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Abstract—Kernel-based methods enjoy powerful generaliza-
tion capabilities in learning a variety of pattern recognition
tasks. When such methods are provided with sufficient training
data, broadly-applicable classes of nonlinear functions can be
approximated with desired accuracy. Nevertheless, inherent to
the nonparametric nature of kernel-based estimators are compu-
tational and memory requirements that become prohibitive with
large-scale datasets. In response to this formidable challenge,
the present work puts forward a low-rank, kernel-based, feature
extraction approach that is particularly tailored for online opera-
tion. A novel generative model is introduced to approximate high-
dimensional (possibly infinite) features via a low-rank nonlinear
subspace, the learning of which lends itself to a kernel function
approximation. Offline and online solvers are developed for the
subspace learning task, along with affordable versions, in which
the number of stored data vectors is confined to a predefined
budget. Analytical results provide performance bounds on how
well the kernel matrix as well as kernel-based classification and
regression tasks can be approximated by leveraging budgeted
online subspace learning and feature extraction schemes. Tests
on synthetic and real datasets demonstrate and benchmark
the efficiency of the proposed method for dynamic nonlinear
subspace tracking as well as online classification and regressions
tasks.

Index Terms—Online nonlinear feature extraction, Kkernel
methods, classification, regression, budgeted learning, nonlinear
subspace tracking.

I. INTRODUCTION

ERNEL-BASED expansions can boost the generaliza-

tion capability of learning tasks by powerfully modeling
nonlinear functions, when linear functions fall short in prac-
tice. When provided with sufficient training data, kernel meth-
ods can approximate arbitrary nonlinear functions with desired
accuracy. Although “data deluge” sets the stage by providing
the “data-hungry” kernel methods with huge datasets, limited
memory and computational constraints prevent such tools from
fully exploiting their learning capabilities. In particular, given
N training D x 1 vectors {x,}) ;, kernel regression or
classification machines take O(N?2D) operations to form the
N x N kernel matrix K, memory O(N?) to store it, and
O(N?) computational complexity to find the sought predictor
or classifier.
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In this context, several efforts have been made in dif-
ferent fields of stochastic optimization, functional analysis,
and numerical linear algebra to speed up kernel machines
for “big data” applications [9], [12], [21], [26], [33], [41],
[52]. A common approach to scaling up kernel methods is to
approximate the kernel matrix K by a low-rank factorization;
that is, K ~ K := ZTZ, where Z € R"™*N with r (< N)
is the reduced rank, through which storage and computational
requirements go down to O(Nr) and O(Nr?), respectively.
Kernel (K)PCA [38] provides a viable factorization for a such
low-rank approximation, at the cost of order O(N?r) compu-
tations. Alternatively, a low-rank factorization can be effected
by randomly selecting  training vectors to approximate the
kernel matrix [23]. Along these lines, Nystrom approximation
[52], and its advanced renditions [12], [22], [44], [48], [54] are
popular among this class of randomized factorizations. They
trade off accuracy in approximating K with K, for reducing
KPCA complexity from O(N?r) to O(Nr). Their merits are
well-documented for nonlinear regression and classification
tasks performed offline [1], [8], [55]. Rather than factorizing
K, one can start from high-dimensional (lifted) feature vectors
¢(x,) whose inner product induces the kernel k(x;,x;) =
(d(x:), p(x;)) [251, [26], [33], [42], [53]. Approximating
¢(x) through an r x 1 vector z, the nonlinear kernel can be
approximated by a linear one as k(x;,x;) = zisz. Exploiting
the fast linear learning machines [13], [41], the kernel-based
task then reduces to learning a linear function over features
{z,}2_,, which can be achieved in O(Nr) operations. Such a
computationally attractive attribute is common to both kernel
matrix factorization and lifted feature approximation. Note
however, that online Nystrom-type schemes are not available,
while feature approximation algorithms are randomized, and
thus they are not data driven.

Different from kernel matrix and feature approximations
performed in batch form, online kernel-based learning algo-
rithms are of paramount importance. Instead of loading the
entire datasets in memory, online methods iteratively pass over
the set from an external memory [5], [18], [20], [21], [40],
[41], [45]. This is also critical when the entire dataset is not
available beforehand, but is acquired one datum at a time.
For large data streams however, as the number of data in-
creases with time, the support vectors (SVs) through which the
function is estimated, namely the set S in the approximation
f(x) ~ f(x) = > ics Qik(xX;,X), also increases in size. Thus,
the function evaluation delay as well as the required memory
for storing the SV set eventually become unaffordable. Efforts
have been devoted to reducing the number of SVs while trying
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to maintain performance on unseen data (a.k.a. generalization
capability) [11]. In more recent attempts, by restricting the
maximum number of SVs to a predefined budget B, the growth
of algorithmic complexity is confined to an affordable limit,
that is maintained throughout the online classification [10],
[49], [50] or regression [47] task.

The present work builds a generative model according to
which the high (possibly infinite)-dimensional features are
approximated by their projection onto a low-rank subspace,
thus providing a linear kernel function approximation (Sec-
tion II). In contrast to [12], [25], [33], [54], where due to the
nature of randomization the number of required features for
providing an accurate kernel function approximation is often
large, systematically learning the ambient nonlinear subspace
yields an accurate approximation through a smaller number of
extracted features.

Offline and online solvers for subspace learning are devel-
oped, and their convergence is analyzed in Sections III and IV
respectively. In order to keep the complexity and memory
requirements affordable, budgeted versions of the proposed
algorithms are devised in Section V, in which the number
of stored data vectors is confined to a predefined budget B.
Budget maintenance is performed through a greedy approach,
whose effectiveness is corroborated through simulated tests.
This is the first work to address dynamic nonlinear (kernel-
based) feature extraction under limited memory resources.

Analytical results in Section VI provide performance
bounds on how well the kernel matrix as well as kernel-based
classification and regression can be approximated by leverag-
ing the novel budgeted online subspace-learning and feature-
extraction approach. Finally, Section VII presents experiments
on synthetic and real datasets, demonstrating the efficiency of
the proposed methods in terms of accuracy and run time.

II. PRELIMINARIES AND PROBLEM STATEMENT

Consider N real data vectors {x,})_, of size D x 1. As
large values of D and N hinder storage and processing of
such datasets, extracting informative features from the data
(a.k.a. dimensionality reduction) results in huge savings on
memory and computational requirements. This fundamentally
builds on the premise that the informative part of the data is
of low dimension 7 < D, and thus the data {x, })\ ; are well
represented by the generative model

x,=Lq,+v,, v=1,...,N @))

where the tall D x r matrix L has rank » < D; vector q, is
the r x 1 projection of x,, onto the column space of L; and
v, denotes zero-mean additive noise.

Pursuit of the subspace L and the low-dimensional features
{q,}2_, is possible using a blind least-squares (LS) criterion
regularized by a rank-promoting term using e.g., the nuclear
norm of X = LQu, where Qy = [q1, -, an] [35].
Albeit convex, nuclear-norm regularization is not attractive for
sequential learning.

To facilitate reducing the computational complexity, it is
henceforth assumed that an upper bound on the rank of matrix

X is given p > rank(X). ! Thus, building on the work of [29]
by selecting r > p, and to arrive at a scalable subspace tracker,
here we surrogate the nuclear norm with the summation of the
Frobenious-norms of L and Qp, which yields (cf. Prop. 1 in
[29] for proof on equivalence)

R~ , A ) )
2y 2o e~ Ll + g (I + 1Qx1E)
2)

where A controls the tradeoff between LS fit and rank reg-
ularization [28]. Principal component analysis (PCA) - the
“workhorse” of dimensionality reduction- solves (2) when the
rank regularization is replaced with orthonormality constraints
on L. Undoubtedly, the accuracy of any linear dimensionality
reduction method is dictated by how well the model (1) fits a
given dataset, which is related to how well the corresponding
data covariance matrix can be approximated by a low-rank
matrix [17, p. 534].

In practice however, low-rank linear models often fail to
accurately capture the datasets. A means to deal with non-
linearities in pattern recognition tasks, is to first map vectors
{x,}}"; to a higher D-dimensional space using a function
¢ : RP — RP (possibly with D = oc0), and subsequently seek
a linear function over the lifted data ¢(x). This map induces a
so-termed kernel function (x;,%;) = ¢ (x;)P(x;). Select-
ing the kernel to have a closed-form expression circumvents
the need to explicitly know {¢(x,)}); - what is referred
to as the “kernel trick.” Similarly, the norm corresponding
to the reproducing kernel Hilbert space (RKHS) is defined
as [l¢(x)[|3, = (¢(x), p(x)) = k(x,x). Upon defining the
D x N matrix ®y := [d(x1), ..., p(xn)], the N x N kernel
matrix related to the covariance of the lifted data is formed
with (4, 7) entry x(x;,%;) as K(x1.n,X1.n5) = ® @y, where
X1.N = vec[Xi,Xa,...,Xy]. Its computation and storage
incurs complexity O(N2D) and O(N?) respectively, which
is often not affordable when N > and/or D >.

Fortunately, K for large data sets in practice has approxi-
mately low rank. This fact is exploited in e.g., [12], [53] and
[52] to approximate K via a low-rank factorization, hence
reducing the evaluation and memory requirements of offline
kernel-based learning tasks from O(N?) down to O(Nr).
Here, we further build on this observation to deduce that the
low-rank property of K = ® { &y implies that ® can also
be approximated by a low-rank matrix, thus motivating our
pursuit of online low-rank factorization of ® . To this end,
instead of projecting {x, }s onto the columns of L as in (2),
we will project {¢(x,)}s on L € RP*", whose columns span
what we refer to as “virtual” column subspace since D can
be infinite. Specifically, we consider [cf. (2)]

min
L7{qV}LII\]:1

N
1 _ h _
: ) — L, |12 ( L2 2)
i o D 1960) ~ Ll o (1Ll +HiQ

3
where the /¢;-norm has been substituted by the %H-

norm in the D-dimensional Hilbert space. Similarly, let
the Hilbert-Schmidt operator be defined as ||L|gs =

'In practice, the rank is controlled by tuning regularization parameter, as
it can be made small enough for sufficiently large .
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Tr(LTL) := />.._,|L|/?, with 1. denoting the c-th

column of L. Note that for Euclidean spaces, the Hilbert-
Schmidt norm reduces to the Frobenious norm.

Observe also that similar to the linear model in (2), upon
removing the regularization terms and adding the orthonor-
mality constraints on the columns of L, (3) reduces to that
of KPCA (without centering) in primal domain [38, p. 429].
The present formulation in (3) however, enables us to develop
sequential learning algorithms, which will later be enhanced
with a tracking capability for dynamic datasets.

For a fixed Qy, the criterion in (3) is minimized by

_ —1
Ly =®yQL (QNQL T /\I> = ByA @)

where the N x r factor A can be viewed as “morphing’ the
columns of ®, to offer a flexible basis for the lifted data.
Substituting (4) back into (3) and exploiting the kernel trick,
we arrive at

1 N

min —

o1 T
Afa Y, 2 (H(X’”xl’) 2k’ (x1.n8,%,)Aq, (5)

v=1

+ qIATK(Xl:N7X1:N)AQV)

A\ N

+ g (ARG x1) A} + 3 )
where the N x 1 vector k(x1.n,%X,) in (5) is the n-th
column of K(x1.n,X1.5), and since A has size N x r, the
minimization in (5) does not depend on D.

Our goal is to develop and analyze batch as well as online
solvers for (5). By pre-specifying an affordable complexity for
the online solver, we aim at a low-complexity algorithm where
subspace learning and feature extraction can be performed
on-the-fly for streaming applications. Furthermore, we will
introduce a novel approach to extracting features on which the
kernel-based learning tasks of complexity O(N?) can be well
approximated by linear counterparts of complexity O(rN),
hence realizing great savings in memory and computation
while maintaining performance. A remark is now in order.
Remark 1. The subspace Ly in (4) can be thought as a
dictionary whose atoms are morphed via factor A. Sparse
representation over kernel-based dictionaries have been con-
sidered [16], [30], [37], [46]. Different from these approaches
however, the novelty here is on developing algorithms that can
process streaming datasets, possibly with dynamic underlying
generative models. Thus, our goal is to efficiently learn and
track a dictionary that adequately captures streaming data
vectors, and can afford a low-rank approximation of the
underlying high-dimensional map.

III. OFFLINE KERNEL BASED FEATURE EXTRACTION

Given a dataset {x, }/_, and leveraging the bi-convexity of
the minimization in (5), we introduce in this section a batch
solver, where two blocks of variables (A and {q,}) ;) are
updated alternately. The following two updates are carried out
iteratively until convergence.

Algorithm 1 BKFE: Batch Kernel-based Feature Extraction

Input {x,}2,, A
Initialize A[1] at random
For k=1,... do

Slk+1] = (AT K (oo 1) A +AL) AT
Q[k + 1] - S[k + 1]K(X1:N,X1:N)

Alk+1] = QE[k+1)(Qualk+ 11QR T + 1] + >\Ir>_1

Repeat Until Convergence
Return A[k], {q, K]}

v=1

Update 1. With A[k] given from iteration k, the projection
vectors {q, } 2, in iteration k + 1 are updated as

. A
a[k+1] = argmoin 0(xy; Alk], a3 x1.8) + §||q||§ (6a)
where the fitting cost £(.) is given by [cf. (3)-(5)]
1
(ot AR 1) = £ 90x) — xAlKall (6

K(x,,%,) — 2k (x1.v, %, ) A[k]q
+ qTAT[k]K(XlzN,XLN)A[k]q .

The minimizer of (6a) yields the features as regularized
projection coefficients of the lifted data vectors onto the virtual
subspace L [k] = ® 5 Alk], and is given in closed form by

Qlk+1] = (AT[EK (x1.n, x1.0)A K] 4+ AL) 7!
x AT[kk(x1.n,%,), v=1,..,N. (7)

Update 2. With {q,[k + 1]})_, fixed and after dropping

irrelevant terms, the subspace factor is obtained as [cf. (5)]
1N
Ak+1]= argn}inﬁ Z:lé(xu; A q [k +1];x1.8)

A
+ ﬁtlr{ATK(XLN,X1:N)A} - ®

Since K is positive definite in practice, (8) involves a strictly
convex minimization. Equating the gradient to zero, yields the
wanted subspace factor in closed form

Alk+1] = Q[+ 1)(Qulk + QK114 AL) . ©)

Algorithm 1 provides the pseudocode for the update rules (7)
and (9) of the batch solver, and the following proposition gives
a guarantee on the convergence of the proposed solver to a
local stationary point.
Proposition 1. For positive definite kernels and A\ > 0, the
sequence {Alk], Qn[k]|} generated by Algorithm 1 converges
to a stationary point of the minimization in (5).
Proof: Since the minimizations in (6a) and (8) are strictly
convex with unique solutions, the result follows readily from
[3, p. 272]. |
Since matrix inversions in (7) and (9) cost O(r?), and Qx
and A have size r x N and N X r, respectively, the per iteration
cost is O(N2r+ Nr?+73). Although the number of iterations
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needed in practice for Algorithm 1 to converge is effectively
small, this per iteration complexity can be unaffordable for
large datasets. In addition, datasets are not always available
offline, or due to their massive volume, can not be uploaded
into memory at once. To cope with these issues, an online
solver for (5) is developed next, where the updates are carried
out by iteratively passing over the dataset one datum at a time.

IV. ONLINE KERNEL BASED FEATURE EXTRACTION

This section deals with low-cost, on-the-fly updates of the
‘virtual’ subspace L, or equivalently its factor A as well as
the features {q, } that are desirable to keep up with streaming
data. For such online updates, stochastic gradient descent
(SGD) has well-documented merits, especially for parametric
settings. However, upon processing n data vectors, A has
size n X r, which obviously grows with n. Hence, as the
size of A increases with the number of data, the task of
interest is a nonparametric one. Unfortunately, performance of
SGD on nonparametric learning such as the one at hand is an
uncharted territory. Nevertheless, SGD can still be performed
on the initial formulation (3), where solving for the virtual L
constitutes a parametric task, not dependent on n.

Starting with an update for L, an update for A will be
derived first, as an alternative to those in [9], [41], and [49].
Next, an SGD iteration for A will be developed in subsection
IV-B, while in subsection IV-C a connection between the
two update rules will be drawn, suggesting how SGD can be
broadened to learning nonparametric models as well.

A. SGD on “parametric” subspace tracking

Suppose that x,, is acquired at time n, posing the overall
joint subspace tracking and feature extraction problem as [cf.

3]

1 n
L 5 2 196e) ~Taulfer * (s 1Qul)
(10)

Using an alternating minimization approach, we update
features and the subspace per data vector as follows.

Update 1. Fixing the subspace estimate at its recent value
Lin — 1] := ®,_1A[n — 1] from time n — 1, the projection
vector of the new data vector x,, is found as [cf. (6a)]

: A
aln] = arg min ((xn; Afn — 1], a5 x10-1) + S llallz (11a)

which through the kernel trick readily yields
=(A"[n — 1K (X101, X1:n—1)Aln — 1] + AL) !
x ATn — 1K(X1n—1,%n) - (11b)

q(n]

Although (11b) can be done for all the previous features
{av}) 1 as well, it is skipped in practice to prevent exploding
complex1ty. In the proposed algorithm, feature extraction is
performed only for the most recent data vector x,,.

Update 2. Having obtained g[n], the subspace update is
given by solving

mf‘inTILVz:_lﬁ(x,,;L,q[V]) (12)

where £(x,;L,q[V]) := 1Hd’(xu) VI3, + HL”HS
Solving (12) as time evolves becomes mcreasmg?y complex,
and eventually unaffordable. If data {x, }7_; satisfy the law of
large numbers, then (12) approximates ming, E[£(x,; L, q,)],
where expectation is with respect to the unknown probability
distribution of the data. To reduce complexity of the minimiza-
tion, one typically resorts to stochastic approximation solvers,
where by dropping the expectation (or the sample averaging
operator), the ‘virtual’ subspace update is

Lin] =Ln—1] - ,un,LGn (13)

with 1, 1, denoting a preselected stepsize, and G, the gradient
of the n-th summand in (12) given by

G, := ViL(x,;L[n — 1],q[n])
= —(#0x0) ~ Ll — tlaln))a ] + 2Lfo 1]

) [A[n _ﬂ%ﬁ]ﬂ"q g, [Agiwlq .

o

(14)

Because L[n| has size D x r regardless of n, iteration (13)

is termed “parametric” Using (4) to rewrite L[n] = ®,A[n],
and substituting into (13), yields
®,An] =, {A[n - 1]}
01><r
A
s, [Aln=1)(alola . ][ ot )] (15)
—-q

which suggests the following update rule for factor A

A
Al — [A[n ~ 1= o Al ~ 1) (alnla () + 51, )
fin,q" 1]

(16)
Even though (16) is not the only iteration satisfying (15),
it offers an efficient update of the factor A. The update
steps for the proposed parametric tracker are summarized as
Algorithm 2. Note that the multiplication and inversion in (9)
are avoided. However, per data vector processed, the kernel
matrix is expanded by one row and one column, while the
subspace factor A grows accordingly by one row.

B. SGD for “nonparametric” subspace tracking

In this subsection, the feature extraction rule in (11b) is
retained, while the update rule (16) is replaced by directly
acquiring the SGD direction along the gradient of the instan-
taneous objective term with respect to A. Since, in contrast
to the fixed-size matrix L, the number of parameters in
A grows with n, we refer to the solver developed in this
subsection as a nonparametric subspace tracker. Furthermore,
the connection between the two solvers is drawn in subsection
IV-C, and convergence of the proposed algorithm is analyzed
in subsection I'V-D.

At time instance n, subproblem (12) can be expanded using
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Algorithm 2 Online kernel-based feature extraction with
parametric update rule

Algorithm 3 Online kernel-based feature extraction with
nonparametric update rule

Illpllt {XV}ITJL:D A

Initialize A[l] = 11><T . K(Xl,Xl) = H(Xl,Xl)

Forn=2,... do

qn] = (AT[n — K (X101, X1:n_1)An — 1] + ML) 71
X AT[n - l]k(xl:n—hxn)

K(Xlzn—la Xl:n—l)

k X1in—1,X
K Xt = { kT (X1:n-1,%n) iy n)]

K(Xn, Xn)

Afn] = [A[” ~1] = o2 Al — 1] (aln)a" o] + AL)]
.un,LqT [n]
Return Afn], {q[v]}_,

the kernel trick as

min

an
AcRnXr

1 n
=~ Llxi A al]ixin)}
v=1

where
E(Xu; Aa q[V]; Xl:n) = e(xl’; A, q[V]; Xl:n)
—|—%tr{ATK(X1:mX1:n)A} (18)

with £(.) given by (6b). Stochastic approximation solvers of
(17) suggest the update

Aln —1]

Aln] = [ b (192)

rx1

:| - ,un,AGn

where 1, 4 denotes the user-selected step size, and G,
denotes the gradient of the n-th summand in (17) with respect
to A that is given by

Gn ::VA‘C(Xn§ [AT [n - 1}7 OTXI]Ta Q[nL Xl:n)

=K (X1:n,X1:n) [Ag:T; ”] qlnlq" [n] (19b)
— k(Xltn,Xn)Cl—r [n] + %K(Xl:nﬂ(l:n) |:A([)n;r><_1 1]:| .

Substituting (19b) into (19a) yields the desired update of A
which together with (11b) constitute our nonparametroc solver,
tabulated under Algorithm 3.

C. Parametric vis-a-vis nonparametric SGD updates

Considering that L[n] = @®,A[n] holds for all n, it is
apparent from (19b) and (14) that G,, = @IGW The latter
implies that the update rule in (19a) amounts to performing
SGD on L with a matrix stepsize D,, = <I>n<I>I; that is,

L[n) = L[n — 1] — pn 4D, G, . (20)

It is important to check whether this D,, constitutes a valid
descent direction, which is guaranteed since

GIDnGn = HIKT(Xl:mXl:n)K(Xl:naxl:n)Hn =0
(21

Input {Xu}:}:h A
Initialize A[l] = 11><T s K(Xl,Xl) = KZ(Xl,Xl)
Forn=2,... do

q[n] = (AT[n - 1]K(X1:n,1,X1;n,1)A[n - 1] + /\Ir>_1
x ATn—1k(X10-1,Xn)

K(x1:m,X1:n) = {K( Tn—1,X1:n—1)

k(Xlzn—la Xn)
kT (Xl:n—la Xn)

K(Xn, Xn)

Aln —1]

G =Klxuxi) |5 Y alalain

A Aln—1
- k(X1:7L7X7L)qT ['fl] + EK(Xl:naXl:n) |: gLT ]:|
rx1
An-1
ap = A - e
rx1

Return A[n], {q[v]}"_,

where
- A
H, — [A[n — (ana, + 1)
—q,

For positive-definite e.g., Gaussian kernel matrices, we have
G, D, G,, = 0, which guarantees that —D,,G,, is a descent
direction [3, p. 35]. Leveraging this link, Algorithm 3 will be
shown next to enjoy the same convergence guarantee as that
of Algorithm 2.
Remark 2. Although the SGD solver in Algorithm 3 can
be viewed as a special case of Algorithm 2, developing the
parametric SGD solver in Algorithm 2 will allow us to analyze
convergence of the two algorithms in the ensuing subsections.

D. Convergence analysis

The cost in (10) can be written as

_ 1 — _
F,(L) := - ; min fo(xu;L,q) (22)
with f,(x, L, q) = £(x;L,q) + (A/2)]al3 and £ as
in (12). Thus, the minimization in (10) is equivalent to
ming, F},(L). To ensure convergence of the proposed algo-
rithms, the following assumptions are adopted.

(A1) {x,}"_, independent identically distributed; and
(A2) The sequence {||L[V]||zs}5%, is bounded.

Data independence across time is standard when studying
the performance of online algorithms [28], while boundedness
of the iterates {||L[v]||z5}5%;, corroborated by simulations,
is a technical condition that simplifies the analysis, and in
the present setting is provided due to the Frobenious-norm
regularization. In fact, rewriting subspace update in Alg. 2
yields

L) = Lo~ 1)(T o slalrla” ] + 51)) + s dn”
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which consists of: i) contraction of the most recent subspace
iterate; and, ii) an additive term. Thus, with proper selection
of the diminishing step size fi,, 1, A2 is likely to hold. The
following proposition provides convergence guarantee for the
proposed algorithm.

Proposition 2. Under (Al)-(A2), if pnr = 1/%, with
Fn = o0 Y and 7y, > ||[V2L(x,;L,q[V])|l%  Vn, then
the subspace iterates in (13) satisfy lim,,_, . VF, (L[n]) = 0
almost surely; that is, Pr{nli_>1r1;<> ViF,.(L[n]) = 0} = 1, thus
the sequence {L[v]}52_, falls into the stationary point of (10).
Proof: Proof is inspired by [27], and a sketch of the required
modifications can be found in the Appendix.

So far, we have asserted convergence of the SGD-based
algorithm for the “virtual” L provided by Algorithm 2. A
related convergence result for Algorithm 3 is guaranteed by
the following argument.

Proposition 3. Under (Al)-(A2) and for positive definite
radial kernels, if pina = 1/& with & = Y. &,
and &, > n7vyn, then the subspace iterates in (19a)
satisfy lim, o, VC,(L[n]) = 0 almost surely; that is,
Pr{lim,,_,, VC,(L[n]) = 0} = 1, and the subspace iterates
will converge to the stationary point of (10).

Proof: The proof follows the steps in Proposition 2, with an
extra step in the construction of the appropriate surrogate cost
in Step 1. In particular, using that Vn the optimal subspace
is of the form L,, = ®, A, the objective fl, can be further
majorized over the subset of virtual subspaces L = ®, A, by

fn(xn; q’ny A7 q[n]) = fn(xna i‘[n - 1]a q[n])
+ t{ Vg fn(Xn; E[n —1],a[n])(®,A — E[n - 1])T}
gn A[n— 1]
o= A
for which we have
fvz(xn; I:,q[n]) - .]Ey(xu; (1’71,7Aa QV)

Tno 3 gn Aln
= 2 - L - s - A - A

_1] ”2 )
01><T' E

The Cauchy-Schwarz inequality implies that

- An-1

L L N i L
1xr

e

and by choosing &, > |®,]|%v, = nvy,, we will have
fn(%0;L,qn)) < fo(x,; ®,, A, q,). Selecting now f,(.) as
the new surrogate whose minimizer coincides with the update
rule in (19a), the rest of the proof follows that of Prop. 2. B

Aln —

< 2. slia - A5

V. REDUCED-COMPLEXITY OK-FE ON A BUDGET

Per data vector processed, the iterative solvers of the
previous section have one column of ®, and one row of
A added, which implies growing memory and complexity
requirements as n grows. The present section combines two
means of coping with this formidable challenge: one based on
censoring uninformative data, and the second based on budget
maintenance. By modifying Algorithms 2 and 3 accordingly,
memory and complexity requirements are rendered affordable.

A. Censoring uninformative data

In the LS cost that Algorithms 2 and 3 rely on, small
values of the fitting error can be tolerated in practice without
noticeable performance degradation. This suggests modifying
the LS cost so that small fitting errors (say up to £¢) induce no
penalty, e.g., by invoking the e—insensitive cost that is popular
in support vector regression (SVR) settings [17].

Consider henceforth positive-definite kernels for which low-
rank factors offer an approximation to the full-rank ker-
nel matrix, and lead to a generally nonzero LS-fit ||®, —
EQn\\%. These considerations suggest replacing the LS cost
0(xp; Aln — 1], q; X1.n,—1) With

E(XTHA[n - 1]aq7 Xl:n—l) (23)

_ )0 if £(xp; Aln — 1], q; X1:—1) < €
. E(Xn;A[nf 1}7q;xlzn—1) — €

By proper choice of e, the cost £(.) implies that if
U(xp; Aln—1],dqn; X1:n—1) < €, the virtual ¢(x,,) is captured
well enough by the virtual current subspace L[n — 1] =
®,,_1A[n— 1], and the solver will not attempt to decrease its
LS error, which suggests skipping the augmentation of ®,,_1,
provided by the new lifted datum ¢(x,) [4].

In short, if the upper branch of (23) is in effect, ¢(x,)
is deemed uninformative, and it is censored for the subspace
update step; whereas having the lower branch deems ¢(x,,)
informative, and augments the basis set of the virtual subspace.
The latter case gives rise to what we term online support
vectors (OSV), which must be stored, while ‘censored’ data
are discarded from subsequent subspace updates.

In order to keep track of the OSVs, let S,,—1 denote the
set of indices corresponding to the SVs revealed up to time
n. Accordingly, rewrite L[n — 1] = ®5__, A[n — 1], and the
modified LS cost as {(x,; A[n — 1], q;Xs, _, ), depending on
which of the following two cases emerges.

Cl. If {(xn; Aln — 1],q;xs, ,) < € the OSV set will not
grow, and we will have S,, = S,,_1; or,

C2. If {(x,; Aln—1],q; x5, _,) > € the OSV set will grow,
and we will have S,, = S,,—1 U {n}.

The subspace matrix per iteration will thus take the form
Lin] = ®s A[n], where ®5, = [Py, oy Py, With
S, = {n1,n2,...,nis,|}, and A € RIS=IX" Upon replacing
X1.n in Algorithm 3 with xs_ , Algorithm 4 gives the pseu-
docode for our reduced-complexity online kernel-based feature
extraction (OK-FE), which also includes a budget maintenance
module that will be presented in the ensuing Section V-B.

Modifying the LS-fit in (23) and discarding the censored
data, certainly reduce the rate at which the memory and
complexity requirements increase. In practice, thresholding is
enforced after the budget is exceeded, when one needs to
discard data. Regarding the selection of the threshold value,
the later may be initialized at zero and be gradually increased
until the desired censoring rate is reached ( final threshold
value will depend on the average fitting error and desired
censoring rate) ; see also [4] for related issues. Albeit at a
slower rate, |S,,| may still grow unbounded as time proceeds.
Thus, one is motivated to restrict the number of OSVs to a

otherwise.
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prescribed affordable budget, |S,,| < B, and introduce a solver
which maintains such a budget throughout the iterations. To
this end, we introduce next a greedy ‘budget maintenance’
scheme.

B. Budget maintenance

When inclusion of a new data vector into the OSV set
pushes its cardinality |S,,| beyond the prescribed budget B, the
budget maintenance module will discard one SV from the SV
set. The removal strategy is decided according to a predefined
rule. In the following, we will describe two strategies for
budget maintenace.

1) Minimum-distortion removal rule: In this scheme, the
SV whose exclusion distorts the subspace L[n] minimally will
be discarded. Specifically, with ®,,\; and A\ ;[n] denoting ®,,
and A[n] devoid of their i-th column and row, respectively,
our rule for selecting the index to be excluded is

i = arg min [®nAln] — @, A\ (0]

= arg Iél‘lgn tr{AT [nK(xs,,xXs,)An] (24)

—2A;[n]K(xs,\i» X5, )Aln]
+ AE[n]K(xSn\i, Xs,\i)Avi[n]}

Enumeration over S,, and evaluation of the cost incurs com-
plexity O(B?) for solving (24). Hence, in order to mitigate the
computational complexity, a greedy scheme is put forth. Since
exclusion of an SV will result in removing the corresponding
row from the subspace factor, discarding the SV corresponding
to the row with the smallest {/o—norm suggests a reasonable
heuristic greedy policy. To this end, one needs to find the index
(25)
where a; [n] denotes the i—th row of A[n]. Subsequently, i,
as well as the corresponding SV are discarded from S,, and the
SV set respectively, and an OSV set of cardinality |S,,| = B
is maintained.

Remark 3. In principle, methods related to those in [49],
including replacement of two SVs by a linear combination of
the two, or projecting an SV on the SV set and discarding the
projected SV, are also viable alternatives. In practice however,
their improved performance relative to (25) is negligible and
along with their increased complexity, renders such alterna-
tives less attractive for large-scale datasets.

2) Recency-aware removal rule: This policy is tailored for
tracking applications, where the subspace capturing the data
vectors can change dynamically. As the subspace evolves,
the fitting error will gradually increase, indicating the gap
between the true and learned subspace, thus requiring incor-
poration of new vectors into the subspace. In order for the
algorithm to track a dynamic subspace on a fixed budget, the
budget maintenance module must gradually discard outdated
SVs inherited from “old” subspaces, and include new SVs.
Therefore, apart from “goodness-of-fit” (cf. (25)), any policy
tailored to tracking should also take into account “recency”
when deciding which SV is to be discarded.

To this end, corresponding to the i-th SV, let n; denote
the recency factor whose value is initialized to 1. For every
inclusion of a new SV, the recency 7); of the current SVs will
be degraded by a forgetting factor 0 < 8 < 1; that is, n; will be
replaced by fn;. Consequently, older SVs will have smaller 7,
value whereas recent vectors will have 7; ~ 1. To incorporate
this memory factor into the budget maintenance module, our
idea is to choose the SV to be discarded according to

(26)

l,g,l}‘r,lB+1mHai[n]”2

iy = arg

which promotes discarding older SVs over more recent ones.

By tuning 3, the proposed memory-aware budget mainte-
nance module can cover a range of different schemes. For
large values of 8 =< 1, it follows that n; ~ n; Vi,j € S,
and (26) approaches the minimum distortion removal rule
in (25), which is tailored for learning static subspaces. On
the other hand, for small 3, the discarding rule is heavily
biased towards removing old SVs rather than the newly-
included ones, thus pushing the maintenance strategy towards
a first-in-first-out (FIFO) approach, which is often optimal for
applications with fast-varying subspaces. Algorithms 4 and
5 tabulate the updates and the greedy budget maintenance
scheme, respectively. Budget maintenance strategy in (25) is
a special case of Alg. 5 with 8 = 1.

Algorithm 4 Online Kernel-based Feature Extraction on a
Budget (OKFEB)

Input {Xu}:}:h A
Initialize A[1] at random and S; = {1}
Forn=2,...do

q[n] :(A—r [n—1)K(xs,_,,Xs,_,)Aln—1]+ )\IT)_1
X AT[n —1]k(xs, _,,Xn)

by = k(%n,%,) — 2k (x5, .,
+a, AT — 1JK(xs

xn)Aln —1]q[n]
Xs, 1 )An = 1qn]

n—17
if /, <e then S, =S,_1
else

Sn=8n-1U{n}

G, =K(xs,,Xs,) [A[n 3

o V] atila”ma

A Aln—-1
—k(xs,.%n)q" [n] + ~K(xs,.Xs,) { ([)T q
n rx1
An-1 =
Aln] = ([)T . ] — tn,aGn
X
if |S,| > B then Run budget maintenance module
end if
end if
EndFor

Return A[n], S,, {q[v]}]_,

C. Complexity analysis

Computational complexity of the proposed OK-FEB is
evaluated in the present section. The computations required
by the n—th iteration of Alg. 4 for feature extraction and
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Algorithm 5 Budget maintenace module

Input {S, A {n;}ies}

171’ < 6771' VieS

i = argminies 7;[|a; ||

S« 8\ {is}

Discard the %*—th row of A and U
Return {S, A, {n;}ies}

parameter update depend on B,r, and D, as well as the
censoring process outlined in Section V-A. Specifically, com-
puting G,, and performing the first-order stochastic update
that yields A[n] requires O(B?r) multiplications, a cost that
is saved for skipped instances when ¢,, < e. Regarding the
computation of q[n|, Br(B+r) multiplications are needed to
form AT[n—1]K(xs, ,,Xs,_,)A[n—1], and O(r®) multipli-
cations for the inversion of AT [n—1]K(xs, ,,xs,_,)A[n—
1] + AL.. Fortunately, the aforementioned computations can
also be avoided for iteration n, if the previous iteration
performs no update on A[n — 1]; in this case, (AT[n —
1)K(xs, ,,Xs,_,)A[n — 1] + AL,)~! remains unchanged
and can simply be accessed from memory. Nevertheless, a
“baseline” of computations is required for feature extraction
related operations that take place regardless of censoring.
Indeed, forming AT [n — 1]k(xs,_,,X,) requires Br mul-
tiplications for the matrix-vector product, and O(BD) for the
evaluation of B kernels in k(xs, ,,X,); the matrix-vector
product that remains for obtaining q[n] requires 72 additional
multiplications.

Overall, running OK-FEB on N data and with a value
of € such that N < N data are used for updates requires
O(N(Br(B +7) 4+ %) + N(B(D + ) + r2)). Alternatively,
tuning e such that Pr{¢,, > ¢} = E[N/N] := p yields an ex-
pected complexity O(N (Br(p(B+r)+1)+(pr+1)r*+BD)).
As simulation tests will corroborate, the budget parameter B
can be chosen as B = c¢r with ¢ € [1.5,5]. Thus, we can sim-
plify the overall complexity order as O(N72(pr+1)+ NDr).

VI. STABILITY OF KERNEL APPROXIMATION

In this section, the effect of low-rank approximation of
the lifted vectors on kernel-matrix approximation as well
as kernel-based classification and regression is analytically
quantified. Recall that given {x,}},, the virtual subspace
obtained by running OK-FEB is L = ®sA € RP*", and
the corresponding projection coefficients are Q. By defining
the random variables e; := ||¢p(x;) — (]Aﬁ(xl)H%_[ = ||lo(x;) —
I_qu||3_Lcapturing the LS error, we have the following result.
Proposition 4. If the random variables e; € [0 , 1] are i.i.d.
with mean € := Ele;), then for kernels satisfying |k(x;,%;)| <
1, the matrix K = ® " ® can be approximated by K:=&"®,
and with probability at least 1 — 26’21\”2, it holds that

%HK—KHFS\/é+t(\/é+t+2). @7)

Proof: Upon defining E := & — &, one can write
IK-K|r=[12"® -2 ®|r
=|e'®—(@+E) (@ +B)r
=[2ET® +E"E|r
<2|El|zs||®[las + [IE|Hs
< 2VN|Ellus + |Ell%s

(28a)
(28b)

where in (28a) we used the triangle inequality for the Frobe-
nious norm along with the property | BC||r < ||B||7|/C|lF,
and (28b) holds because for, e.g., radial kernels satisfying
|k(xi,x;)| <1, we have

N
[@]|lrs == /tr(®T®) = ZH(Xiaxi) <VN.
i=1
Furthermore, since ||E|r := \/Zij\; e;, and ey =

(1/N) Zf\il e; with e; € [0, 1], Hoeffding’s inequality yields
Pr(ey —é>t) < e 2Nt which in turn implies

1 -
Pr(N||E||% > é+t) = Pr(éN > é+t> < e 2V (29)

Finally, taking into account (28b), it follows that with proba-
bility at least 1 — 2e 72V, we have

|IK-K|r <N2vVett+(E+1) .1 (30)

Proposition 4 essentially bounds the kernel approximation
mismatch based on how well the projection onto the subspace
approximates the lifted data ¢(x).

Remark 4. Consider now decomposing the kernel matrix as
K=3"®d=(LQ)  (LQ) =Q'AT®[®;AQ
=QTATKsAQ=7Z"2Z (31)

where matrix Z := K}S/QAQ has size |S| x N, and S
denotes the budgeted SV set. This factorization of K could
have resulted from a linear kernel over the |S| x 1 training
data vectors forming the N columns of Z. Thus, for kernel-
based tasks such as kernel classification, regression, and
clustering applied to large datasets, we can simply map the
D x N data X to the corresponding features Z trained via
the proposed solvers, and then simply rely on fast linear
learning methods to approximate the original kernel-based
learning task; that is to approximate the function f(x) =
> ies Ciki(x,x;) by the linear function g(z) = w ' z expressed
via the extracted features. Since linear pattern recognition
tasks incur complexity O(N B?), they scale extremely well
for large datasets (with N >>), compared to kernel SVM that
incurs complexity O(N?3). Furthermore, in the testing phase,
evaluation of function f(x) requires k(x,,x;) for Vi € S
to be evaluated at complexity O(|S|D), where |S| is the
number of SVs that typically grows with N. In contrast, if
approximated by the linear g(z), function evaluation requires
O(BD + Br) operations including the feature extraction and
function evaluation. Setting the budget B to 1.5 to 5 times
the rank parameter 7, our complexity is of order O(rD +12),
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which represents a considerable decrease over O(|S|D).

Subsequently, we wish to quantify how the performance
of linear classification and regression based on the features
K}S/ 2AQ compares to the one obtained when training with
the exact kernel matrix K.

A. Stability analysis for kernel-based classification
Kernel-based SVM classifiers solve [38, p. 205]

1
a® = arg min iaTYKYa 1T (32)
C
.
.t =00<a<—1
sty « sas< iy

where Y is the diagonal matrix with the i-th label y; as its
i-th diagonal entry, y ' := [y1, %2, ..., yn], and 1 is an n x 1
vector of 1’s. Solution (32) corresponds to the dual variables
of the primal optimization problem, which yields

N
. o Lywiz 1 C o
* = = = 0,1—y; )}
= ang min, gl + g 3 max(0.1 -y D))
(33)

Here, parameter C' controls the trade-off between maximiza-
tion of the margin 1/|/w||4;, and minimization of the misclas-
sification penalty, while the solution of (33) can be expressed
as w* = YN aryib(x;) [38, p.187].

Exploiting the reduced memory requirement offered through
the low-rank approximation of the kernel matrix via OK-FEB,
the dual problem can be approximated as

1 N
&* = argmin §aTYKYoz -1Ta (34)

C
s.t. yTa:O,Ogag ﬁlN.

Viewing K as a linear kernel matrix over {¢(x;)}s (cf.
Remark 4), similar to (32), the minimization (34) can be re-
written in the primal form as

N

A 1 C "
w* = argrré‘i]n §||v_v||% tw ;maX{O, 1—yw' o(x;)}
(33)
for which we have w* = Y1V, d;‘yiqg(xi). Upon defining
the random variable &; := ||p(x;) — P(x;)|| with expected

value ¢ := E[¢;], the following proposition quantifies the gap
between w* and w*.

Proposition 5. If & € [0, 1] are iid., with mean &, the
mismatch between the linear classifiers given by (33) and (35)
can be bounded, and with probability at least 1 — e 2N e

have
|Aw|Z = W — w3 <20%2(E+¢) . G6)

Proof: Tt clearly holds that

A\

c al .
< N(”V_V*”H + W) llp(xi) — d(xi)

=1

1Aw]f3,

N

3/2 R B
< 20T i) — o)l < 20%2(E 4 1)
=1

- N

where the first inequality relies on the strong convexity of
(33), (35), and the fact that ||[W*[|% < +v/C and ||w*||3 <
V/C' [41]; while the second inequality holds with probability

at least lN— em2NE using Hoeffding’s inequality for {n :=
(I/N) Zi:1 fz u
Note that under the i.i.d. assumption on e; := ||¢p(x;) —

é(x;)||3,, random variables &; are also i.id., rendering the
conditions of Propositions 4 and 5 equivalent.

Next, we study the performance of linear SVMs trained on
the set {z;, vy}, where z; ;= K}gﬂAql'; that is, the linear
function g(z) = w 'z is learned by finding

N
1 C
w* = argvlvréi]l% §||W||2 ty ;max{(), 1—yw' 2z}
(37

The following result asserts that the classifiers learned through
(35) and (37) can afford identical generalization capabilities.
Proposition 6. The generalization capability of classifiers (35)
and (37) is identical, in the sense that W* ' ¢(x) = w* z.
Proof: Since for the low-rank approximation of the kernel
matrix we have K = Z T Z, then (34) and (37) are equivalent,
and consequently w* = Zivzl &;y;z;. Now, one can further
expand w*T ¢(x) and w*' z to obtain

N N
W Th(x) =) arydT (x)b(x) =D ajyia] AT dsAq
=1 =1

and w*Tz = YN aryzlz = YN aryiqf AT®LdsAq
where the equivalence follows readily. ]

In addition to markedly reduced computational cost when
utilizing linear (L)SVM, our novel classifier can also be
efficiently trained online [41] as new data becomes available
(or iteratively when the entire datasets can not be stored in
memory which necessitates one-by-one acquisition). In this
case, the proposed OK-FEB in Algorithm 4 can be run in
parallel with the online classifier training, an attribute most
suitable for big data applications.

B. Stability analysis for kernel-based regression

Consider now the kernel-based ridge regression task on the
dataset {x;,y;}¥ |, namely
't
min <y — K83 + 23Kz (38)
B N
which admits the closed-form solution 3* = (K + ANI) "y
[38, p. 251]. Alleviating the O(N?) memory requirement
through low-rank approximation of matrix K, the kernel-based
ridge regression can be approximated by
R I S
min —[ly — K35 + A8 KB (39)
B N
whose solution is given as 8* = (K + ANI)~ly. The
following proposition bounds the mismatch between 8* and
B*.
Proposition 7. If the random variables e; € [0, 1] are i.i.d,
with mean €, and |y;| < B, fori = 1,2, ..., N, with probability
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2
—2Nt" e have

8" —B°1P < SIVETHVETT+2).
Proof: Following [8], we can write
B — 3" = (K+ANI)"ly — (K+ ANT)~*
- ((K +ANT) LK - K)(K + ANI)—l)y

at least 1 — 2e

(40)

where we have used the identity P~! — P~1 = —P~ (P —
P)P 1 which holds for any invertible matrices P and P.
Taking the ¢5-norm of both sides and using the Cauchy-
Schwartz inequality, we arrive at
18° = B7) < (K + AN~ |[[1 K — KI|[|(K + ANT) ||y
K — K[|NB,
7 Amin (K + AN A\in (K + ANT)
_BJK-K|>
- A2N
Using the inequality |P||2 < ||P|r along with Proposition
2
4, yields the bound with probability 1 — 2e=2Nt", |

(41)

VIL

This section presents numerical evaluation of various per-
formance metrics to test our proposed algorithms using both
synthetic and real datasets. In subsection 7.1, we empiri-
cally study the proposed batch and online feature extraction
algorithms using a toy synthetic dataset. In subsection 7.2,
we focus on the tracking capability of the proposed OK-
FEB and demonstrate its performance in terms of the evo-
lution of average LS-fitting error obtained at iteration n as
(1/n)>°"_, |l¢(x,) — Lin]a,||3,. Regarding the kernel ma-
trix approximation performance, given a window size Nying,
we have (N — Nying) windows in a dataset of size N.
Consequently, the mismatch of kernel matrix approximation
is averaged over all such windows, and it is thus obtained as

NUMERICAL TESTS

N — Nying

N N wind wX::

where K, and K, are the kernel matrix and its approximation
over the data vectors in the w-th window. Finally, in subsection
7.3 we test how well OK-FEB approximates the kernel-
based classification and regression modules, and compare its
performance with competing alternatives.

K—K)
K~ Kol

A. Kernel-based feature extraction: Batch vs. online

Performance of Algorithms 1, 2 and 3 on solving the
minimization (10) is tested using synthetically generated data
arriving in streaming mode with v = 1,2,...,5,000. The
test involves generating two equiprobable classes of 3 x 1
data vectors {x,}, each uniformly drawn from the surface
of a sphere centered at the origin with radius R.; = 1 or
R. = 2, depending on whether its label y, equals 1 or
—1, respectively. Noise drawn from the Gaussian distribution
N (0341,0%I3x3) is added to each x,, with o2 controlling
the overlap between the two classes. Linear classifiers can

not correctly classify data generated in this manner. For this
reason, the Gaussian kernel x(x;,x;) = exp(—||x; — x;3/7)
was used with v = 100. The online schemes can solve
the problem on-the-fly, while the batch Algorithm 1 is also
employed to solve (10) offline. We compare the overall LS fit
given by the subspace update L[n] using the three different
solvers across time (iteration) index n.The parameters for the
OK-FE solvers are chosen as g, 1 o 1/n, pn.a o< 1/n?
A = 1073, and the maximum number of iterations in the batch
solver is set to I.x = 50.

Figure 1(a) depicts how stochastic low-complexity updates
of A in the online solvers ensure convergence of the average
LS cost to the high-complexity batch solution for r = 7.
When n is small, the low-rank approximation is accurate and
the resulting LS error in Batch-KFE is small. Note however
that LS is nonzero for n < r, due to regularization. As n
increases, the number of vectors in the batch minimization also
increases, while r is fixed. Thus, the fitting problem becomes
more challenging and the LS error increases slightly until 7 is
large enough and the n data vectors are representative of the
pdf from which data is drawn - a case that the LS fit stabilizes.
Fig. 1(b) plots the convergence curve for Algs. 2 and 3.

While the Gaussian kernel that was adopted here is the
most widely used type, other kernels are also applicable (e.g.
polynomial kernels). Although it goes beyond the scope and
claims of this paper, similar to all kernel-based schemes,
the effect of not knowing the ideal kernel can be mitigated
via data-driven multi-kernel approaches [2], [34]. Plotted in
Fig. 2 is the fitting error for different kernels with different
parameters versus 7 to highlight this issue (in Gaussian kernel,
v = 202).

In addition, Fig. 3 plots the evolution of the average LS cost
across iterations for different choices of parameters (r, B) in
the OK-FEB solver. Note that relative to the batch Alg. 1 that
incurs complexity O(N?r) per iteration, OK-FE exhibits sim-
ilar performance at much lower complexity O(N72 + N Dr).

B. Dynamic subspace tracking

In this subsection, we assess efficiency of the novel ap-
proach in tracking dynamic subspaces using synthetic and real-
world datasets.

1) Synthetic data: We generated a set of N = 2,000 data
vectors in R3. For n = 1,...,1000 the data were drawn from
the surface of the sphere given by the manifold (z1/3)%+ 23+
23 = 1, while for n = 1,001, ...,2,000 they were sampled
from the surface of the spheroid z% + (22/3)% + (z3)? = 1, in
Fig. 4. Plotted in Fig. 5 is the LS error of the low-rank feature
extraction with » = 10 and kernel parameter v = 2 (averaged
by a window of length 200 for improved visualization) across
time n. To enable tracking, the step size at sample index v
is chosen as u,, = 1/||q,||2. As the plot suggests, the change
of the manifold at n = 1,000 can be spotted by the rise in
the LS error. The tracking capability of OK-FEB enables the
subspace to adapt to the change in the underlying manifold.
However, within a window of fixed subspace, namely for
1 < n < 1,000, and 1,200 < n < 2,000, and especially
for small budget B = 2r, the budget maintenance policy in
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Fig. 1: LS-fit versus iteration index for the synthetic dataset
(a), and convergence curve for the subspace iterates (b).
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Fig. 2: LS-fit of OKFE for different choices of polynomial
and Gaussian kernels with different parameters

Alg. 3 outperforms the FIFO budget maintenance policy by
carefully discarding the SVs whose exclusion least distorts
the learned subspace. Among the budgeted algorithms, setting
small S leads to a forceful exclusion of relatively older vectors,
and thus adaptation to the new subspace at ¢ = 1000 takes
place faster. In contrast, having small 5 reduces the capability
of fine tuning to the underlying subspace when it is not
changing. This is corroborated by the lower curve for 3 = 0.9
versus [ = 1 during the subspace change, while § = 1
gives lower error when subspace is not changing. Budget size
B = 2r demonstrates such effects more clearly as smaller B
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Fig. 3: LS-fit for different choices of (r, B) using OK-FEB

Fig. 4: Visualization of the nonlinear synthetic manifolds

requires a more careful selection of the support vectors, hence
emphasizing the effect of parameter 5. The performance of
the batch solver with no budget size constraint is also plotted,
whose average fitting error is worse than that of budget size
B = b5r and is similar to the very restrictive budget size
B = 2r. This is contributed to the fact that in the batch
solver, the union of two subspaces is approximated by low-
rank r, and thus the performance is inferior to the proposed
online approach which is capable of tracking the underlying
subspace. Overall, given the dynamics of a particular dataset,
selection of (3 directly sets the operation mode of our subspace
learning, and is tunable to the pace of dynamics.

Average mismatch of K found from OK-FEB for various
values of rank r and choice of B = 2r is plotted in Fig.
6, and is compared with KPCA as well as state-of-the-art
variations of the Nystrom approximation, namely Improved
Nystrom [54], SS-Nystrom [48], and MEKA [44]. Considering
the dynamic nature of the data, the mismatch is evaluated over
a moving window of length N,,;,q = 100, and averaged over
all such windows. As the plot suggests, OK-FEB outperforms
competing alternatives and better suites datasets with dynamic
subspaces.

C. Real-data on physical activity tracking

In this subsection, we test performance of OK-FEB on
the physical activity monitoring dataset PAMAP2 [36]. The
dataset contains N = 129,200 measurements from 3 Col-
ibri wireless inertial measurement units (MU) worn by 9
subjects during different physical activities, such as walking
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Fig. 6: Average kernel mismatch of dynamic data

and cycling. The MUs are placed on the dominant arm,
chest, and dominant ankle of the subjects, each recording
13 quantities including acceleration and gyroscope data with
sampling frequency 100Hz. We discarded all measurement
vectors with missing entries, idle state measurements, and
first and last 1,000 measurements of each activity, as they
correspond to transient states. The tests are performed on
data corresponding to subject number 1, and can be similarly
repeated for other subjects as well.

The data is fed to OK-FEB with (r, B) = (10,15), and
step size set to uy = 1/||q¢l|2. LS error given by the nonlinear
feature extraction (averaged over a window of length 200 for
improved visualization) is plotted in Fig. 7 across time. Every
activity is also coded to a number in (0, 1], and plotted in the
same figure versus time to highlight the activity changes over
time. As the figure illustrates, different activities correspond to
different manifolds, each of which can be approximated with
a certain accuracy via dynamic subspace learning and feature
extraction. Introducing the forgetting factor 5 < 1 enhances
the learning capability. Table I reports the average LS-error
and its variance for different activities using various budget
maintenance strategies, with 5 = 1, 0.9, and the FIFO strategy.

Similar to Fig. 6, Fig. 8 depicts the average mismatch
of kernel matrix approximation of OK-FEB with B = 1.5r
for the PAMAP2 dataset. Comparison with the competing
Nystrom variations in [54] and [44] clearly demonstrates the
advantage of OK-FEB with forgetting factor 5 = 0.9. Due
to the large number of data vectors, KPCA and SS-Nystrom
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—B=095

Average LS-fit error

0 2 4 6 8 10 12
Sample index (n) x 10*

Fig. 7: LS-fitting error of the PAMAP2 dataset versus time

TABLE I: Mean and variance of LS-fitting error of the
extracted features with (r, B) = (10, 15) for different activities
using different budget maintenance strategies

Code Activity =1 | =0.9 | FIFO Bud.

0.3 Walking 0.099 0.074 0.074
+0.016 | £0.012 +0.012

04 Running 0.227 0.187 0.187
+0.025 | +0.022 +0.022

0.5 Cycling 0.058 0.028 0.028
£0.027 | £0.012 +0.12

0.6 Nordic 0.130 0.103 0.103
Walking £0.020 | £0.016 +0.016

0.7 Ascending 0.079 0.063 0.063
Stairs +0.022 | +0.018 +0.018

0.8 | Descending | 0.094 0.066 0.065
Stairs +0.021 | £0.016 +0.016

0.9 Vacuum 0.045 0.029 0.029
cleaning +0.013 | £0.008 +0.008

1.0 Rope 0.272 0.238 0.238
jumping +0.063 | £0.057 +0.057

could not be implemented.

D. Online regression and classification

In this subsection, the generalization capability of the online
linear classification and regression modules based on the
features Z returned by OK-FEB is tested. We compare the
performance of linear regression and classification as well
as competing online kernel-based learners including (unbud-
geted) Perceptron [15], (unbudgeted) Norma [21], (unbud-
geted) online gradient descent (OGD) [41], (unbudgeted) on-
line dictionary learning (ODL), and budgeted online gradient
descent (BOGD) [49], Forgetron [10], Projectron [32], and
budgeted passive-aggressive algorithm (BPA) [51] with our
novel OK-FEB, where the acquired features z, are fed to
online linear Pegasus [41] and regularized-LMS solvers for
the classification and regression tasks, respectively. The size
and specifications of the dataset used are listed in Table II, and
are accessible from the LIBSVM website? or the UCI machine

Zhttp://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
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Fig. 8: Average kernel mismatch of PAMAP2 dataset
TABLE II: Specifications of datasets.

dataset D N r B vy C
Adult 123 32K 50 1.2r 20 10
CADATA 8 206K 5 1,50 7x107 0.01
Slice 384 535K 10 1.2r 50 0.01
Year 90 463.7K 10 1.2r 5x107 0.01

learning repository 3. The parameter values used per dataset
are reported in Table II. In particular, tuning of the Frobenious
norm regularization and kernel bandwidth parameters are done
via cross validation over a discretized grid. Regarding the
budget, to ensure stability of the algorithm it suffices that we
set B > r, while it has been observed that setting B very
high yields only marginal improvement in terms of accuracy.
Finally, for the selection of 7, we test an increasing sequence
of values starting from r» = 2 and gradually increasing until
the improvement in terms of fitting error becomes negligible.
The aforementioned process is typically used to determine
the minimum required complexity of parametric models (e.g.,
order-adaptive least-squares [19]). The censoring threshold e
is set using a moving-average of LS-error values for the past
100 data vectors.

Classification and regression accuracy as well as run time
are plotted versus iteration index. Perceptron, Norma, ODL,
and OGD are unbudgeted algorithms, and their SV sets (dic-
tionary atoms in ODL) grow as iteration index increases in
Fig. 9. Although the accuracy of these algorithms can serve
as a benchmark, their run time grows the fastest. Thus, for
the “Year” dataset (/N >>), the mentioned algorithms are run
only over 10% of the data vectors. As these tests demonstrate,
among the budgeted algorithms, OK-FEB reliably approxi-
mates the kernel function through the extracted features, thus
offering more accurate classification and regression perfor-
mance when compared to existing alternatives.

VIII. CONCLUDING REMARKS

Low-complexity feature extraction algorithms were intro-
duced in this paper to markedly improve performance of
kernel-based learning methods applied to large-scale datasets.
The novel approach begins with a generative model having
data mapped to a high-(possibly infinite-) dimensional space,
where they lie close to a linear low-rank subspace, the tracking
of which enables effective feature extraction on a budget. The

3http://www.ics.uci.edu/~mlearn/
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Fig. 9: Online classification tests on (a) Adult, and regression
tests on (b) CADATA, (c) Slice, and (d) Year datasets.

extracted features can be used by fast linear classifiers or
regression predictors at scale.

Offline and online solvers of the subspace learning task were
developed, and their convergence was studied analytically.
To keep the complexity and memory requirements within
affordable levels, budgeted algorithms were devised, in which
the number of stored data vectors is restricted to a prescribed
budget. Further analysis provided performance bounds on the
quality of the resultant kernel matrix approximation, as well
as the precision with which kernel-based classification and
regression tasks can be approximated by leveraging budgeted
online subspace-learning and feature-extraction tasks.

Finally, online subspace tracking and nonlinear feature
extraction for dynamic datasets as well as classification and
regression tests on synthetic and real datasets demonstrated the
efficiency of OK-FEB with respect to competing alternatives,
in terms of both accuracy and run time.

IX. APPENDIX

Proof of Proposition 2: The proof of the proposition is inspired
by [28] and [27], and is sketched along the following steps.
Step 1. First, we judiciously introduce a surrogate for F,(L)
whose minimizer coincides with the SGD updates in (13).
To this end, we have that ming f, (x,;L,q) <

fo(x,;L,q[v); hence, F,(L) =
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(1/n) >0, fl,(xl,;I_i,q[V]) upper bounds the cost function,
namely F,(L) < F,(L), VL. Further approximating f,
through a second-order Taylor’s expansion at the previous
subspace update L[n — 1], we arrive at
fn(xm L, a[n]) = fn(Xn; E[n —1],q[n])
+ tr{van(xn7 [n - 1]
L~ i~ 1ls

(42)
aln])(L

By ChOOSng Yo = ||v fn(xnaL[n - 1]aqn)||H =
l(alrla’[n]) @ Ip + (A/n)I TD”H and using the norm prop-
erties in the Hilbert space, the following can be verified:

(i) fn is locally tight; ie., fn(xn;L[n — 1],qn]) =
fn(xn7L[n_1]7q[7}]); N B

(ii) gradient of f, is locally tight; i.e., Vg fn(%n; Lin —
1], a[n]) = V¢ fu(xn: Ln — 1], q[n]): and

(iii) f, globally majorizes the original instantaneous cost
fn: that is, fr(x,;L,q[n]) < fu(xn; L, q[n]), VL.

Selectlng now the target surrogate cost as F, (L) =

*Z” fo(xu;Loq]) we have F,(L) < F,(L) <

F,(L),VL. Minimizing the cost F,(L) amounts to nullify-
ing the gradient, i.e., Vi F,(L[n]) = 0, which yields [28]
L[n] = Lin — 1] = 4, 1G,,, with %,, := Y_"'_ 7,.. By setting
tn = 1/7,, the SGD-based update of L[n] now coincides with
the minimizer of F),(L); that is, L[n] = arg ming, F,,(L).
Step 2. The second step establishes that the surrogate
costs {F,(L)} form a quasi-martingale sequence [24],
and using tightness of the surrogate cost we deduce that
lim,, 00 (Fy, (L[n]) — F,,(L[n])) = 0. Thus, the surrogate cost
asymptotically converges to the original cost £}, (L).

Step 3. Leveraging the regularity of £(x,; L, q, ), convergence
of the cost sequence implies convergence of {|| Vg, F, (L[n]) —

ViFn(L[n))|lus} to zero, which along with Vi, F,(L[n]) =
0, yields {||[VF (L[n])[ls} — 0. u
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