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ABSTRACT

Network science provides valuable insights across numer-

ous disciplines including sociology, biology, neuroscience

and engineering. A task of major practical importance in

these application domains is inferring the network topology

from noisy observations over a limited subset of nodes. This

work presents a novel approach for joint inference of the

network topology and estimation of graph signals from par-

tial nodal observations based on structural equation models

(SEMs). SEMs have well-documented merits in identifying

the directed topology of complex graphs by capturing causal

relationships among nodes. The resultant algorithm iterates

between inferring a directed graph that “best” fits the data,

and estimating the graph signals over the learned graph. Nu-

merical tests with synthetic as well as real data corroborate

the effectiveness of the joint inference approach.

Index Terms— Graph signal reconstruction, topology in-

ference, directed graphs, structural equation models.

1. INTRODUCTION

Modeling vertex attributes (or features) as a signal (or a func-

tion) that takes values over a graph, provides valuable prior in-

formation for data processing tasks, such as filtering, denois-

ing, inference, and compressing, to leverage information cap-

tured by the network topology that is presumed available [16,

26]. However, if the network topology is unavailable or in-

accurate, performance of the associated data processing task

can degrade severely.

Topology identification is possible when observations at

all nodes can be collected, by unveiling the hidden (possibly

causal) connectivities across nodes. However, in many real

settings one can afford to collect nodal observations only from

a subset of nodes due to application-specific restrictions, e.g.

sampling massive graphs may be prohibitive; and in social

networks individuals may be reluctant to share personal infor-

mation due to privacy concerns. In this context, the present

paper addresses the challenging task of jointly inferring the

network topology and estimating graph signals, given noisy
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observations at just a subset of nodes. The novel approach

will rely on linear structural equation models (SEMs) [14].

SEMs provide a statistical modeling framework for in-

ference of causal relationships among nodes [14]. Linear

SEMs have been widely adopted in fields as diverse as socio-

metrics [9], psychometrics [19], and genetics [4]. Recently,

dynamic and nonlinear SEMs have been also developed for

tracking dynamic topologies and modeling nonlinear inter-

actions [2, 24, 25]. Other approaches identify undirected

topologies under the assumption that the graph signals are

smooth [6] or that the observations are generated by a diffu-

sion process [23, 28]. In all these contemporary approaches,

it is assumed that samples of the graph process are available

for all nodes. However, acquiring network-wide observa-

tions may incur prohibitive sampling costs, especially when

dealing with massive networks.

Methods for inference (or reconstruction) of graph sig-

nals, typically assume that the network topology is known

and undirected. Parametric approaches also adopt the graph-

bandlimited model, which postulates that the signal of inter-

est lies in a graph-related B-dimensional subspace [1,18,20].

Nonparametric techniques employ kernels on graphs to esti-

mate the graph signals [7,21,27], while multi-kernel learning

bestows data-driven kernel selection [11, 13]. On the other

hand, semi-parametric methods incorporate known signal

structure to kernel-based learning without sacrificing flexibil-

ity of the overall model [12]. As expected, performance of

the aforementioned techniques deteriorates when the assumed

topology is not available or inaccurate.

This paper develops a novel approach for joint inference

of even directed network topologies and functions over the

underlying graph. The algorithm relies on SEMs, and it is

semi-blind because it only requires observations on just a sub-

set of nodes without requiring knowledge of the topology.

2. MODELING AND PROBLEM FORMULATION

Consider a network with N nodes whose topology is mod-

eled by the graph G := (V,A), where V := {v1, . . . , vN}
is the set of vertices and A denotes the N × N adjacency

matrix, whose (n, n′)-th entry An,n′ represents the weight of

the directed edge from vn′ to vn. A real-valued function (or

signal) on G is a map f l : V → R. In social networks (e.g.,
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Fig. 1: Graph signal inference performance based on NMSE

(µ = 104, λ1 = 0.5, λ2 = 0.1).

Algorithm Duration

JSIG 120

MKL baseline 1,600

Table 1: Execution times in milliseconds, averaged over dif-

ferent M values, for the algorithms in Fig. 1. Tests in Sec. 5.1

are run using Matlab on a PC with a Intel Core (TM) i7-4790,

clocked at 3.6GHz with 32GB RAM memory.

employs a dictionary comprising 100 diffusion kernels with

parameter σ2 uniformly spaced between 0.01 and 2 and se-

lects the kernel that ”fits” best the observed data [22]. These

reconstruction algorithms assume the topology is known and

symmetric, which may not always be the case. To capture

potential model mismatch, BL and MKL use A + E with

En,n′ ∼ N (0, 0.05) instead of A. Fig. 1 shows the NMSE

of various approaches with increasing M , where M l = M ∀l,
and the baseline is the MKL that considers the true topology

A. The reconstruction performance of JSIG, that simultane-

ously learns the topology, is superior compared to that of BL

and MKL, while it matches the baseline performance. More-

over, JSIG exhibits faster computational time relative to the

MKL baseline; see Table 1. No noise was added to the obser-

vations; that is, εl = 0, ∀l.
Moreover, for the same simulation setting, the topology

inference performance was evaluated, by comparing with the

elastic net (EN) SEM that learns the network topology from

observations across all nodes, meaning {yl = f l}
L
l=1

. Fig. 2

plots the EIER with increasing M for JSIG while EN-SEM

uses M = N . The semi-blind novel approach achieves sim-

ilar performance with the baseline, which can not cope with

missing nodal measurements.

Further tests were conducted using real gene exrpession

data [4]. Nodes in this network represent N = 39 immune-

related genes, while the measurements consist of gene expres-

sion data from L = 69 unrelated Nigerian individuals. The

graph function f ln measures the expression level of gene n
for individual l. This experiment evaluates the topology in-
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Fig. 2: Network topology inference performance based on

EIER. EN-SEM uses M = N and the same parameters λ1, λ2

as JSIG. (µ = 108, λ1 = 100, λ2 = 1).
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Fig. 3: Heatmaps of estimated adjacency matrices for the

gene regulatory network. White (black) indicate presence

(absence) of an edge. (µ = 108, λ1 = 10−2, λ2 = 10−4).

ference performance of JSIG with M l = 31 genes for all

individuals sampled at random. Since no ground-truth topol-

ogy is available here, the estimated adjacency of EN-SEM,

that relies on all the observations, was used for A. Fig. 3 de-

picts heatmaps of the estimated adjacencies, where an edge

is identified if |Ân,n′ | > 0.068. As observed, JSIG learns

a similar topology with EN-SEM having EEIR= 0.5% and

‖A − Â‖2F /‖A‖2F = 0.02, and imputes the missing values

with NMSE = 0.017. Therefore, our joint approach may dis-

cover causal patterns even when gene expression data contain

missing values.

5. CONCLUSIONS AND FUTURE WORK

This paper introduced a novel approach to jointly infer sparse

directed network topologies and graph signals based on

SEMs. The resultant optimization task is solved by an ef-

ficient algorithm with provable convergence that alternates

between reconstructing the graph signal and inferring the

topology using ADMM. Numerical tests on synthetic and

real data-sets demonstrate the competitive performance of

JISG in both inferring the graph signals and the network

topology. Future research will focus on learning structured

network topologies, extensions to time evolving and multi-

layer networks, and corresponding identifiability analyses.
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