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ABSTRACT

Network science provides valuable insights across numer-
ous disciplines including sociology, biology, neuroscience
and engineering. A task of major practical importance in
these application domains is inferring the network topology
from noisy observations over a limited subset of nodes. This
work presents a novel approach for joint inference of the
network topology and estimation of graph signals from par-
tial nodal observations based on structural equation models
(SEMs). SEMs have well-documented merits in identifying
the directed topology of complex graphs by capturing causal
relationships among nodes. The resultant algorithm iterates
between inferring a directed graph that “best” fits the data,
and estimating the graph signals over the learned graph. Nu-
merical tests with synthetic as well as real data corroborate
the effectiveness of the joint inference approach.

Index Terms— Graph signal reconstruction, topology in-
ference, directed graphs, structural equation models.

1. INTRODUCTION

Modeling vertex attributes (or features) as a signal (or a func-
tion) that takes values over a graph, provides valuable prior in-
formation for data processing tasks, such as filtering, denois-
ing, inference, and compressing, to leverage information cap-
tured by the network topology that is presumed available [16,
26]. However, if the network topology is unavailable or in-
accurate, performance of the associated data processing task
can degrade severely.

Topology identification is possible when observations at
all nodes can be collected, by unveiling the hidden (possibly
causal) connectivities across nodes. However, in many real
settings one can afford to collect nodal observations only from
a subset of nodes due to application-specific restrictions, e.g.
sampling massive graphs may be prohibitive; and in social
networks individuals may be reluctant to share personal infor-
mation due to privacy concerns. In this context, the present
paper addresses the challenging task of jointly inferring the
network topology and estimating graph signals, given noisy
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observations at just a subset of nodes. The novel approach
will rely on linear structural equation models (SEMs) [14].

SEMs provide a statistical modeling framework for in-
ference of causal relationships among nodes [14]. Linear
SEMs have been widely adopted in fields as diverse as socio-
metrics [9], psychometrics [19], and genetics [4]. Recently,
dynamic and nonlinear SEMs have been also developed for
tracking dynamic topologies and modeling nonlinear inter-
actions [2, 24, 25]. Other approaches identify undirected
topologies under the assumption that the graph signals are
smooth [6] or that the observations are generated by a diffu-
sion process [23,28]. In all these contemporary approaches,
it is assumed that samples of the graph process are available
for all nodes. However, acquiring network-wide observa-
tions may incur prohibitive sampling costs, especially when
dealing with massive networks.

Methods for inference (or reconstruction) of graph sig-
nals, typically assume that the network topology is known
and undirected. Parametric approaches also adopt the graph-
bandlimited model, which postulates that the signal of inter-
est lies in a graph-related B-dimensional subspace [1,18,20].
Nonparametric techniques employ kernels on graphs to esti-
mate the graph signals [7,21,27], while multi-kernel learning
bestows data-driven kernel selection [11, 13]. On the other
hand, semi-parametric methods incorporate known signal
structure to kernel-based learning without sacrificing flexibil-
ity of the overall model [12]. As expected, performance of
the aforementioned techniques deteriorates when the assumed
topology is not available or inaccurate.

This paper develops a novel approach for joint inference
of even directed network topologies and functions over the
underlying graph. The algorithm relies on SEMs, and it is
semi-blind because it only requires observations on just a sub-
set of nodes without requiring knowledge of the topology.

2. MODELING AND PROBLEM FORMULATION

Consider a network with N nodes whose topology is mod-
eled by the graph G := (V, A), where V := {vy,...,on}
is the set of vertices and A denotes the N x N adjacency
matrix, whose (n, n)-th entry A, ,,» represents the weight of
the directed edge from v, to v,,. A real-valued function (or
signal) on G is a map f; : V — R. In social networks (e.g.,
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Twitter) over which information diffuses, f,, could represent
the timestamp when subscriber n tweeted about a viral story
l. The linear SEM [9] postulates that f;, depends linearly on
{fin }nrn, thatamounts to f1,, = 3=, A frns =+ Nins
where the unknown A, .- captures the causal influence of
node v, upon node v,,, and 7, accounts for unmodeled dy-
namics. The SEM suggests that f;, is influenced directly by
its neighboring nodes in the set N, := {v, : A, # 0}.
Since real-world networks often exhibit edge sparsity, A has
only a few nonzero entries. With the N x 1 vectors f; :=
(frrs-s fin] T and my := [, ..., min] T, the linear SEM
can be written in matrix-vector form as
fi=Af; +n,. (D

Suppose that M; noisy observations y;,,, = f,, + €im»

m = 1,..., M, are available, where M; := {ny,...,np,}
contains the indices 1 < ny; < ... < nyy, < N of the sam-

pled vertices, and ¢;,, models the observation error. With
Y= [ ¥, > and € = [, ..., €r,] ", the ob-
servation model is

yi=Mf + € 2)

where M; is an M; x N matrix with entries { (17, n,,,) } 2L,
set to one, and the rest set to zero.

Problem statement. The goal of this paper is to jointly infer
the nodal outputs {f;}% |, and the unknown directed adja-
cency matrix A given the observations {y;}~ ; collected in
accordance to the sampling matrices {IM;}/_ ;. As estimating
A and {f;}£ | relies on partial observations this is a semi-
blind inference task.

Remark 1. Recognizing the limitations of linear SEMs
for modeling nonlinear interactions, nonlinear SEMs have
emerged recently; see e.g., [10]. Inspired by these works,
nonlinear variants of the present approach can also be devel-
oped to broaden the scope of our models, but are omitted due
to space limitations.

Remark 2. Despite the wide applicability of a single-layer
static network that is considered in the present work, multi-
layer networks are also of great interest since they allow mul-
tiple types of relationships among nodes, called layers [15].
Moreover, real-world networks may vary over time, which
can not be captured by static SEMs. This motivates our future
work to accommodate multi-layer as well as dynamic SEMs.

3. JOINTLY INFERRING TOPOLOGY AND SIGNALS

Given {y;}F_, in (2), this section develops a novel approach
toinfer A, and {f;} £, . To this end, the following regularized
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least-squares (LS) problem is considered

Z [f; — Afy

L
N
+> e = M2+ M AL+ M| A%
=1

2

min 5

A€A7{fl}1, 1

F(A{fi}i) 3

where 1 > 0 tunes the relative importance of the fitting
term; Ay > 0, A2 > 0 control the effect of the ¢;-norm
and the Frobenius-norm, respectively, and A := {A : A €
RVNXN LA, ., = 0}N_,}. SEMs provide the flexibility to
model positive as well as negative influences, nonetheless
prior knowledge as positive edges can be easily included
in (3). The weighted sum of || - ||; and || - || 7 is the so-termed
elastic net penalty and promotes connections between highly
correlated nodal measurements. The elastic net targets the
“sweet spot” between the ¢; regularizer that effects sparsity,
and the || - || p regularizer, which advocates fully connected
networks.

The bilinear product A f; renders (3) nonconvex. The next
subsection develops a computationally efficient block coordi-
nate descent (BCD) solver of (3).

3.1. Joint BCD algorithm

Even though (3) is nonconvex in both A and f;, it is convex
with respect to (w.r.t.) each variable separately. This moti-
vates an iterative BCD algorithm that alternates between esti-
mating {f;}* | and A. Given A (i) at iteration , the estimates

{f'l(i)}le are found by solving the quadratic problem

min Z 1, — A(i)E||? +Z

{fl }1 17=1
where the regularization terms in (3) do not appear. Clearly, (4)
conveniently decouples across [/, and thus reduces to

Hyl Mf 5 (4)

MLy — A

min gi(f;) := A@]EE + lly: — M]3 (5)

The first quadratic in (5) can be written as || [Ty — A ) f1ll3 =

SN (fin — Y onien, Ap o f1nr)?, and it can be viewed as
a regularizer for f;, promoting graph functions with simi-

lar values at neighboring nodes. Notice that (5) may not be
strongly convex, since Iy — A(z) could be rank deficient.
Nonetheless, since g;(-) is smooth (5) can be readily solved
via gradient descent (GD) iterations

£, =£,77D — gV, (£,7) (6)
where Vg, (f;) := 2t ([Iy — A(0)] Iy — A (i) + M, M, ),
—M;y;,and 6 > 01 1s the stepsize chosen e.g. by the Armijo
rule [3]. The computational cost of (6) is dominated by the

matrix-vector multiplication of Iy — A () with f;, which is



Algorithm 1: Joint Infer. of Signals and Graphs (JISG)

Input: Observations {y;}%_,; sampling matrices {M,; } £

and regularization parameters {u, A1, A2}

Intialize: £,(0) =M, Ty, 1 =1,...,
: while iterates not converge do
Estimate A (i) from (7) using ADMM.
Update {f;(i)}~_, using (5) and (6).

: t=1+1

: end while

L

2
3
4:
5:
6

Output: {f;*} | A

proportional to O(knn,), where kyn, denotes the number of
non-zero entries of A (). Moreover, the learned A (i) is ex-
pected to be sparse due to the ¢; regularizer in (3), which ren-
ders first-order iterations (6) computationally attractive, espe-
cially when graphs are large. The GD iterations (6) are run in
parallel across [/ until convergence to a minimizer of (5)
On the other hand, with {f;(i)}* | available, A (i) is

found after solving

mm Z I£:(2)

where the fitting term has been omitted from (3). Note that (7)
is a strongly convex problem with linear constraints, and as
such it admits a unique minimizer. To find it, we adopt the
alternating methods of multipliers (ADMM), which guaran-
tees convergence to the global minimum in a finite number of
iterations; see e.g. [8].

The BCD solver for joint inference of topology and sig-
nals evolving over a graph (JISG) is summarized as Algo-
rithm 1. JISG converges at least to a stationary point of (3),
as asserted by the ensuing lemma.

— Af D3+ MIALL + A AIR (D

Lemma 1. The sequence of iterates {{fl Ve, ()} re-
sulting from solving (4) and (7), is bounded and converges

monotonically to a stationary point of (3).

Proof. The basic convergence results of BCD iterations have
been established in [29]. First, notice that all the terms in (3)
are Giteaux-differentiable over their open domain except
the non-differentiable /1 norm, which is however separable.
These observations establish, based on [29, Lemma 3.1],
that F(A {fl} e 1) is regular at each coordinatewise mini-
mum point A*, {f;*} |, and therefore every such a point
is a stationary point of (3). Moreover, F(A,{f;}£ ) is
continuous and convex per variable. Hence, by appealing
to [29, Theorem 5.1], the sequence of iterates generated by
JISG converges monotonically to a coordinatewise minimum
point of F and consequently to a stationary point of (3). [

A few additional remarks are now in order.
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Remark 3. A popular alternative to the elastic net regularizer
is the nuclear norm p(A) = ||A||. that promotes low rank
of the learned adjacency matrix - a well-motivated attribute
when the graph is expected to exhibit clustered structure [5].

Remark 4. Oftentimes, prior information about G may be
available, e.g. the support of A; the edge weight A, ,,» for
some 1, n’. Such prior information can be easily incorporated
in (3) by adjusting .4, and the ADMM solver accordingly.

Remark 5. The SEM-based graph function estimator in (4)
can be employed on its own, when the topology is known.
As a byproduct of using SEMs, (4) estimates functions over
directed graphs as well, while kernel-based approaches [27]
and estimators that rely on the graph Fourier transform [26]
are usually confined to undirected graphs.

4. NUMERICAL TESTS

The tests in this section evaluate the performance of the pro-
posed joint inference approach in comparison with state of the
art graph signal inference and topology identification tech-
niques using synthetic and real data. The network topology
perfomance is measured by the edge identification error rate

(EIER), defined as EIER := }'VS( Ns“o x 100%, with the op-
- |lo denoting the number of nonzero entries of its
argument, and S (S) give the support of A (A). For the es-
timated adjacency an edge is declared present if |f1nn/\ ex-
ceeds a threshold chosen to yield the smallest EIER. The sig-
nal inference performance is assessed by comparing the nor-
malized mean-square error NMSE := Y7, [[£; — £;]12/|1f;]2
Parameters p, A1 and Ao are selected via cross validation. All
results represent averages over 10 independent Monte Carlo
runs. Unless otherwise stated, M; is chosen uniformly at ran-
dom without replacement over V for each [ with constant size
over time; that is, M; = M, VI.

First, a synthetic network of size N = 81 was generated
using the Kronecker product model, that effectively captures
properties of real graphs [17]. It relies on the “seed matrix”

0.6 0.1 0.7
Dy:=| 03 01 0.5
0 1 01

that produces the N x N matrix as D:=Dy®Do D ®Dy,
where ® denotes Kronecker product. The entries of A were
selected as A, ,» ~ Bernoulli(D, /) Vn,n’, and the re-
sulting matrix was rendered symmetric by adding its trans-
pose. The graph signals were generated using the graph-
bandlimited model f; = 312 ~,Mu®, | =1,..., L, where
L =100, v, ~N(0,1), and {u®}1° are the eigenvectors
associated with the 10 smallest eigenvalues of the Laplacian
matrix L := diag{A1} — A.

The compared estimators for graph signal inference in-
clude the bandlimited estimator (BL) [1, 20, 30] with band-
width B; and the multi-kernel learning (MKL) estimator that
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Fig. 1: Graph signal inference performance based on NMSE
(p=10* X, = 0.5, A = 0.1).

Algorithm Duration
JSIG 120
MKL baseline 1,600

Table 1: Execution times in milliseconds, averaged over dif-
ferent M values, for the algorithms in Fig. 1. Tests in Sec. 5.1
are run using Matlab on a PC with a Intel Core (TM) 17-4790,
clocked at 3.6GHz with 32GB RAM memory.

employs a dictionary comprising 100 diffusion kernels with
parameter o2 uniformly spaced between 0.01 and 2 and se-
lects the kernel that fits” best the observed data [22]. These
reconstruction algorithms assume the topology is known and
symmetric, which may not always be the case. To capture
potential model mismatch, BL and MKL use A + E with
En.n ~ N(0,0.05) instead of A. Fig. 1 shows the NMSE
of various approaches with increasing M, where M; = M VI,
and the baseline is the MKL that considers the true topology
A. The reconstruction performance of JSIG, that simultane-
ously learns the topology, is superior compared to that of BL
and MKL, while it matches the baseline performance. More-
over, JSIG exhibits faster computational time relative to the
MKL baseline; see Table 1. No noise was added to the obser-
vations; that is, ¢, = 0, VI.

Moreover, for the same simulation setting, the topology
inference performance was evaluated, by comparing with the
elastic net (EN) SEM that learns the network topology from
observations across all nodes, meaning {y; = f;}£ . Fig. 2
plots the EIER with increasing M for JSIG while EN-SEM
uses M = N. The semi-blind novel approach achieves sim-
ilar performance with the baseline, which can not cope with
missing nodal measurements.

Further tests were conducted using real gene exrpession
data [4]. Nodes in this network represent N = 39 immune-
related genes, while the measurements consist of gene expres-
sion data from L = 69 unrelated Nigerian individuals. The
graph function f;,, measures the expression level of gene n
for individual [. This experiment evaluates the topology in-

168

o= JISG Baseline EN-SEM
4.2% T T T i ‘
14.1% |
Y,
M '..... .
E 4% ...'.n., |
.."""lﬁnu.--.l\----- Orannanz®
3.9%
3.8% ( ‘ ‘ | I i |
50 55 60 65 70 75 80

sample size (M)

Fig. 2: Network topology inference performance based on
EIER. EN-SEM uses M = N and the same parameters A1, Ao
as ISIG. (u = 108, A\ = 100, Ay = 1).

(b) JSIG.

(a) EN-SEM.

Fig. 3: Heatmaps of estimated adjacency matrices for the
gene regulatory network. White (black) indicate presence
(absence) of an edge. (11 = 108, A1 = 1072, Ay = 10~%).

ference performance of JSIG with M, 31 genes for all
individuals sampled at random. Since no ground-truth topol-
ogy is available here, the estimated adjacency of EN-SEM,
that relies on all the observations, was used for A. Fig. 3 de-
picts heatmaps of the estimated adjacencies, where an edge
is identified if |Ann:| > 0.068. As observed, JSIG learns
a similar topology with EN-SEM having EEIR= 0.5% and
|A — A|%/[|A]|% = 0.02, and imputes the missing values
with NMSE = 0.017. Therefore, our joint approach may dis-
cover causal patterns even when gene expression data contain
missing values.

5. CONCLUSIONS AND FUTURE WORK

This paper introduced a novel approach to jointly infer sparse
directed network topologies and graph signals based on
SEMs. The resultant optimization task is solved by an ef-
ficient algorithm with provable convergence that alternates
between reconstructing the graph signal and inferring the
topology using ADMM. Numerical tests on synthetic and
real data-sets demonstrate the competitive performance of
JISG in both inferring the graph signals and the network
topology. Future research will focus on learning structured
network topologies, extensions to time evolving and multi-
layer networks, and corresponding identifiability analyses.
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