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Abstract—Diffusion-based classifiers such as those relying on
the Personalized PageRank and the Heat kernel, enjoy remark-
able classification accuracy at modest computational require-
ments. Their performance however is affected by the extent to
which the chosen diffusion captures a typically unknown label
propagation mechanism, that can be specific to the underlying
graph, and potentially different for each class. The present work
introduces a disciplined, data-efficient approach to learning class-
specific diffusion functions adapted to the underlying network
topology. The novel learning approach leverages the notion of
“landing probabilities” of class-specific random walks, which can
be computed efficiently, thereby ensuring scalability to large
graphs. This is supported by rigorous analysis of the properties
of the model as well as the proposed algorithms. Furthermore, a
robust version of the classifier facilitates learning even in noisy
environments. Classification tests on real networks demonstrate
that adapting the diffusion function to the given graph and
observed labels, significantly improves the performance over
fixed diffusions; reaching – and many times surpassing – the
classification accuracy of computationally heavier state-of-the-
art competing methods, that rely on node embeddings and deep
neural networks.

Index Terms—Semi-supervised Classification, Random Walks,
Diffusions.

I. INTRODUCTION

THE task of classifying nodes of a graph arises frequently

in several applications on real-world networks, such

as the ones derived from social interactions and biological

dependencies. Graph-based semi-supervised learning (SSL)

methods tackle this task building on the premise that the true

labels are distributed “smoothly” with respect to the underlying

network, which then motivates leveraging the network structure

to increase the classification accuracy [10]. Graph-based SSL

has been pursued by various intertwined methods, including

iterative label propagation [6], [42], [28], [24], kernels on

graphs [30], manifold regularization [5], graph partitioning

[39], [18], transductive learning [38], competitive infection

models [35], and bootstrapped label propagation [9]. SSL based

on graph filters was discussed in [36], and further developed

in [11] for bridge monitoring. Recently, approaches based

on node-embeddings [33], [17], [41], as well as deep-learning

architectures [20], [2] have gained popularity, and were reported

to have state-of-the-art performance.

Many of the aforementioned methods are challenged by

computational complexity and scalability issues that limit

Work was supported by NSF 171141, 1514056 and 1500713

their applicability to large-scale networks. Random-walk-based

diffusions present an efficient and effective alternative. Methods

of this family diffuse probabilistically the known labels through

the graph, thereby ranking nodes according to weighted sums of

variable-length landing probabilities. Celebrated representatives

include those based on the Personalized PageRank and the Heat

Kernel that were found to perform remarkably well in certain

application domains [21], and have been nicely linked to partic-

ular network models [22], [3], [23]. However, the effectiveness

of diffusion-based classifiers can vary considerably depending

on whether the chosen diffusion conforms with the latent label

propagation mechanism that might be, (i) particular to the

target application or underlying network topology; and, (ii)

different for each class.

The present contribution alleviates these shortcomings and

markedly improves the performance of random-walk-based

classifiers by adapting the diffusion functions to both the

network and the observed labels. The resultant novel classifier

relies on the notion of landing probabilities of short-length

random walks rooted at the observed nodes of each class. The

small number of these landing probabilities can be extracted

efficiently with a small number of sparse matrix-vector products,

thus ensuring applicability to large-scale networks. Theoretical

analysis establishes that short random walks are in most cases

sufficient for reliable classification. Furthermore, an algorithm

is developed to identify (and potentially remove) outlying or

anomalous samples jointly with adapting the diffusions. We test

our methods in terms of multiclass and multilabel classification

accuracy, and confirm that it can achieve results competitive to

state-of-the-art methods, while also being considerably faster.

The rest of the paper is organized as follows. Section II

introduces random-walk based diffusions. Our novel approach

along with relevant analytical results are the subjects of

Section III. Section IV presents a robust version of our

algorithm, and Section V places our work in the context of

related methods. Finally, Section VI presents experiments, while

Section VII concludes the paper and discusses future directions.

Notation. Bold lower-case letters denote column vectors (e.g.,

v); bold upper-case letters denote matrices (e.g., Q). Vectors qj

and qT

i denote the jth column and the ith row of Q, respectively;

whereas Qij (or sometimes for clarity [Q]ij) denotes the ijth

entry of Q. Vector eK denotes the K th canonical column vector;

and ‖·‖ denotes the Euclidean norm, unless stated otherwise.

Calligraphic upper-case letters denote sets (e.g., U ,V); and

finally, symbol := is used in definition statements.
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II. PROBLEM STATEMENT AND MODELING

Consider a graph G := {V, E}, where V is the set of N
nodes, and E the set of edges. Connectivity is captured by

the weight matrix W having entries Wij > 0 if (i, j) ∈ E .

Associated with each node i ∈ V there is a discrete label

yi ∈ Y . In SSL classification over graphs, a subset L ⊂ V
of nodes has available labels yL, and the goal is to infer the

labels of the unlabeled set U := V \ L. Given a measure

of influence, a node most influenced by labeled nodes of a

certain class is deemed to also belong to the same class. Thus,

label-propagation on graphs boils down to quantifying the

influence of L on U , see, e.g. [10], [24], [40]. An intuitive yet

simple measure of node-to-node influence relies on the notion

of random walks on graphs.

A simple random walk on a graph is a discrete-time Markov

chain defined over the nodes, that is, the state space is

equivalent to V . The transition probabilities are

Pr{Xk = i|Xk−1 = j} = Wij/dj = [WD−1]ij := [H]ij

where Xk ∈ V denotes the position of the random walker

(state) at the kth step; dj :=
∑

k∈Nj
Wkj is the degree of node

j; and, Nj its neighborhood. Since we consider undirected

graphs the steady-state distribution of {Xk} always exists if

it is connected, and non-bipartite. It is given by the dominant

right eigenvector of the column-stochastic transition probability

matrix H := WD−1, where D := diag (d1, d2, . . . , dN ) [26].

The steady-state distribution π can be shown to have entries

πi := lim
k→∞

∑

j∈V
Pr{Xk = i|X0 = j}Pr{X0 = j} = di

2|E|

that are clearly not dependent on the initial “seeding” distribu-

tion Pr{X0}; and π is thus unsuitable for measuring influence

among nodes. Instead, for graph-based SSL, we will utilize

the k−step landing probability per node i given by

p
(k)
i :=

∑

j∈V
Pr{Xk = i|X0 = j}Pr{X0 = j} (1)

that in vector form p(k) := [p
(k)
1 . . . p

(k)
N ]T satisfies p(k) =

Hkp(0), where p
(0)
i := Pr{X0 = i}. In words, p

(k)
i is the

probability that a random walker with initial distribution p(0)

is located at node i after k steps. Therefore, p
(k)
i is a valid

measure of the influence that p(0) has on any node in V .

The landing probabilities per class c ∈ Y are (cf. (1))

p(k)
c = Hkvc (2)

where for Lc := {i ∈ L : yi = c}, we select as vc the

normalized class-indicator vector with i−th entry

[vc]i =

{

1/|Lc|, i ∈ Lc

0, else
(3)

acts as initial distribution. Using (2), we model diffusions per

class c over the graph driven by {p(k)
c }Kk=1 as

fc(θ) =

K
∑

k=1

θkp
(k)
c = P(K)

c θ (4)

where P
(K)
c :=

[

p
(1)
c · · · p

(K)
c

]

, and θk denotes the impor-

tance assigned to the kth hop neighborhood. By constraining

θ ∈ SK , where SK := {x ∈ R
K : x ≥ 0, 1Tx = 1} is the

K−dimensional probability simplex, fc(θ) becomes a valid

nodal probability mass function (pmf) for class c.
Given θ and upon obtaining {fc(θ)}c∈Y , our diffusion-based

classifiers will predict labels over U as

ŷi(θ) := argmax
c∈Y

[fc(θ)]i (5)

where [fc(θ)]i is the ith entry of fc(θ).
The upshot of (4) is a unifying form of superimposed

diffusions allowing even tunable simplex weights, taking up to

K steps per class to come up with an influence metric for the

semi-supervised classifier (5) over graphs. Next, we outline two

notable members of the family of diffusion-based classifiers

that can be viewed as special cases of (4).

A. Personalized PageRank Classifier

Inspired by its celebrated network centrality metric [8], the

Personalized PageRank (PPR) algorithm has well-documented

merits for label propagation; see, e.g. [27]. PPR is a special case

of (4) corresponding to θPPR = (1−α)
[

α α2 · · · αK
]T

,

where 0 < α < 1, and 1−α can be interpreted as the “restart”

probability of random walks with restarts.

The PPR-based classifier relies on (cf. (4))

fc(θPPR) = (1− α)
K
∑

k=1

αkp(k)
c (6)

satisfying asymptotically in the number of random walk steps

lim
K→∞

fc(θPPR) = (1− α)(I− αH)−1vc

which implies that fc(θPPR) approximates the solution of

a linear system. Indeed, as shown in [3], PPR amounts to

solving a weighted regularized least-squares problem over

V; see also [22] for a PPR interpretation as an approximate

geometric discriminant function defined in the space of landing

probabilities.

B. Heat Kernel Classifier

The heat kernel (HK) is another popular diffusion that has

recently been employed for SSL [30] and community detection

on graphs [21]. HK is also a special case of (4) with θHK =

e−t
[

t t2

2 · · · tK

K!

]T

, yielding class distributions (cf. (4))

fc(θHK) = e−t
K
∑

k=1

tk

k!
p(k)
c . (7)

Furthermore, it can be readily shown that

lim
K→∞

fc(θHK) = e−t(I−H)vc

allowing HK to be interpreted as an approximation of a heat

diffusion process, where heat is flowing from Lc to the rest

of the graph; and fc(θHK) is a snapshot of the temperature

after time t has elapsed. HK provably yields low conductance

communities, while also converging faster to its asymptotic

closed-form expression than PPR [14].
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III. ADAPTIVE DIFFUSIONS

Besides the unifying view of (4), the main contribution

here is on efficiently designing fc(θc) in (4), by learning

the corresponding θc per class. Thus, unlike PPR and HK,

the methods introduced here can afford class-specific label

propagation that is adaptive to the graph structure, and also

adaptive to the labeled nodes. Figure 1 gives a high-level

illustration of the proposed adaptive diffusion framework, where

two classes (red and green) are first diffused over the graph

(cf. (2)), followed by adaptation of class-specific diffusion

coefficients; diffusions are then built (cf. (4)) and used for

class prediction (cf. (5)).

Consider for generality a goodness-of-fit loss `(·), and a

regularizer R(·) promoting e.g., smoothness over the graph.

Using these, the sought class distribution will be

f̂c = arg min
f∈RN

`(yLc
, f) + λR(f) (8)

where λ tunes the degree of regularization, and

[yLc
]i =

{

1, i ∈ Lc

0, else

is the indicator vector of the nodes belonging to class c. Using

our diffusion model in (4), the N−dimensional optimization

problem (8) reduces to solving for the K−dimensional vector

(K � N )

θ̂c = arg min
θ∈SK

`(yLc
, fc(θ)) + λR(fc(θ)). (9)

Although many choices of `(·) may be of interest, we will

focus for simplicity on the quadratic loss, namely

`(yLc
, f) :=

∑

i∈L

1

di
([ȳLc

]i − fi)
2

= (ȳLc
− f)TD†

L(ȳLc
− f) (10)

where ȳLc
:= (1/|L|)yLc

is the class indicator vector after

normalization to bring target variables (entries of ȳLc
) and

entries of f to the same scale, and D
†
L = diag(d

(−1)
L ) with

entries

[d
(−1)
L ]i =

{

1/di, i ∈ L
0, else

.

For a smoothness-promoting regularization, we will employ

the following (normalized) Laplacian-based metric

R(f) =
1

2

∑

i∈V

∑

j∈Ni

(

fi
di
− fj

dj

)2

= fTD−1LD−1f . (11)

where L := D −W is the Laplacian matrix of the graph.

Intuitively speaking, (10) favors vectors f having non-zero

(|1/|L|) values on nodes that are known to belong to class c,
and zero values on nodes that are known to belong to other

classes (L \ Lc), while (11) promotes similarity of the entries

of f that correspond to neighboring nodes. In (10) and (11),

each entry fi is normalized by d
− 1

2

i and d−1
i respectively.

This normalization counterbalances the tendency of random

walks to concentrate on high-degree nodes, thus placing equal

importance to all nodes.

Adapting
Diffusions

Label
Prediction

P
(K)
r

P
(K)
g

θr

θg

Fig. 1. High-level illustration of adaptive diffusions. The nodes belong to two
classes (red and green). The per-class diffusions are learned by exploiting the
landing probability spaces produced by random walks rooted at the sample
nodes (second layer: up for red; down for green).

Substituting (10) and (11) into (9), and recalling from (4)

that fc(θ) = P
(K)
c θ, yields the convex quadratic program

θ̂c = arg min
θ∈SK

θTAcθ + θTbc (12)

with bc and Ac given by

bc = −
2

|L| (P
(K)
c )TD†

LyLc
(13)

Ac = (P(K)
c )TD†

LP
(K)
c + λ(P(K)

c )TD−1LD−1P(K)
c (14)

= (P(K)
c )T

[(

D
†
L + λD−1

)

P(K)
c − λD−1HP(K)

c

]

= (P(K)
c )T

(

D
†
LP

(K)
c + λD−1P̃(K)

c

)

(15)

where

HP(K)
c =

[

Hp
(1)
c Hp

(2)
c · · · Hp

(K)
c

]

=
[

p
(2)
c p

(3)
c · · · p

(K+1)
c

]

is a “shifted” version of P
(K)
c , where each p

(k)
c is advanced

by one step, and

P̃(K)
c :=

[

p̃
(1)
c p̃

(2)
c · · · p̃

(K)
c

]

with p̃
(i)
c := p

(i)
c −p

(i+1)
c containing the “differential” landing

probabilities. The complexity of ‘naively’ finding the K ×K
matrix Ac (and thus also bc) is O(K2N) for computing the

first summand, and O(|E|K) for the second summand in (14),

after leveraging the sparsity of L, which means |E| � N2.

But since columns of P̃
(K)
c are obtained as differences of

consecutive columns of P
(K)
c , this load of O(|E|K) is saved.

In a nutshell, the solver in (12)-(15) that we term adaptive-

diffusion (AdaDIF), incurs complexity of order O(K2N).
Remark 1. The problem in (12) is a quadratic program (QP)

of dimension equal to the walk length (or the size of dictionary

when in dictionary mode). In general, solving a QP with K
variables to a given precision requires a (O)(K3) worst-case

complexity. Specifically, K in our setting is O(10) and thus

negligibly small compared to the quantities that depend on
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the graph dimensions. For instance, the graphs that we tested

have O(104) nodes (N ) and O(105) edges (|E|). Therefore,

since K � N and K � |E| by many orders of magnitude,

the (O)(K3) complexity for QP is actually dominated by the

O(|E|K) (which is the same as PPR and HK) performing the

random walks and O(NK2) for computing Ac .

A. Limiting behavior and computational complexity

In this section, we offer further insights on the model (4),

along with complexity analysis of the parametric solution in

(12). To start, the next proposition establishes the limiting

behavior of AdaDIF as the regularization parameter grows.

Proposition 1. If the second largest eigenvalue of H has

multiplicity 1, then for K sufficiently large but finite, the

solution to (12) as λ→∞ satisfies

θ̂c = eK , ∀ Lc ⊆ V. (16)

Our experience with solving (12) reveal that the sufficiently

large K required for (16) to hold, can be as small as 102.

As λ→∞, the effect of the loss in (10) vanishes. According

to Proposition 1, this causes AdaDIF to boost smoothness by

concentrating the simplex weights (entries of θ̂c) on landing

probabilities of the late steps (k close to K). If on the other

extreme, smoothness-over-the-graph is not promoted (cf. λ =
0), the sole objective of AdaDIF is to construct diffusions that

best fit the available labeled data. Since short-length random

walks from a given node typically lead to nodes of the same

class, while longer walks to other classes, AdaDIF with λ = 0
tends to leverage only a few landing probabilities of early steps

(k close to 1). For moderate values of λ, AdaDIF effectively

adapts per-class diffusions by balancing the emphasis on initial

versus final landing probabilities.

Fig. 2 depicts an example of how AdaDIF places weights

{θk}Kk=1 on landing probabilities after a maximum of K = 20
steps, generated from few samples belonging to one of 7 classes

of the Cora citation network. Note that the learnt coefficients

may follow radically different patterns than those dictated by

standard non-adaptive diffusions such as PPR or HK. It is

worth noting that the simplex constraint induces sparsity of

the solution in (12), thus ‘pushing’ {θk} entries to zero.

The computational core of the proposed method is to build

the landing probability matrix P
(K)
c , whose columns are

computed fast using power iterations leveraging the sparsity of

H (cf. (2)). This endows AdaDIF with high computational

efficiency, especially for small K. Specifically, since for

solving (12) adaDIF incurs complexity O(K2N) per class,

if K < |E|/N , this becomes O(|E|K); and for |Y| classes, the

overall complexity of AdaDIF is O(|Y||E|K), which is in the

same order as that of non-adaptive diffusions such as PPR and

HK. For larger K however, an additional O(K2N) is required

per class, mainly to obtain Ac in (15).

Overall, if O(KN) memory requirements are met, the

runtime of AdaDIF scales linearly with |E|, provided that

K remains small. Thankfully, small values of K are usually

sufficient to achieve high learning performance. As will be

0 5 10 15 20
0

0.2

0.4

k

θ
k

PPR

HK

AdaDIF

Fig. 2. Illustration of K = 20 landing probability coefficients for PPR with
α = 0.9, HK with t = 10, and AdaDIF (λ = 15).

shown in the next section, this observation is in par with

the analytical properties of diffusion based classifiers, where it

turns out that K large does not improve classification accuracy.

B. On the choice of K

Here we elaborate on how the selection of K influences

the classification task at hand. As expected, the effect of K
is intimately linked to the topology of the underlying graph,

the labeled nodes, and their properties. For simplicity, we will

focus on binary classification with the two classes denoted

by “ + ” and “ − .” Central to our subsequent analysis is a

concrete measure of the effect an extra landing probability

vector p
(k)
c can have on the outcome of a diffusion-based

classifier. Intuitively, this effect is diminishing as the number

of steps K grows, as both random walks eventually converge to

the same stationary distribution. Motivated by this, we introduce

next the γ-distinguishability threshold.

Definition 1 (γ-distinguishability threshold). Let p+ and p−
denote respectively the seed vectors for nodes of class “+” and

“−, ” initializing the landing probability vectors in matrices

Xc := P
(K)
c , and X̌c :=

[

p
(1)
c · · ·p(K−1)

c p
(K+1)
c

]

, where c ∈
{+,−}. With y := X+θ −X−θ and y̌ := X̌+θ − X̌−θ, the

γ-distinguishability threshold of the diffusion-based classifier

is the smallest integer Kγ satisfying

‖y − y̌‖ ≤ γ .

The following theorem establishes an upper bound on Kγ

expressed in terms of fundamental quantities of the graph, as

well as basic properties of the labeled nodes per class; see the

Appendix B for a proof.

Theorem 1. For any diffusion-based classifier with coefficients

θ constrained to a probability simplex of appropriate dimen-

sions, the γ-distinguishability threshold is upper-bounded as

Kγ ≤
1

µ′ log
[

2
√
dmax

γ

(
√

1
dmin−

|L−| +
√

1
dmin+

|L+|

)]

where

dmin+ := min
i∈L+

di, dmin− := min
j∈L−

dj , dmax := max
i∈V

di
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Algorithm 1 ADAPTIVE DIFFUSIONS

Input: Adjacency matrix: W, Labeled nodes: {yi}i∈L
parameters: Regularization parameter: λ, # of landing

probabilities: K, Dictionary mode ∈ {True,False}, Un-

constrained ∈ {True,False}
Output: Predictions: {ŷi}i∈U
Extract Y = { Set of unique labels in: {yi}i∈L}
for c ∈ Y do

Lc = {i ∈ L : yi = c}
if Dictionary mode then

F∆
c = DICTIONARY (W,Lc,K,C)

Obtain bc and Ac as in (17) and (18)

Fc = F∆
c

else

{P(K)
c , P̃

(K)
c } = LANDPROB(W,Lc,K)

Obtain bc and Ac as in (13) and (15)

Fc = P
(K)
c

end if

if Unconstrained then

Obtain θ̂c as in (19) and (20)

else

Obtain θ̂c by solving (12)

end if

fc(θ̂c) = Fcθ̂c

end for

Obtain ŷi = argmaxc∈Y
[

fc(θ̂c)
]

i
, ∀i ∈ U

Algorithm 2 LANDPROB

Input: W,Lc,K
Output: P

(K)
c , P̃

(K)
c

H = WD−1

p
(0)
c = vc

for k = 1 : K + 1 do

p
(k)
c = Hp

(k−1)
c

p̃
(k)
c = p

(k−1)
c − p

(k)
c

end for

Algorithm 3 DICTIONARY

Input: W,Lc,K,C
Output: F∆

c

H = WD−1

p
(0)
c = vc

{f (d)c }Dd=1 = 0

for k = 1 : K do

p
(k)
c = Hp

(k−1)
c

for d = 1 : D do

f
(d)
c = f

(d)
c + Ckdp

(k)
c

end for

end for

this non-negativity constraint, (12) can afford a closed-form

solution as

θ̂c = A−1
c (bc − λ∗1) (19)

λ∗ =
1TA−1

c bc − 1

bTA−1
c bc

. (20)

Retaining the hyperplane constraint 1Tθ = 1 forces at least

one entry of θ to be positive. Note that for K > |L|, (19) may

become ill conditioned, and yield inaccurate solutions. This

can be mitigated by imposing `2−norm regularization on θ,

which is equivalent to adding εI to Ac, with ε > 0 sufficiently

large to stabilize the linear system.

A step-by-step description of the proposed AdaDIF approach

is given by Algorithm 1, along with the subroutine in Algorithm

2. Determining the limiting behavior of unconstrained AdaDIF,

as well as exploring the effectiveness of different regularizers

(e.g., sparsity inducing `1−norm) is part of our ongoing

research. Towards the goal of developing more robust methods

to design diffusions, the ensuing section presents our proposed

approach that relies on minimizing the leave-one-out loss of

the resulting classifier.

IV. ADAPTIVE DIFFUSIONS ROBUST TO ANOMALIES

Although the loss function in (10) is simple and easy

to implement, it may lack robustness against nodes with

labels that do not comply with a diffusion-based information

propagation model. In real-world graphs, such ‘difficult’ nodes

may arise due to model limitations, observation noise, or even

deliberate mislabeling by adversaries. For such setups, this

section introduces a novel adaptive diffusion classifier with:

i) robustness in finding θ by ignoring errors that arise due to

outlying/anomalous nodes; as well as, ii) capability to identify

and remove such ‘difficult’ nodes.

Let us begin by defining the following per-class c ∈ Y loss

`crob(yLc
,θ) :=

∑

i∈L

1

di
([ȳLc

]i − [fc(θ;L \ i)]i)
2

(21)

where fc(θ;L \ i) is the class-c diffusion after removing the

ith node from the set of all labels. Intuitively, (21) evaluates

the ability of a propagation mechanism effected by θ to predict

the presence of class c label on each node i ∈ L, using

the remaining labeled nodes L \ i. Since each class-specific

distribution fc(θ) is constructed by random walks that are

rooted in Lc ⊆ L, it follows that

fc(θ;L \ i) =
{

fc(θ), i /∈ Lc

fc(θ;Lc \ i), i ∈ Lc
(22)

since fc(θ) is not directly affected by the removal of a label

that belongs to other classes, and it is not used as a class-c
seed. The class-c diffusion upon removing the ith node from

the seeds Lc is given as (cf. (4))

fc(θ;Lc \ i) =
K
∑

k=1

θkp
(k)
Lc\i

where p
(k)
Lc\i := HkvLc\i, and

[vLc\i]j =

{

1/|Lc \ i|, j ∈ Lc \ i
0, else

. (23)

The robust loss in (21) can be expressed more compactly as

`crob(yLc
,θ) := ‖D− 1

2

L

(

ȳLc
−R(K)

c θ
)

‖22 (24)
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where D
− 1

2

L :=
(

D
†
L

)− 1
2

, and

[

R(K)
c

]

ik
:=











[

p
(k)
Lc\i

]

i
, i ∈ Lc

[

p
(k)
c

]

i
, else

. (25)

Since p
(k)
c = |Lc|−1

∑

i∈Lc
p
(k)
Lc\i, evaluating (24) only re-

quires the rows of R
(K)
c and entries of yLc

that correspond

to L, since the rest of the diagonal entries of D
†
L are 0.

Having defined `crob(·), per-class diffusion coefficients θ̂c can

be obtained by solving

θ̂c = arg min
θ∈SK

`crob(yLc
,θ) + λθ‖θ‖22 (26)

where `2 regularization with parameter λθ is introduced in order

to prevent overfitting and numerical instabilities. Note that,

smoothness regularization in (11) is less appropriate in context

of robustness, since it promotes “spreading” of the random

walks (cf. Prop. 1), making class-diffusions more similar and

increasing the difficulty of detecting outliers. Similar to (12),

quadratic programming can be adopted to solve (26).

Towards mitigating the effects of outliers, and inspired by

the robust estimators introduced in [19], we further enhance

`crob(·) by explicitly modeling the effect of outliers with a

sparse vector o ∈ R
N , leading to the modified cost

`crob(yLc
,o,θ) := ‖D− 1

2

L

(

o+ ȳLc
−R(K)

c θ
)

‖22. (27)

The non-zero entries of o can capture large residuals (prediction

errors |[ȳLc
]i − [fc(θ;L \ i)]i |) which may be the result of

outlying, anomalous or mislabeled nodes. Thus, when operating

in the presence of anomalies, the robust classifier aims at

identifying both diffusion parameters {θ̂c}c∈Y as well as per

class outlier vectors {ôc}c∈Y . The two tasks can be performed

jointly by solving the following optimization problem

{θ̂c, ôc}c∈Y = arg min
θc∈SK

oc∈RN

∑

c∈Y

[

`crob(yLc
,oc,θc) + λθ‖θc‖22

]

+ λo‖D− 1
2

L O‖2,1 (28)

where O :=
[

o1 · · · o|Y|
]

concatenates the outlier vectors

oc, and ‖X‖2,1 :=
∑I

i=1

√

∑J
j=1 X

2
i,j for any X ∈ R

I×J .

The term λo‖D− 1
2

L O‖2,1 in (28) acts as a regularizer that

promotes sparsity over the rows of O; it can also be interpreted

as an `1-norm regularizer over a vector that contains the `2
norms of the rows of O. The reason for using such block-

sparse regularization is to force outlier vectors oc of different

classes to have the same support (pattern of non-zero entries).

In other words, the |Y| different diffusion/outlier detectors are

forced to consent on which nodes are outliers.

Since (28) is non-convex, convergence of gradient-descent-

type methods to the global optimum is not guaranteed. Nev-

ertheless, since (28) is biconvex (i.e., convex with respect to

each variable) the following alternating minimization scheme

Ô(t)=argmin
O

∑

c∈Y

[

`crob(yLc
,oc, θ̂

(t−1)

c ) + λθ‖θ̂
(t−1)

c ‖22
]

+ λo‖D− 1
2

L O‖2,1 (29)

θ̂
(t)

c =arg min
θ∈SK

`crob(yLc
, ô(t)

c ,θ)+λθ‖θ‖22+λo‖D− 1
2

L Ô(t)‖2,1
(30)

with Ô(0) := [0 . . .0] converges to a partial optimum [16].

By further simplifying (30) and solving (29) in closed form,

we obtain

θ̂
(t)

c =arg min
θ∈SK

`crob(ȳLc
+ ô(t−1)

c ,θ) + λθ‖θ‖22 (31)

Ô(t) =SoftThresλo

(

Ỹ(t)
)

(32)

where

Ỹ(t) :=
[

ỹ1
(t), . . . ,y

(t)
|Y|

]

is the matrix that concatenates the per class residual vectors

ỹ
(t)
c := ȳLc

−R
(K)
c θ̂

(t)

c , and Z = SoftThresλo
(X) is a row-

wise soft-thresholding operator such that

zi = ‖xi‖2[1− λo/(2‖xi‖2)]+
where zi and xi are the ith rows of Z and X respectively, see

e.g. [34]. Intuitively, the soft-thresholding operation in (32)

extracts the outliers by scaling down residuals and “trimming”

them wherever their across-classes `2 norm is below a certain

threshold.

The alternating minimization between (31) and (32) termi-

nates when ‖θ̂(t)

c − θ̂
(t−1)

c ‖∞ ≤ ε, ∀c ∈ Y , where ε ≥ 0 is a

prescribed tolerance. Having obtained the tuples {θ̂c, ôc}c∈Y ,

one may remove the anomalous samples that correspond to non-

zero rows of Ô and perform the diffusion with the remaining

samples. The robust (r) AdaDIF is summarized as Algorithm

4, and has O(K|L||E|) computational complexity.

V. CONTRIBUTIONS IN CONTEXT OF PRIOR WORKS

Following the seminal contribution in [8] that introduced

PageRank as a network centrality measure, there has been a

vast body of works studying its theoretical properties, compu-

tational aspects, as well as applications beyond Web ranking

[25], [15]. Most formal approaches to generalize PageRank

focus either on the teleportation component (see e.g. [31],

[32] as well as [7] for an application to semi-supervised

classification), or, on the so-termed damping mechanism [12],

[4]. Perhaps the most general setting can be found in [4],

where a family of functional rankings was introduced by

the choice of a parametric damping function that assigns

weights to successive steps of a walk initialized according

to the teleportation distribution. The per class distributions

produced by AdaDIF are in fact members of this family of

functional rankings. However, instead of choosing a fixed

damping function as in the aforementioned approaches, AdaDIF

learns a class-specific and graph-aware damping mechanism. In

this sense, AdaDIF undertakes statistical learning in the space of
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Algorithm 4 ROBUST ADAPTIVE DIFFUSIONS

Input: Adjacency matrix: W, Labeled nodes: {yi}i∈L
parameters: Regularization parameters: λθ, λo, # of landing

probabilities: K
Output: Predictions: {ŷi}i∈U

Outliers: ∪
c∈Y
Lo
c

Extract Y = { Set of unique labels in: {yi}i∈L}
for c ∈ Y do

Lc = {i ∈ L : yi = c}
for i ∈ Lc do

{p(k)
Lc\i}

K
k=1 = LANDPROB(W,Lc \ i,K)

end for

Obtain R
(K)
c as in (25)

end for

Ô(0) = [0, . . . ,0] , t = 0

while ‖θ̂(t)

c − θ̂
(t−1)

c ‖∞ ≤ ε do

t← t+ 1

Obtain {θ̂(t)

c }c∈Y as in (31)

Obtain Ô(t) as in (32)

end while

Set of outliers: S := {i ∈ L : ‖[Ô]i,:‖2 > 0}
for c ∈ Y do

Lo
c = Lc ∩ S
Lc ← Lc \ Lo

c

end for

Obtain ŷi = argmaxc∈Y
[

fc(θ̂c)
]

i
, ∀i ∈ U

functional rankings, tailored to the underlying semi-supervised

classification task. A related method termed AptRank was

recently proposed in [45] specifically for protein function

prediction. Differently from AdaDIF, AptRank splits the data

into training and validation sets of predetermined proportions

and adopt as cross-validation approach for obtaining diffusion

coefficients. There are two additional differences with AptRank:

a) AptRank trains a single diffusion for all classes whereas

AdaDIF identifies different diffusions, and b) the proposed

robust leave-one-out method (r-AdaDIF) gathers residuals from

all leave-one-out splits into one cost function (cf. (21)) and

then optimizes the (per class) diffusion.

Recently, community detection (CD) methods were proposed

in [46] and [44], that search the Krylov subspace of landing

probabilities of a given community’s seeds, to identify a

diffusion that satisfies locality of non-zero entries over the

graph. In CD, the problem definition is: “given certain members

of a community, identify the remaining (latent) members.”

There is a subtle but important distinction between CD

and semi-supervised classification (SSC): CD focuses on the

retrieval of communities (i.e., nodes of a given class), whereas

SSC focuses on the predicting the labels/attributes of every

node. While CD treats the detection of various overlapping

communities of the graph as independent tasks, SSC classifies

nodes by taking all information from labeled nodes into account.

More specifically, the proposed AdaDIF trains the diffusion of

each class by actively avoiding the assignment of large diffusion

values to nodes that are known (they have been labeled) to

TABLE I
NETWORK CHARACTERISTICS

Graph |V| |E| |Y| Multilabel

Citeseer 3,233 9,464 6 No
Cora 2,708 10,858 7 No
PubMed 19,717 88,676 3 No
PPI (H. Sapiens) 3,890 76,584 50 Yes
Wikipedia 4,733 184,182 40 Yes
BlogCatalog 10,312 333,983 39 Yes

belong to a different class. Another important difference of

AdaDIF with [46] and [44]—which again arises from the

different contexts—is the length of the walk compared to

the size of the graph. Since [46] and [44] aim at identifying

small and local communities, they perform local walks of

length smaller than the diameter of the graph. In contrast, SSC

typically demands a certain degree of globality in information

exchange, achieved by longer random walks that surpass the

graph diameter.

AdaDIF also shares links with SSL methods based on graph

signal processing proposed in [36], and further pursued in

[11] for bridge monitoring; see also [37] and [13] for recent

advances on graph filters. Similar to our approach, these

graph filter based techniques are parametrized via assigning

different weights to a number of consecutive powers of a

matrix related to the structure of the graph. Our contribution

however, introduces different loss and regularization functions

for adapting the diffusions, including a novel approach for

training the model in an anomaly/outlier-resilient manner.

Furthermore, while [36] focuses on binary classification and

[11] identifies a single model for all classes, our approach

allows for different classes to have different propagation

mechanisms. This feature can accommodate differences in

the label distribution of each class over the nodes, while

also making AdaDIF readily applicable to multi-label graphs.

Moreover, while in [36] the weighting parameters remain

unconstrained and in [11] belong to a hyperplane, AdaDIF

constrains the diffusion parameters on the probability simplex,

which allows the random-walk-based diffusion vectors to denote

valid probability mass functions over the nodes of the network.

This certainly enhances interpretability of the method, improves

the numerical stability of the involved computations, and also

reduces the search-space of the model is beneficial under

data scarcity. Finally, imposing the simplex constraint makes

the model amenable to a rigorous analysis that relates the

dimensionality of the feature space to basic graph properties,

as well as to a disciplined exploration of its limiting behavior.

VI. EXPERIMENTAL EVALUATION

Our experiments compare the classification accuracy of the

novel AdaDIF approach with state-of-the-art alternatives. For

the comparisons, we use 6 benchmark labeled graphs whose

dimensions and basic attributes are summarized in Table I. All

6 graphs have nodes that belong to multiple classes, while the

last 3 are multilabeled (each node has one or more labels).

We evaluate performance of AdaDIF and the following: i)

PPR and HK, which are special cases of AdaDIF as discussed
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Fig. 4. Micro-F1 score for AdaDIF and non-adaptive diffusions on 5% labeled
Cora graph as a function of the length of underline random walks.

in Section II; ii) Label propagation (LP) [42]; ii) Node2vec

[17]; iii) Deepwalk [33]; iv) Planetoid-G [41]; and, v) graph

convolutional networks (GCNs) [20].

We performed 10-fold cross-validation to select parameters

needed by i) - v). For HK, we performed grid search over

t ∈ [1.0, 5.0, 10.0, 15.0]. For PPR, we fixed α = 0.98 since it is

well documented that α close to 1 yields reliable performance;

see e.g., [27]. Both HK and PPR were run for 50 steps for

convergence to be in effect; see Fig 4; LP was also run

for 50 steps. For Node2vec, we fixed most parameters to

the values suggested in [17], and performed grid search for

p, q ∈ [0.25, 1.0, 2.0, 4.0]. Since Deepwalk can be seen as

Node2vec with p = q = 1.0, we used the Node2vec Python

implementation for both. As in [17], [33], we used the embeded

node-features to train a supervised logistic regression classifier

with `2 regularization. For AdaDIF, we fixed λ = 15.0, while

K = 15 was sufficient to attain desirable accuracy (cf. Fig.

4); only the values of Boolean variables Unconstained and

Dictionary Mode (see Algorithm 1) were tuned by validation.

For the multilabel graphs, we found λ = 5.0 and even shorter

walks of K = 10 to perform well. For the dictionary mode of

AdaDIF, we preselected D = 10, with the first five collumns of

C being HK coefficients with parameters t ∈ [5, 8, 12, 15, 20],
and the other five polynomial coefficients ci = kβ with

β ∈ [2, 4, 6, 8, 10].
For multiclass experiments, we evaluated the performance of

all algorithms on the three benchmark citation networks, namely

Cora, Citeseer, and PubMed. We obtained the labels of

an increasing number of nodes via uniform, class-balanced

sampling, and predicted the labels of the remaining nodes.

Thus, instead of sampling nodes over the graph uniformly at

random, we randomly sample a given number of nodes per

class. For each graph, we performed 20 experiments, each time

sampling 5, 10, and 20 nodes per class. For each experiment,

classification accuracy was measured on the unlabeled nodes

in terms of Micro-F1 and Macro-F1 scores; see e.g., [29]. The

results were averaged over 20 experiments, with mean and

standard deviation reported in Table II. Evidently, AdaDIF

achieves state of the art performance for all graphs. For Cora

and PubMed, AdaDIF was switched to dictionary mode, while

for Citeseer, where the gain in accuracy is more significant,

unconstrained diffusions were employed. In the multiclass

setting, diffusion-based classifiers (AdaDIF, PPR, and HK)

outperformed the embedding-based methods by a small margin,

and GCNs by a larger margin. It should be noted however that

GCNs were mainly designed to combine the graph with node

features. In our “featureless” setting, we used the identity matrix

columns as input features, as suggested in [20, Appendix].

The scalabilty of AdaDIF is reflected on the runtime

comparisons listed in Fig. 7. All experiments were run on

a machine with i5 @3.50 Mhz CPU, and 16GB of RAM.

We used the Python implementations provided by the authors

of the compared algorithms. The Python implementation of

AdaDIF, uses only tools provided by scipy, numpy, and CVX-

OPT libraries. We also developped an efficient implementation

that exploits parallelism, which is straightforward since each

class can be treated separately. Note that, while AdaDIF has

(as expected) a relatively small computational overhead over

fixed diffusions, it is faster than GCNs that use Tensorflow, and

orders of magnitude faster than embedding-based approaches.

Finally, Table III presents the results on multilabel graphs,

where we compare with Deepwalk and Node2vec, since the

rest of the methods are designed for multiclass problems. Since

these graphs entail a large number of classes, we increased the

number of training samples. Similar to [17] and [33], during

evaluation of accuracy the number of labels per sampled node is

known, and check how many of them are in the top predictions.

First, we observe that AdaDIF markedly outperforms PPR and

HK across graphs and metrics. Furthermore, for the PPI and

BlogCatalog graphs the Micro-F1 score of AdaDIF comes

close to that of the much heavier state-of-the-art Node2vec.

Finally, AdaDIF outperforms the competing alternatives in

terms of Macro-F1 score. It is worth noting that, for mutlilabel

graphs with many classes, the performance boost over fixed

diffusions can probably be largely attributed to the fact that

AdaDIF is free to treat each class differently. To demonstrate

that different classes are indeed diffused in a markedly different

manner, Fig. 6 plots all 50 diffusion coefficient vectors {θc}c∈C
yielded by AdaDIF on the PPI graph with 30% of nodes

labeled. Each line in the plot corresponds to the values of

θc for a different c; evidently there is large diversity among

classes.

A. Analysis/interpretation of results

Here we will follow an experimental approach that is

aimed at understanding and interpreting our results. We now

solely focus on diffusion-based classiefiers, additionaly using a

simple benchmark for diffusion-based classification: the k−step

landing probabilities. Specifically, we compare the classification

accuracy on the three multiclass datasets of AdaDIF, PPR, and

HK, with the accuracy of the classifier that uses only the k−th

landing probability vectors {p(k)
c }c∈Y,k∈[1,K]. The setting was

similar to the one in the previous section, and with class-

balanced sampling of 20 nodes per class, while the k−step

classifiers were examined for a wide range of steps k ∈ [1, 100].
The k−step classifier reveals the predictive power of individual

landing probabilities, resulting in curves (see Fig. 5) that appear
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TABLE II
MICRO F1 AND MACRO F1 SCORES ON MULTICLASS NETWORKS (CLASS-BALANCED SAMPLING)

Graph Cora Citeseer PubMed

|Lc| 5 10 20 5 10 20 5 10 20

M
ic

ro
-F

1

AdaDIF 67.5± 2.2 71.0± 2.0 73.2± 1.2 42.3± 4.4 49.5± 3.0 53.5± 1.2 62.0± 6.0 68.5± 4.5 74.1± 1.7
PPR 67.1± 2.3 70.2± 2.1 72.8± 1.5 41.1± 5.2 48.7± 2.5 52.5± 0.9 63.1± 1.1 69.5± 3.8 74.1± 1.8
HK 67.0± 2.5 70.5± 2.5 72.9± 1.2 40.0± 5.6 48.0± 2.4 51.8± 1.1 62.0± 0.6 68.3± 4.7 74.0± 1.8
LP 61.8± 3.5 66.3± 4.2 71.0± 2.7 40.7± 2.5 48.0± 3.7 51.9± 1.3 56.2± 11.0 68.0± 6.1 69.3± 2.4
Node2vec 68.9± 1.9 70.2± 1.6 72.4± 1.2 39.2± 3.7 46.5± 2.4 51.0± 1.4 61.7± 13.0 66.4± 4.6 71.1± 2.4
Deepwalk 68.4± 2.0 70.0± 1.6 72.0± 1.4 38.4± 3.9 45.5± 2.0 50.4± 1.5 61.5± 1.3 65.8± 5.0 70.5± 2.2
Planetoid-G 63.5± 4.7 65.6± 2.7 69.0± 1.5 37.8± 4.0 44.9± 3.3 49.8± 1.4 60.7± 2.0 63.4± 2.3 68.0± 1.5
GCN 60.1± 3.7 65.5± 2.5 68.6± 1.9 38.3± 3.2 44.2± 2.2 48.0± 1.8 60.0± 1.9 63.6± 2.5 70.5± 1.5

M
ac

ro
-F

1

AdaDIF 65.5± 2.5 70.6± 2.2 72.0± 1.1 36.1± 3.9 44.0± 2.8 48.1± 1.2 60.4± 0.6 67.0± 4.4 72.6± 1.8
PPR 65.0± 2.3 70.0± 2.3 71.9± 1.5 34.7± 5.0 43.5± 2.3 47.6± 0.6 61.7± 0.6 68.1± 3.6 72.6± 1.8
HK 65.0± 2.5 70.0± 2.6 72.0± 1.1 33.9± 5.4 42.8± 2.2 47.0± 0.6 60.5± 0.6 66.8± 4.7 72.7± 1.8
LP 60.1± 3.2 66.5± 4.1 70.6± 2.3 34.8± 4.6 41.8± 3.9 51.5± 1.2 51.5± 12.3 66.2± 6.6 67.8± 2.0
Node2vec 62.4± 2.0 64.7± 1.7 69.2± 1.2 34.6± 2.7 41.6± 1.9 45.3± 1.5 59.5± 1.2 64.0± 3.8 72.3± 1.4
Deepwalk 61.8± 2.2 64.5± 2.0 68.5± 1.4 34.0± 2.5 41.0± 2.0 44.7± 1.8 59.3± 1.2 63.8± 4.0 72.1± 1.3
Planetoid-G 59.9± 4.5 63.0± 3.0 68.7± 1.9 33.3± 2.5 40.2± 2.2 43.6± 2.0 57.7± 1.5 61.9± 3.5 66.1± 1.8
GCN 53.8± 6.6 61.9± 2.6 63.8± 1.5 32.8± 2.0 39.1± 1.8 43.0± 1.7 54.4± 4.1 57.2± 5.2 60.5± 2.4

TABLE III
MICRO F1 AND MACRO F1 SCORES OF VARIOUS ALGORITHMS ON MULTILABEL NETWORKS

Graph PPI BlogCatalog Wikipedia

|L|/|V| 10% 20% 30% 10% 20% 30% 10% 20% 30%

M
ic

ro
-F

1

AdaDIF 15.4± 0.5 17.9± 0.7 19.2± 0.6 31.5± 0.6 34.4± 0.5 36.3± 0.4 28.2± 0.9 30.0± 0.5 31.2± 0.7
PPR 13.8± 0.5 15.8± 0.6 17.0± 0.4 21.1± 0.8 23.6± 0.6 25.2± 0.6 10.5± 1.5 8.1± 0.7 7.2± 0.5
HK 14.5± 0.5 16.7± 0.6 18.1± 0.5 22.2± 1.0 24.7± 0.7 26.6± 0.7 9.3± 1.4 7.3± 0.7 6.0± 0.7
Node2vec 16.5± 0.6 18.2± 0.3 19.1± 0.3 35.0± 0.3 36.3± 0.3 37.2± 0.2 42.3± 0.9 44.0± 0.6 45.1± 0.4
Deepwalk 16.0± 0.6 17.9± 0.5 18.8± 0.4 34.2± 0.4 35.7± 0.3 36.4± 0.4 41.0± 0.8 43.5± 0.5 44.1± 0.5

M
ac

ro
-F

1

AdaDIF 13.4± 0.6 15.4± 0.7 16.5± 0.7 23.0± 0.6 25.3± 0.4 27.0± 0.4 7.7± 0.3 8.3± 0.3 9.0± 0.2
PPR 12.9± 0.4 14.7± 0.5 15.8± 0.4 17.3± 0.5 19.5± 0.4 20.8± 0.3 4.4± 0.3 3.8± 0.6 3.6± 0.2
HK 13.4± 0.6 15.4± 0.5 16.5± 0.4 18.4± 0.6 20.7± 0.4 22.3± 0.4 4.2± 0.4 3.7± 0.5 3.5± 0.2
Node2vec 13.1± 0.6 15.2± 0.5 16.0± 0.5 16.8± 0.5 19.0± 0.3 20.1± 0.4 7.6± 0.3 8.2± 0.3 8.5± 0.3
Deepwalk 12.7± 0.7 15.1± 0.6 16.0± 0.5 16.6± 0.5 18.7± 0.5 19.6± 0.4 7.3± 0.3 8.1± 0.2 8.2± 0.2

to be different for each network, characterizing the graph-label

distribution relationship of the latter. For Cora graph (left two

plots), performance of the k−step classifier improves sharply

after the first few steps, peaks for k ≈ 20, and then quickly

degrades, suggesting that using the landing probabilities of

k > 40 or 50 would most likely degrade the performance of

a diffusion-based classifier. Interestingly, AdaDIF relying on

combinations of the first 15 steps, and PPR and HK of the

first 50, all achieve higher accuracy than that of the best single

step. On the other hand, Citeseer graph (middle two plots)

behaves in a significantly different manner, with the k−step

classifier requiring longer walks to reach high accuracy that was

retained for much longer. Furthermore, accumulating landing

probabilities the way PPR or HK does yields lower Micro-F1

accuracy than that of the single best step. On the other hand, by

smartly combining the first 15 steps that are of lower quality,

AdaDIF surpasses the Micro-F1 scores of the longer walks.

Interestingly, the Macro-F1 metric for Citeseer behaves

differently than the Micro-F1, and quickly decreases after

∼ 25 steps. The disagreement between the two metrics can

be explained as the diffusions of one or more of the larger

classes gradually “overwhelms” those of one or more smaller

classes, thus lowering the Macro-F1 score, since the latter is a

metric that averages per-class. In contrast, the Micro-F1 metric

averages per-node and takes much less of an impact if a few

nodes from the smaller classes are mislabeled. Finally, for

PubMed graph (right two plots), steps in the range [20, 40]
yield consistently high accuracy both in terms of Micro- as

well as Macro-averaged F1-score. Since HK and mostly PPR

largely accumulate steps in that range, it seems reasonable that

both fixed diffusions are fairly accurate in PubMed graph.

B. Tests on simulated label-corruption setup

Here we outline experimental results performed to evaluate

the performance of different diffusion-based classifiers in the

presence of anomalous nodes. The main goal is to evaluate

whether r-AdaDIF (Algorithm 4) yields improved performance

over AdaDIF, HK and PPR, as well as the ability of r-AdaDIF

to detect anomalous nodes. We also tested a different type of

rounding from class-diffusions to class labels that was shown

in [43] to be robust in the presence of erroneous labels on

a graph constructed by images of handwritten digits. The

idea is to first normalize diffusions with node degrees, sort

each diffusion vector, and assign to each node the class for

which the corresponding rank is higher. We applied this type

of rounding on PPR diffusions (denoted as PPR w. ranking).

Since a ground truth set of anomalous nodes is not available

in real graphs, we chose to infuse the true labels with artificial

anomalies generated by the following simulated label corruption
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process: Go through yL and for each entry [yL]i = c draw with

probability pcor a label c′ ∼ Unif{Y \ c}; and replace [yL]i ←
c′. In other words, anomalies are created by corrupting some

of the true labels by randomly and uniformly “flipping” them

to a different label. Increasing the corruption probability pcor of

the training labels yL is expected to have increasingly negative

impact on classification accuracy over yU . Indeed, as depicted

in Fig. 8, the accuracy of all diffusion-based classifiers on Cora
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Fig. 7. Relative runtime comparisons for multiclass graphs.

graph degrades as pcor increases. All diffusions were run for

K = 50, while for r-AdaDIF we found λo = 14.6× 10−3 and

λθ = 67.5× 10−5 to perform well for moderate values of pcor.

Results were averaged over 50 Monte Carlo experiments, and

for each experiment 5% of the nodes were sampled uniformly

at random. While tuning λo for a specific pcor generally yields

improved results, we use the same λo across the range of

pcor values, since the true value of the latter is generally not

available in practice. In this setup, r-AdaDIF demonstrates

higher accuracy compared to non-robust classifiers. Moreover,

the performance gap increases as more labels become corrupted,

until it reaches a “break point” at pcor ≈ 0.35. Interestingly, r-

AdaDIF performs worse in the absence of anomalies (pcor = 0)

that can be attributed to the fact that it only removes useful
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vertical axis corresponds to the frequency of false positives (probability of
false alarm).

samples and thus reduces the training set. We also observed

that, although PPR w. ranking displays relative robustness as

pcor increases, overall it performs worse than PPR with value

based rounding, at least on Cora graph.

As mentioned earlier, the performance of r-AdaDIF in terms

of outlier detection depends on parameter λo. Specifically, for

λo → 0 the regularizer in (28) is effectively removed and

all samples are characterized as outliers. On the other hand,

for λo � 1 (28) yields Ô = [0, . . . ,0], meaning that no

outliers are unveiled. For intermediate values of λo, r-AdaDIF

trades off falsely identifying nominal samples as outliers

(false alarm) with correctly identifying anomalies (correct

detection). This tradeoff of r-AdaDIF’s anomaly detection

behavior was experimentally evaluated over 50 Monte Carlo

runs by sweeping over a large range of values of λo, and

for different values of pcor; see the probability of detection

(pD) versus probability of false alarms (pFA) depicted in Fig.

9. Evidently, r-AdaDIF performs much better than a random

guess (“coin toss”) detector whose curve is given by the grey

dotted line, while the detection performance improves as the

corruption rate decreases.

VII. CONCLUSIONS

The present work, introduces a principled, data-efficient

approach to learning class-specific diffusion functions tailored

for the underlying network topology. Experiments on real

networks confirm that adapting the diffusion function to the

given graph and observed labels, significantly improves the

performance over fixed diffusions; reaching – and many times

surpassing – the classification accuracy of computationally

heavier state-of-the-art competing methods.

Emerging from this work are many exciting directions to

explore. First, one can investigate different cost functions with

respect to which the diffusions are adapted, e.g., by taking into

account robustness of the resulting classifier in the presence

of adversarial data. Furthermore, it is worth investigating the

space of nonlinear functions of the landing probabilities to

determine the degree to which accuracy can be boosted further.

Last but not least, it will be interesting to develop adaptive

diffusion methods, where learning and adaptation are performed

on-the-fly, without any memory and computational overhead.

APPENDIX

A. Proof of Proposition 1

For λ → ∞, the effect of `(·) in (9) vanishes, and the

optimization problem becomes equivalent to solving

min
θ∈SK

θTAθ (33)

where A := (P
(K)
c )TD−1LD−1P

(K)
c has (i, j) entry given

by Aij = (p
(i)
c )TD−1LD−1p

(j)
c ; and p

(K)
c is the vector of

K-step landing probabilities with initial distribution vc and

transition matrix H =
∑N

n=1 λnunv
T

n , where λ1 > λ2 >
· · · > λN are its eigenvalues. Since H is a column-stochastic

transition probability matrix, it holds that λ1 = 1, v = 1,

and u1 = π, where π = limk→∞ p
(k)
c is the steady-state



13

distribution that can be also expressed as π = d/(2|E|) [26].

The landing probability vector for class c is thus

p(K)
c = HKvc =

[

1

2|E|d1
T +

N
∑

n=2

λK
n unv

T

n

]

vc

=
1

2|E|d+

N
∑

n=2

λK
n unγn ≈

1

2|E|d+ λK
2 u2γ2 (34)

where γn := vT

nvc, and the approximation in (34) holds

because λK
2 � λK

n , for n ∈ [3, N ], and K large enough

but finite. Using (34), Aij can be rewritten as

Aij =

[

1

2|E|d
T + λi

2u
T

2 γ2

]

D−1LD−1

[

1

2|E|d+ λj
2u2γ2

]

=

[

1

2|E|1
T + λi

2u
T

2D
−1γ2

]

L

[

1

2|E|1+ λj
2D

−1u2γ2

]

=
1

4|E|21
TL1+

λi
2γ2
2|E| u

T

2D
−1L1+

λj
2γ2
2|E| 1

TLD−1u2

+ γ2
2λ

i+j
2 uT

2D
−1LD−1u2

=Cλi+j
2 (35)

where C := γ2
2u

T

2D
−1LD−1u2, the second equality uses

D−1d = 1, and the last equality follows because L1 =
0. Using (35), one obtains A = Cλ2λ

T

2 , where λ2 :=
[

λ2 λ2
2 · · · λK

2

]T

, while (33) reduces to

min
θ∈SK

(

λT

2θ
)2

. (36)

Since λT

2θ > 0 ∀θ ∈ SK , it can be shown that the KKT

optimality conditions for (36) are identical to those of

min
θ∈SK

λT

2θ. (37)

Therefore, (36) admits minimizer(s) identical to (37). Fi-

nally, we will show that the minimizer of (37) is eK .

Since the problem is convex, it suffices to show that

∇T

θ
(λT

2θ)θ=eK
(θ − eK) ≥ 0 ∀θ ∈ SK , or, equivalently

λT

2 (θ − eK) ≥ 0⇔
K
∑

k=1

θkλ
k
2 − λK

2 ≥ 0

⇔
K
∑

k=1

θkλ
k−K
2 ≥ 1

⇔
K
∑

k=1

θkλ
k−K
2 ≥

K
∑

k=1

θk

⇔
K
∑

k=1

θk
(

λk−K
2 − 1

)

≥ 0

which holds since θ ≥ 0 and λk−K
2 ≥ 1 ∀k ∈ [1,K], and

completes the proof of the proposition.

B. Proof of Theorem 1

We need to find the smallest integer K such that

maxθ∈SK‖y − y̌‖ ≤ γ. We have

‖y − y̌‖ = ‖X+θ −X−θ − X̌+θ + X̌−θ‖ ≤
≤ ‖θKp

(K)
+ − θKp

(K)
− ‖+ ‖θKp

(K+1)
+ − θKp

(K+1)
− ‖

≤ ‖HKp+ −HKp−‖+ ‖HK+1p+ −HK+1p−‖ (38)

since θ ∈ SK . Therefore, to determine an upper bound for the

γ-distinguishability threshold it suffices to find the smallest

integer K for which (38) is upper bounded by γ.

Let q1, . . . ,qN be the eigenvectors corresponding to the

eigenvalues 0 = µ1 < µ2 ≤ · · · ≤ µN < 2 of the normalized

Laplacian L̃. The transition probability matrix is then

H = D
1
2 (I− L̃)D− 1

2 . (39)

For the first term of the RHS of (38), we have

‖HKp+ −HKp−‖ ≤ ‖HKp+ − π‖+ ‖HKp− − π‖

= ‖D 1
2 (I− L̃)KD− 1

2p+ −
D1

2|E|‖

+ ‖D 1
2 (I− L̃)KD− 1

2p− −
D1

2|E|‖. (40)

Since q1 = D
1
2 1√
2|E|

[26], we have for c ∈ {+,−} that

D
1
2q1〈q1,D

− 1
2pc〉 = D

1
2
D

1
21

√

2|E|

〈

D
1
21

√

2|E|
,D− 1

2pc

〉

=
D1
√

2|E|
〈1,pc〉
√

2|E|
=

D1

2|E| . (41)

Upon defining M := (I−L̃)K−q1q
T

1 , and taking into account

(41), inequality (40) can be written as

‖HKp+ −HKp−‖
≤ ‖D 1

2 ‖‖M‖
(

‖D− 1
2p+‖+ ‖D− 1

2p−‖
)

. (42)

The factors in (42) can be bounded as

‖D− 1
2p+‖ =

√

√

√

√

∑

i∈L+

(

1

|L+|
d
− 1

2

i

)2

=

√

∑

i∈L+

1

|L+|2
d−1
i ≤ 1

√

dmin+
|L+|

, (43)

‖D− 1
2p−‖ =

√

∑

i∈L−

1

|L−|2
d−1
i ≤ 1

√

dmin−
|L−|

, (44)

‖M‖ = sup
v

〈Mv,v〉
Mv

= max
i 6=1
|1− µi|K , (45)

‖D 1
2 ‖ =

√

dmax (46)

where (45) follows from the properties of the normalized

Laplacian. Therefore, (42) becomes

‖HKp+ −HKp−‖ ≤
(

1
√

dmin−
|L−|

+
1

√

dmin+
|L+|

)

·max
i 6=1
|1− µi|K ·

√

dmax. (47)
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Letting µ′ := min{µ2, 2− µN}, and using the fact that

(1− µ′)K ≤ e−Kµ′

(48)

we obtain

‖HKp+ −HKp−‖

≤
(√

dmax

dmin−
|L−|

+

√

dmax

dmin+
|L+|

)

e−Kµ′

. (49)

Likewise, we can bound the second term in (38) as

‖HK+1p+ −HK+1p−‖

≤
(√

dmax

dmin−
|L−|

+

√

dmax

dmin+
|L+|

)

e−(K+1)µ′

. (50)

In addition, we note that for all µ′ > 0,K ∈ Z it holds that

e−Kµ′

+ e−(K+1)µ′

< 2e−Kµ′

. (51)

Upon substituting (49) and (50) into (38), and also using (51),

we arrive at

‖y− y̌‖ ≤ 2

(√

dmax

dmin−
|L−|

+

√

dmax

dmin+
|L+|

)

e−Kµ′

. (52)

To determine an upper bound on the γ-distinguishability

threshold, it suffices to find the smallest integer K for which

(52) becomes less than γ; that is,

2

(√

dmax

dmin−
|L−|

+

√

dmax

dmin+
|L+|

)

e−Kµ′ ≤ γ. (53)

Multiplying both sides of (53) by the positive number eKµ′

/γ,

and taking logarithms yields

log
[

2
√
dmax

γ

(
√

1
dmin−

|L−| +
√

1
dmin+

|L+|

)]

≤ Kµ′.

Therefore, using as landing probabilities
⌈

1

µ′ log
[

2
√
dmax

γ

(
√

1
dmin−

|L−| +
√

1
dmin+

|L+|

)]

⌉

the `2 distance between any two diffusion-based classifiers will

be at most γ; and the proof is complete.

C. Bound for PageRank

Substituting PageRank’s diffusion coefficients in the proof

of Theorem 1, inequality (53) becomes

2(1− α)αK

(√

dmax

dmin−
|L−|

+

√

dmax

dmin+
|L+|

)

e−Kµ′ ≤ γ.

Multiplying both sides by the positive number eKµ′

α−K/γ
and taking logarithms yields

log
[

2
√
dmax

γ/(1−α)

(
√

1
dmin−

|L−| +
√

1
dmin+

|L+|

)]

≤ K(µ′−logα)

which results in the γ-distinguishability threshold bound

KPR
γ ≤ 1

µ′−logα log
[

2
√
dmax

γ/(1−α)

(
√

1
dmin−

|L−| +
√

1
dmin+

|L+|

)]

.
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