, yi}Ni=1, where zi := K
1/2
S Aqi; that is, the linear

function g(z) = w>z is learned by finding

w∗ = arg min
w∈Rr

1

2
‖w‖2 + C

N

N
∑

i=1

max{0, 1− yiw
>zi}.

(37)

The following result asserts that the classifiers learned through

(35) and (37) can afford identical generalization capabilities.

Proposition 6. The generalization capability of classifiers (35)

and (37) is identical, in the sense that ˆ̄w∗>φ̂(x) = w∗>z.

Proof: Since for the low-rank approximation of the kernel

matrix we have K̂ = Z>Z, then (34) and (37) are equivalent,

and consequently w∗ =
∑N

i=1
α̂∗
i yizi. Now, one can further

expand ˆ̄w∗>φ̂(x) and w∗>z to obtain

ˆ̄w∗>φ̂(x) =

N
∑

i=1

α̂∗
i yiφ̂

>(xi)φ̂(x) =

N
∑

i=1

α̂∗
i yiq

>
i A

>Φ̂>
S Φ̂SAq

and w∗>z =
∑N

i=1
α̂∗
i yiz

>
i z =

∑N
i=1

α̂∗
i yiq

>
i A

>Φ̂>
S Φ̂SAq

where the equivalence follows readily. �

In addition to markedly reduced computational cost when

utilizing linear (L)SVM, our novel classifier can also be

efficiently trained online [41] as new data becomes available

(or iteratively when the entire datasets can not be stored in

memory which necessitates one-by-one acquisition). In this

case, the proposed OK-FEB in Algorithm 4 can be run in

parallel with the online classifier training, an attribute most

suitable for big data applications.

B. Stability analysis for kernel-based regression

Consider now the kernel-based ridge regression task on the

dataset {xi, yi}Ni=1, namely

min
β

1

N
‖y −Kβ‖22 + λβ>Kβ (38)

which admits the closed-form solution β∗ = (K+ λNI)−1y

[38, p. 251]. Alleviating the O(N2) memory requirement

through low-rank approximation of matrix K, the kernel-based

ridge regression can be approximated by

min
β

1

N
‖y − K̂β‖22 + λβ>K̂β (39)

whose solution is given as β̂∗ = (K̂ + λNI)−1y. The

following proposition bounds the mismatch between β∗ and

β̂∗.

Proposition 7. If the random variables ei ∈ [0 , 1] are i.i.d.,

with mean ē, and |yi| ≤ By for i = 1, 2, ..., N , with probability
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at least 1− 2e−2Nt2 , we have

‖β∗ − β̂∗‖2 ≤ By

λ2

√
ē+ t(

√
ē+ t+ 2) . (40)

Proof: Following [8], we can write

β∗ − β̂∗ = (K+ λNI)−1y − (K̂+ λNI)−1y

= −
(

(K̂+ λNI)−1(K− K̂)(K+ λNI)−1

)

y

where we have used the identity P̂−1 − P−1 = −P−1(P̂ −
P)P̂−1, which holds for any invertible matrices P and P̂.

Taking the `2-norm of both sides and using the Cauchy-

Schwartz inequality, we arrive at

‖β∗ − β̂∗‖ ≤ ‖(K+ λNI)−1‖‖K− K̂‖‖(K̂+ λNI)−1‖‖y‖

≤ ‖K− K̂‖NBy

λmin(K+ λNI)λmin(K̂+ λNI)

≤ By‖K− K̂‖2
λ2N

. (41)

Using the inequality ‖P‖2 ≤ ‖P‖F along with Proposition

4, yields the bound with probability 1− 2e−2Nt2 . �

VII. NUMERICAL TESTS

This section presents numerical evaluation of various per-

formance metrics to test our proposed algorithms using both

synthetic and real datasets. In subsection 7.1, we empiri-

cally study the proposed batch and online feature extraction

algorithms using a toy synthetic dataset. In subsection 7.2,

we focus on the tracking capability of the proposed OK-

FEB and demonstrate its performance in terms of the evo-

lution of average LS-fitting error obtained at iteration n as

(1/n)
∑n

ν=1
‖φ(xν)− L̄[n]qν‖2H. Regarding the kernel ma-

trix approximation performance, given a window size Nwind,

we have (N − Nwind) windows in a dataset of size N .

Consequently, the mismatch of kernel matrix approximation

is averaged over all such windows, and it is thus obtained as

1

N −Nwind

N−Nwind
∑

w=1

( 1

Nwind

‖Kw − K̂w‖F
)

where Kw and K̂w are the kernel matrix and its approximation

over the data vectors in the w-th window. Finally, in subsection

7.3 we test how well OK-FEB approximates the kernel-

based classification and regression modules, and compare its

performance with competing alternatives.

A. Kernel-based feature extraction: Batch vs. online

Performance of Algorithms 1, 2 and 3 on solving the

minimization (10) is tested using synthetically generated data

arriving in streaming mode with ν = 1, 2, . . . , 5, 000. The

test involves generating two equiprobable classes of 3 × 1
data vectors {xν}, each uniformly drawn from the surface

of a sphere centered at the origin with radius Rc1 = 1 or

Rc2 = 2, depending on whether its label yν equals 1 or

−1, respectively. Noise drawn from the Gaussian distribution

N (03×1, σ
2I3×3) is added to each xν , with σ2 controlling

the overlap between the two classes. Linear classifiers can

not correctly classify data generated in this manner. For this

reason, the Gaussian kernel κ(xi,xj) = exp(−‖xi − xj‖22/γ)
was used with γ = 100. The online schemes can solve

the problem on-the-fly, while the batch Algorithm 1 is also

employed to solve (10) offline. We compare the overall LS fit

given by the subspace update L̄[n] using the three different

solvers across time (iteration) index n.The parameters for the

OK-FE solvers are chosen as µn,L ∝ 1/n, µn,A ∝ 1/n2,

λ = 10−3, and the maximum number of iterations in the batch

solver is set to Imax = 50.

Figure 1(a) depicts how stochastic low-complexity updates

of A in the online solvers ensure convergence of the average

LS cost to the high-complexity batch solution for r = 7.

When n is small, the low-rank approximation is accurate and

the resulting LS error in Batch-KFE is small. Note however

that LS is nonzero for n < r, due to regularization. As n
increases, the number of vectors in the batch minimization also

increases, while r is fixed. Thus, the fitting problem becomes

more challenging and the LS error increases slightly until n is

large enough and the n data vectors are representative of the

pdf from which data is drawn - a case that the LS fit stabilizes.

Fig. 1(b) plots the convergence curve for Algs. 2 and 3.

While the Gaussian kernel that was adopted here is the

most widely used type, other kernels are also applicable (e.g.

polynomial kernels). Although it goes beyond the scope and

claims of this paper, similar to all kernel-based schemes,

the effect of not knowing the ideal kernel can be mitigated

via data-driven multi-kernel approaches [2], [34]. Plotted in

Fig. 2 is the fitting error for different kernels with different

parameters versus r to highlight this issue (in Gaussian kernel,

γ = 2σ2).

In addition, Fig. 3 plots the evolution of the average LS cost

across iterations for different choices of parameters (r,B) in

the OK-FEB solver. Note that relative to the batch Alg. 1 that

incurs complexity O(N2r) per iteration, OK-FE exhibits sim-

ilar performance at much lower complexity O(Nr3 +NDr).

B. Dynamic subspace tracking

In this subsection, we assess efficiency of the novel ap-

proach in tracking dynamic subspaces using synthetic and real-

world datasets.

1) Synthetic data: We generated a set of N = 2, 000 data

vectors in R
3. For n = 1, ..., 1000 the data were drawn from

the surface of the sphere given by the manifold (x1/3)
2+x2

2+
x2
3 = 1, while for n = 1, 001, ..., 2, 000 they were sampled

from the surface of the spheroid x2
1+(x2/3)

2+(x3)
2 = 1, in

Fig. 4. Plotted in Fig. 5 is the LS error of the low-rank feature

extraction with r = 10 and kernel parameter γ = 2 (averaged

by a window of length 200 for improved visualization) across

time n. To enable tracking, the step size at sample index ν
is chosen as µν = 1/‖qν‖2. As the plot suggests, the change

of the manifold at n = 1, 000 can be spotted by the rise in

the LS error. The tracking capability of OK-FEB enables the

subspace to adapt to the change in the underlying manifold.

However, within a window of fixed subspace, namely for

1 < n < 1, 000, and 1, 200 < n < 2, 000, and especially

for small budget B = 2r, the budget maintenance policy in
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Fig. 1: LS-fit versus iteration index for the synthetic dataset

(a), and convergence curve for the subspace iterates (b).
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Fig. 2: LS-fit of OKFE for different choices of polynomial

and Gaussian kernels with different parameters

Alg. 3 outperforms the FIFO budget maintenance policy by

carefully discarding the SVs whose exclusion least distorts

the learned subspace. Among the budgeted algorithms, setting

small β leads to a forceful exclusion of relatively older vectors,

and thus adaptation to the new subspace at t = 1000 takes

place faster. In contrast, having small β reduces the capability

of fine tuning to the underlying subspace when it is not

changing. This is corroborated by the lower curve for β = 0.9
versus β = 1 during the subspace change, while β = 1
gives lower error when subspace is not changing. Budget size

B = 2r demonstrates such effects more clearly as smaller B
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Fig. 4: Visualization of the nonlinear synthetic manifolds

requires a more careful selection of the support vectors, hence

emphasizing the effect of parameter β. The performance of

the batch solver with no budget size constraint is also plotted,

whose average fitting error is worse than that of budget size

B = 5r and is similar to the very restrictive budget size

B = 2r. This is contributed to the fact that in the batch

solver, the union of two subspaces is approximated by low-

rank r, and thus the performance is inferior to the proposed

online approach which is capable of tracking the underlying

subspace. Overall, given the dynamics of a particular dataset,

selection of β directly sets the operation mode of our subspace

learning, and is tunable to the pace of dynamics.

Average mismatch of K̂ found from OK-FEB for various

values of rank r and choice of B = 2r is plotted in Fig.

6, and is compared with KPCA as well as state-of-the-art

variations of the Nystrom approximation, namely Improved

Nystrom [54], SS-Nystrom [48], and MEKA [44]. Considering

the dynamic nature of the data, the mismatch is evaluated over

a moving window of length Nwind = 100, and averaged over

all such windows. As the plot suggests, OK-FEB outperforms

competing alternatives and better suites datasets with dynamic

subspaces.

C. Real-data on physical activity tracking

In this subsection, we test performance of OK-FEB on

the physical activity monitoring dataset PAMAP2 [36]. The

dataset contains N = 129, 200 measurements from 3 Col-

ibri wireless inertial measurement units (MU) worn by 9

subjects during different physical activities, such as walking
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and cycling. The MUs are placed on the dominant arm,

chest, and dominant ankle of the subjects, each recording

13 quantities including acceleration and gyroscope data with

sampling frequency 100Hz. We discarded all measurement

vectors with missing entries, idle state measurements, and

first and last 1, 000 measurements of each activity, as they

correspond to transient states. The tests are performed on

data corresponding to subject number 1, and can be similarly

repeated for other subjects as well.

The data is fed to OK-FEB with (r,B) = (10, 15), and

step size set to µt = 1/‖qt‖2. LS error given by the nonlinear

feature extraction (averaged over a window of length 200 for

improved visualization) is plotted in Fig. 7 across time. Every

activity is also coded to a number in (0, 1], and plotted in the

same figure versus time to highlight the activity changes over

time. As the figure illustrates, different activities correspond to

different manifolds, each of which can be approximated with

a certain accuracy via dynamic subspace learning and feature

extraction. Introducing the forgetting factor β < 1 enhances

the learning capability. Table I reports the average LS-error

and its variance for different activities using various budget

maintenance strategies, with β = 1, 0.9, and the FIFO strategy.

Similar to Fig. 6, Fig. 8 depicts the average mismatch

of kernel matrix approximation of OK-FEB with B = 1.5r
for the PAMAP2 dataset. Comparison with the competing

Nystrom variations in [54] and [44] clearly demonstrates the

advantage of OK-FEB with forgetting factor β = 0.9. Due

to the large number of data vectors, KPCA and SS-Nystrom
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Fig. 7: LS-fitting error of the PAMAP2 dataset versus time

TABLE I: Mean and variance of LS-fitting error of the

extracted features with (r,B) = (10, 15) for different activities

using different budget maintenance strategies

Code Activity β = 1 β = 0.9 FIFO Bud.

0.3 Walking 0.099 0.074 0.074
±0.016 ±0.012 ±0.012

0.4 Running 0.227 0.187 0.187
±0.025 ±0.022 ±0.022

0.5 Cycling 0.058 0.028 0.028
±0.027 ±0.012 ±0.12

0.6 Nordic 0.130 0.103 0.103
Walking ±0.020 ±0.016 ±0.016

0.7 Ascending 0.079 0.063 0.063
Stairs ±0.022 ±0.018 ±0.018

0.8 Descending 0.094 0.066 0.065
Stairs ±0.021 ±0.016 ±0.016

0.9 Vacuum 0.045 0.029 0.029
cleaning ±0.013 ±0.008 ±0.008

1.0 Rope 0.272 0.238 0.238
jumping ±0.063 ±0.057 ±0.057

could not be implemented.

D. Online regression and classification

In this subsection, the generalization capability of the online

linear classification and regression modules based on the

features Z returned by OK-FEB is tested. We compare the

performance of linear regression and classification as well

as competing online kernel-based learners including (unbud-

geted) Perceptron [15], (unbudgeted) Norma [21], (unbud-

geted) online gradient descent (OGD) [41], (unbudgeted) on-

line dictionary learning (ODL), and budgeted online gradient

descent (BOGD) [49], Forgetron [10], Projectron [32], and

budgeted passive-aggressive algorithm (BPA) [51] with our

novel OK-FEB, where the acquired features zn are fed to

online linear Pegasus [41] and regularized-LMS solvers for

the classification and regression tasks, respectively. The size

and specifications of the dataset used are listed in Table II, and

are accessible from the LIBSVM website2 or the UCI machine

2http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/
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TABLE II: Specifications of datasets.

dataset D N r B γ C

Adult 123 32K 50 1.2r 20 10
CADATA 8 20.6K 5 1, 5r 7× 107 0.01

Slice 384 53.5K 10 1.2r 50 0.01
Year 90 463.7K 10 1.2r 5× 107 0.01

learning repository 3. The parameter values used per dataset

are reported in Table II. In particular, tuning of the Frobenious

norm regularization and kernel bandwidth parameters are done

via cross validation over a discretized grid. Regarding the

budget, to ensure stability of the algorithm it suffices that we

set B > r, while it has been observed that setting B very

high yields only marginal improvement in terms of accuracy.

Finally, for the selection of r, we test an increasing sequence

of values starting from r = 2 and gradually increasing until

the improvement in terms of fitting error becomes negligible.

The aforementioned process is typically used to determine

the minimum required complexity of parametric models (e.g.,

order-adaptive least-squares [19]). The censoring threshold ε
is set using a moving-average of LS-error values for the past

100 data vectors.

Classification and regression accuracy as well as run time

are plotted versus iteration index. Perceptron, Norma, ODL,

and OGD are unbudgeted algorithms, and their SV sets (dic-

tionary atoms in ODL) grow as iteration index increases in

Fig. 9. Although the accuracy of these algorithms can serve

as a benchmark, their run time grows the fastest. Thus, for

the “Year” dataset (N �), the mentioned algorithms are run

only over 10% of the data vectors. As these tests demonstrate,

among the budgeted algorithms, OK-FEB reliably approxi-

mates the kernel function through the extracted features, thus

offering more accurate classification and regression perfor-

mance when compared to existing alternatives.

VIII. CONCLUDING REMARKS

Low-complexity feature extraction algorithms were intro-

duced in this paper to markedly improve performance of

kernel-based learning methods applied to large-scale datasets.

The novel approach begins with a generative model having

data mapped to a high-(possibly infinite-) dimensional space,

where they lie close to a linear low-rank subspace, the tracking

of which enables effective feature extraction on a budget. The

3http://www.ics.uci.edu/∼mlearn/
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Fig. 9: Online classification tests on (a) Adult, and regression

tests on (b) CADATA, (c) Slice, and (d) Year datasets.

extracted features can be used by fast linear classifiers or

regression predictors at scale.

Offline and online solvers of the subspace learning task were

developed, and their convergence was studied analytically.

To keep the complexity and memory requirements within

affordable levels, budgeted algorithms were devised, in which

the number of stored data vectors is restricted to a prescribed

budget. Further analysis provided performance bounds on the

quality of the resultant kernel matrix approximation, as well

as the precision with which kernel-based classification and

regression tasks can be approximated by leveraging budgeted

online subspace-learning and feature-extraction tasks.

Finally, online subspace tracking and nonlinear feature

extraction for dynamic datasets as well as classification and

regression tests on synthetic and real datasets demonstrated the

efficiency of OK-FEB with respect to competing alternatives,

in terms of both accuracy and run time.

IX. APPENDIX

Proof of Proposition 2: The proof of the proposition is inspired

by [28] and [27], and is sketched along the following steps.

Step 1. First, we judiciously introduce a surrogate for Fn(L̄)
whose minimizer coincides with the SGD updates in (13).

To this end, we have that minq fν(xν ; L̄,q) ≤
fν(xν ; L̄,q[ν]); hence, F̂n(L̄) :=
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(1/n)
∑n

ν=1
fν(xν ; L̄,q[ν]) upper bounds the cost function,

namely Fn(L̄) ≤ F̂n(L̄), ∀L̄. Further approximating fn
through a second-order Taylor’s expansion at the previous

subspace update L̄[n− 1], we arrive at

f̃n(xn; L̄,q[n]) = fn(xn; L̄[n− 1],q[n]) (42)

+ tr{∇L̄fn(xn; L̄[n− 1],q[n])(L̄− L̄[n− 1])>}
+

γn
2
‖L̄− L̄[n− 1]‖2HS .

By choosing γn ≥ ‖∇2

L̄
fn(xn; L̄[n − 1],qn)‖H =

‖(q[n]q>[n])⊗ ID̄ + (λ/n)IrD̄‖H and using the norm prop-

erties in the Hilbert space, the following can be verified:

(i) f̃n is locally tight; i.e., f̃n(xn; L̄[n − 1],q[n]) =
fn(xn; L̄[n− 1],q[n]);

(ii) gradient of f̃n is locally tight; i.e., ∇L̄f̃n(xn; L̄[n −
1],q[n]) = ∇L̄fn(xn; L̄[n− 1],q[n]); and

(iii) f̃n globally majorizes the original instantaneous cost

fn; that is, fn(xn; L̄,q[n]) ≤ f̃n(xn; L̄,q[n]), ∀ L̄.

Selecting now the target surrogate cost as F̃n(L̄) =
1

n

∑n
ν=1

f̃ν(xν ; L̄,q[ν]) we have Fn(L̄) ≤ F̂n(L̄) ≤
F̃n(L̄), ∀ L̄. Minimizing the cost F̃n(L̄) amounts to nullify-

ing the gradient, i.e., ∇L̄F̃n(L̄[n]) = 0, which yields [28]

L̄[n] = L̄[n− 1] − γ̄−1
n Ḡn, with γ̄n :=

∑n
ν=1

γν . By setting

µn = 1/γ̄n, the SGD-based update of L̄[n] now coincides with

the minimizer of F̃n(L̄); that is, L̄[n] = argminL̄ F̃n(L̄).
Step 2. The second step establishes that the surrogate

costs {F̃n(L̄)} form a quasi-martingale sequence [24],

and using tightness of the surrogate cost we deduce that

limn→∞(Fn(L̄[n])− F̃n(L̄[n])) = 0. Thus, the surrogate cost

asymptotically converges to the original cost Fn(L̄).
Step 3. Leveraging the regularity of L̄(xν ; L̄,qν), convergence

of the cost sequence implies convergence of {‖∇L̄Fn(L̄[n])−
∇L̄F̃n(L̄[n])‖HS} to zero, which along with ∇L̄F̃n(L̄[n]) =
0, yields {‖∇L̄Fn(L̄[n])‖HS} → 0. �
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