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ABSTRACT

Kernel-based methods have well-appreciated performance

in various nonlinear learning tasks. Most of them rely on

a preselected kernel, whose prudent choice presumes task-

specific prior information. To cope with this limitation,

multi-kernel learning has gained popularity thanks to its

flexibility in choosing kernels from a prescribed kernel dic-

tionary. Leveraging the random feature approximation and its

recent orthogonality-promoting variant, the present contribu-

tion develops an online multi-kernel learning scheme to infer

the intended nonlinear function ‘on the fly.’ Performance

analysis shows that the novel algorithm can afford sublinear

regret. Numerical tests on real datasets are carried out to

showcase the effectiveness of the proposed algorithms.

Index Terms— Multi-kernel learning, random features,

online learning, online regression.

1. INTRODUCTION

Function approximation emerges in various learning tasks

such as regression, classification, and reinforcement learn-

ing [1, 2]. Kernel-based methods are powerful tools for non-

linear function approximation with strong theoretical guaran-

tees. While most kernel methods utilize a pre-selected kernel,

multi-kernel learning (MKL) approaches have attracted at-

tention, thanks to their flexibility in selecting the task-specific

kernel based on a prescribed kernel dictionary [3, 4].

In addition to the attractive generalization capability that

kernel methods employ, several learning tasks are also ex-

pected to be performed in an online fashion. Such a need

naturally arises when the data arrive sequentially, as in on-

line spam detection [5], and time series prediction [6]; or,

when the sheer volume of data makes it impossible to carry

out data analytics in batch form [7]. This motivates well on-

line kernel-based learning methods that inherit the merits of

their batch counterparts, while at the same time allowing ef-

ficient online implementation. Taking a step further, the op-

timal function may itself change over time in non-stationary

environments. This is the case when the function of interest

e.g., represents the state in brain networks, or, captures the

temporal processes propagating over time-varying networks.

Tackling online kernel-based learning tasks in non-stationary
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and possibly adversarial environments remains a largely un-

charted territory [7, 8].

In accordance with these needs and desiderata, the pri-

mary goal of this paper is an algorithmic pursuit of online

multi-kernel learning in possibly adversarial environments,

along with its performance guarantees. Major challenges

arise due to: i) the well-known curse of dimensionality in

kernel-based learning, since the size of the kernel matrix

grows quadratically with the number of data [9], and the

associated complexity to find even the single kernel-based

predictor that is cubic of data size; and, ii) the difficulty

of tracking unknown time-varying functions without future

information. Regarding i), we apply the recent variance-

reduced random feature approximation to circumvent the

curse of dimensionality; while for ii), we propose a novel

online algorithm which achieves sub-linear regret, on average

“no-regret” relative to the best static counterpart.

2. PRELIMINARIES

Given samples {(x1, y1), . . . , (xT , yT )}Tt=1 with xt ∈ R
d

and yt ∈ R, the function learning task is to find a function

f(·) such that yn = f(xn) + en, where en denotes an error

term representing noise or un-modeled dynamics. Suppose f
belongs to the reproducing kernel Hilbert space (RKHS)

H := {f |f(x) =
∞
∑

t=1

αtκ(x,xt)} (1)

where κ(x,xt) : Rd × R
d → R is a basis (so-termed ker-

nel) function, which measures the similarity between x and

xt. Different choices of κ specify various bases. One of

the popular ones is e.g., the Gaussian kernel κ(x,xt) :=
exp[−(x−xt)

2/(2σ2)]. A kernel is reproducing if it satisfies

〈κ(x,x1), κ(x,x2)〉 = κ(x1,x2), which in turn induces the

RKHS norm ‖f‖2H =
∑

t

∑

t′ αtαt′κ(xt,xt′). Consider the

optimization problem

min
f∈H

L(f) := 1

T

T
∑

t=1

`(f(xt), yt) +
λ

2
‖f‖2H (2)

where depending on the application, the loss function `(·, ·)
can be selected to be, e.g., the least-squares cost, the logistic

or hinge loss, and λ > 0 is a regularization parameter. Thanks

to the representer theorem, the optimal solution of (2) admits
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the finite-dimensional form, given by [9]

f(x) =

T
∑

t=1

αtκ(x,xt) (3)

where {αt ∈ R}Tt=1 are combination coefficients. While the

scalar yt is used here for notational brevity, coverage can be

readily generalized to the vector form.

Note that (2) relies on two facts: i) a properly pre-selected

kernel κ is known; and ii) training data {xt, yt}Tt=1 are avail-

able. In the ensuing sections, an online MKL method will be

proposed to select the optimal κ as a convex combination of

multiple kernels, when the data become available online.

3. ONLINE MKL WITH RANDOM FEATURES

In this section, we develop an online algorithm to simulta-

neously deal with kernel basis selections and multiple ker-

nel combinations. Our algorithm leverages the orthogonal

random feature techniques [10, 11], which we term random

feature-based multi-kernel (Raker) learning approach.

3.1. Kernel learning via random features

Kernel-based methods are challenged by the curse of dimen-

sionality, due to the fact that the optimal kernel function de-

pends on all the previous data samples [cf. (3)]. Unlike on-

line kernel learning schemes that rely on budget maintenance

strategies [12], the present section explores an alternative ap-

proach for kernel-based learning to render the subsequent on-

line learning task scalable with the sample size. This ap-

proach relies on mapping the original data to random features

(RFs), and then applying existing linear learning algorithms

in this new feature space [10]. Specifically, given xt, the RF

approach constructs a feature representation zV(xt) ∈ R
2D,

where D � d, V ∈ R
D×d is a random matrix that will be

specified later, and zV(x) approximates the kernel by

k(xi,xj) ' z>
V
(xi)zV(xj). (4)

Hence, the function in the corresponding RKHS can be ap-

proximated by (cf. (3))

f(x) '
T
∑

t=1

αtz
>
V
(xt)zV(x) (5)

where θ :=
∑T

t=1 αtzV(xt) denotes the new weight vec-

tor that transforms the original kernel-based learning prob-

lem into a linear problem in the new 2D-dimensional feature

space, namely

f(x) ' θ
>
zV(x). (6)

To efficiently approximate the kernel function, we will con-

fine our class to kernels that are shift invariant; that is,

κ(x1,x2) = κ(δ) with δ := x1 − x2, and κ(0) = 1.

With the shift-invariant property, viewing the positive definite

κ(δ) as the inverse Fourier transform of πκ(v), yields

κ(x1,x2) =

∫

πκ(v)e
jv>(x1−x2)dv

= Ev

[

ejv
>
x1 · e−jv>

x2

]

(7)

where the last equality follows by treating πκ(v) as the proba-

bility density function (pdf) of v. Taking the Gaussian kernel

as an example, where κ(x1,x2) = exp
(

‖x1 − x2‖22/(2σ2)
)

,

the corresponding pdf πκ(v) = N (0, σ−2I) [10]. Thus,

plugging ejv
>
x1=cos(v>x1)+j sin(v>x1) into (7) yields

κ(x1,x2)=Ev

[

cos(v>x1) cos(v
>x2)+sin(v>x1) sin(v

>x2)
]

:=Ev

[

z>(x1)z(x2)
]

(8)

where z(x) := [sin(v>x), cos(v>x)]>. Clearly, D real-

izations of RF z(x) can be obtained by randomly sampling

{v1, . . . ,vD} from πκ(v), that is

zV(x) :=

√

1

D
[sin(v>

1 x), cos(v
>
1 x), . . . , sin(v

>
Dx), cos(v>

Dx)]

(9)

where the entries of V := [v1, . . . ,vD]> ∈ R
D×d are i.i.d.

Gaussian. Thanks to (5), the nonparametric learning task is

then approximated as a linear learning task in the Fourier fea-

ture space. Specifically, with the loss function [cf. (6)]

`t(f(xt)) := `(f(xt), yt) = `(θ>
zV(xt), yt) (10)

the online learning task becomes

min
θ∈R2D

T
∑

t=1

`(θ>
zV(xt), yt). (11)

Upon obtaining a new datum xt, the representations of the

data instance zV(xt) can be generated via (9), and online gra-

dient descent can be applied to refine the estimator

θt+1 = θt − ηt∇`(θ>
t zV(xt), yt) (12)

where {ηt} is a sequence of stepsizes, and ∇`(θ>
t zV(xt), yt)

is the gradient with respect to the weight θ at θ = θt. The

update (12) is still a functional update in that it is tantamount

to updating the linear function ft(·) = θ
>
t zV(·).

Variance-reduced RF. Even if z>
V
(x1)zV(x2) is an unbiased

estimator of κ [cf. (8)], the variance z>
V
(x1)zV(x2) decays

as D increases. This explains why the RF vector dimension is

chosen to satisfy D � d. [10]. Next, we will leverage a recent

intriguing result from [11] to markedly reduce the variance of

RF approximation by enforcing orthogonality on the rows of

V. For the original RF approach on a Gaussian kernel with

bandwidth σ2, recall that V = σ−1G in (9), where each entry

of G follows a standardized Gaussian pdf. For the variance-
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reduced RF method, with D = d, VORF is formed as

VORF = σ−1SQ (13)

where Q ∈ R
d×d is a uniformly distributed random orthonor-

mal matrix, and S denotes a diagonal matrix with diagonal

entries drawn i.i.d. from a χ distribution with d degrees of

freedom. Matrix S is introduced to ensure unbiasedness of

the kernel approximation [11]. With D > d, several weighted

orthonormal matrices can be generated independently from

(13), and concatenated to form VORF. It turns out that

z>
VORF

zVORF
with zVORF

generated as in (9), and VORF

replacing V, has much smaller variance [11]. Through such

orthogonality-promoting RFs, the number of RFs needed to

achieve a certain accuracy is markedly reduced.

3.2. Online MKL with random features

Here we preselect a dictionary of possible kernel functions,

and then adaptively combine kernels in the dictionary [3].

Specifically, given a dictionary of kernels {κp}Pp=1 and the

RKHS Hp induced by κp, the solution of (2) is expressible in

a separable form as [13]

ft(x) :=

P
∑

p=1

w̄p,tfp,t(x) (14)

where fp,t(x) belongs to RKHS Hp, for p = 1, . . . , P , and

w̄p,t ∈ [0, 1] denotes the normalized weight for the pth kernel-

based function estimator at time slot t.

To make use of the dictionary, {w̃p,t}Pp=1 should be learnt

and adjusted in an online fashion. This task fits well the cele-

brated online learning paradigm, a.k.a., online prediction with

expert advice [14]. Specifically, treating {w̃p,t} as an expert,

we formulate the multi-kernel based learning problem as an

online prediction task with expert advice. Upon obtaining a

data sample, the un-normalized weights are updated accord-

ing to the loss (called regret) incurred by each learner as

wp,t+1 = wp,t exp(−η`t(fp,t(xt))) (15)

where η ∈ (0, 1) is a chosen constant that controls the adap-

tation rate of {wp,t}. Relative to {wp,t}, the normalized

weights in (14) are w̄p,t := wp,t/
∑P

p=1 wp,t, ∀t. Moreover,

it can be observed that when fp,t incurs larger loss relative

to other fp′,t with p′ 6= p at time slot t, the corresponding

combination weight decreases in the next time slot. In other

words, a more accurate learner tends to play more important

role in predicting the upcoming data.

However, relative to the generic expert advice problem

[14], the difference here is that the kernel-based function es-

timator itself performs efficient online learning scheme for

self-improvement. Indeed, the random feature approximation

in Section 3.1 enables the efficient and scalable self-learning

for each kernel-specific expert. Specifically, for the expert as-

Algorithm 1 Raker: a random feature-based MKL approach

1: Input: Kernels κp, p = 1, . . . , P , step size η > 0, and

number of random features D.

2: Initialization: {θp,1 = 0}.

3: for t = 1, 2, . . . , T do

4: Receive a streaming datum xt.

5: Construct zp(xt) via (9) for p = 1, . . . , P .

6: Predict ft(xt) via (14) with fp,t(xt) in (16).

7: for p = 1, . . . , P do

8: Obtain loss `(θ>
p,tzp(xt), yt).

9: Update wp,t+1 via (15).

10: Update θp,t+1 via (17).

11: end for

12: end for

sociated with kernel p, a feature representation zp(xt) will be

randomly generated from a kernel-specific distribution given

datum xt (cf. (9)), where we use zp(xt) = zVp
(xt) for no-

tational simplicity; thus, each function estimator that is the

advice of each expert at time t can be written as

fp,t(xt) ' θ
>
p,tzp(xt) (16)

where θp,t is the parameter in (6) at time t for kernel p. And

similar to (12), the pth kernel, θp,t is updated via

θp,t+1 = θp,t − η∇`(θ>
p,tzp(xt), yt) (17)

where we use `(fp,t(xt), yt) = `(θ>
p,tzp(xt), yt). The Raker

scheme is summarized as Algorithm 1.

Complexity. At the t-th iteration of Algorithm 1, the mem-

ory required is fixed and of order O(D). Regarding computa-

tional overhead, the per-iteration computational complexity is

of order O(D) compared with at least O(dt) for OMKL [15];

hence, the Raker algorithm is more computationally efficient

than existing MKL [4] or OMKL. Along with the later nu-

merical tests, it explains the effectiveness of Raker.

3.3. Regret analysis

We assume that the following conditions are satisfied.

AS1. Function `(θ>
zV(xt), yt) is convex in θ. If θ is from

a bounded set Θ, the loss and its gradient are bounded; i.e.,

|`(θ>
zV(xt), yt)| ≤ 1, and ‖∇`(θ>

zV(xt), yt)‖ ≤ L.

AS2. Each κp is a shift-invariant kernel with κp(xi,xj) ≤
1, ∀xi,xj . Also ‖x‖ ≤ 1 and ‖f∗

Hp
‖1 :=

∑T

t=1 |α∗
t | ≤ C.

AS1 enforces convexity of the loss, and ensures the losses

are bounded, but also the gradient of the loss function is

bounded, which is also called L-Lipschitz continuity that is

common in OCO [16]. AS2 bounds the norm of the optimal

function [17]. These bounds are assumed without loss of gen-

erality, whenever the losses are bounded. AS1-2 are typically

satisfied in kernel-based learning tasks [4, 13, 17].
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With regard to performance of an online algorithm,

static regret is commonly adopted as a metric by most OCO

schemes, and measures the difference between the aggregate

loss of an OCO algorithm and that of the best fixed solution in

hindsight [16, 18]. Specifically, for the sequence of functions

{ft} generated by a learning algorithm A, its static regret is

RegsA(T ) :=

T
∑

t=1

`t(ft(xt))−
T
∑

t=1

`t(f
∗(xt)) (18)

where the best static function estimator f∗(·) is obtained

through the following batch optimization

f∗(·) ∈ argmin
f∈F

T
∑

t=1

`t(f(xt)) (19)

and the function space is F :=
⋃

p∈P Hp by default, with Hp

representing the RKHS induced by κp.

The next theorem characterizes the difference between the

loss of online MKL algorithm relative to the best functional

estimator in the RKHS; see [19] for the proof.

Theorem 1: Suppose AS1-AS2 are satisfied. If f∗
Hp

is the best

function estimator in (19) belonging to Hp, with probability

at least 1− 28
(σp

ε

)2
exp

(

−Dε2

4d+8

)

, the following bound holds

T
∑

t=1

`t

(

P
∑

p=1

w̄p,tfp,t(xt)

)

− min
p∈{1,...,P}

T
∑

t=1

`t

(

f∗
Hp

(xt)
)

≤ lnP

η
+
(1+ε)‖f∗

Hp
‖21

2η
+
ηL2T

2
+ηT+εLT‖f∗

Hp
‖1 (20)

where ε > 0 is a constant, d is the dimension of x, and D
is the number of random features, while σ2

p := E
πκp

V
[v>v] is

the second moment of v. Setting η = ε = O(1/
√
T ) leads to

RegsRaker(T ) = O(
√
T ) (21)

where the benchmark in (18) belongs to
⋃

p∈P Hp.

Observe that the probability in (20) gets larger as D in-

creases. For a given ε, one can always find an appropriate D
to ensure a positive probability. Theorem 1 establishes that

with appropriate choice of parameters, the novel Raker al-

gorithm achieves sub-linear regret, which implies that Raker

incurs on average “no-regret” relative to the best static func-

tional estimation belonging to the function space
⋃

p∈P Hp.

4. NUMERICAL TESTS

The present section tests the performance of our novel algo-

rithms for online regression tasks. We compared Raker with

online multi-kernel learning (OMKL) [15], and online (sin-

gle) kernel based learning using Gaussian kernels (RBF) with

bandwidth σ2 = {0.1, 1, 10}. All the considered MKL ap-

proaches use Gaussian kernels with σ2 = {0.1, 1, 10}, step-
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Fig. 1: MSE performance: a) Twitter; b) Tom’s hardware.
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Fig. 2: Normalized CPU time: a) Twitter; b) Tom’s hardware.

sizes of the single kernel based learning algorithms are set to

η = 1/
√
T for all algorithms, and η = 0.5 and λ = 0.01

for all MKL approaches. Entries of {xt} and {yt} are nor-

malized to lie in [0, 1]. For RF-based approaches, D = 50
orthogonal random features were used.

Datasets. Performance is tested on several benchmark

datasets [20]. The twitter dataset consists of time series of

T = 6, 000 samples with xt ∈ R
77 and the Tom’s hardware

dataset contains T = 10, 000 feature vectors each of size 96,

while yt represents the average number of active discussions

about a certain topic on twitter and Tom’s hardware [21].

Results. The performance of different algorithms is plot-

ted in Fig. 1 in terms of the mean-square error MSE(t) :=

(1/t)
∑t

τ=1 (yτ − ŷτ )
2. Clearly, Raker achieves competitive

performance, with just 5% of the MKL runtime. Aligned with

the motivation of using multiple kernels, all MKL methods

outperform the algorithms using only a single kernel. The

normalized CPU time of all schemes is depicted in Fig. 2. A

sharp observation is that Raker is computationally more effi-

cient than the existing OMKL method.

5. CONCLUSIONS

We dealt with online multi-kernel learning problem. Lever-

aging recent advances in variance-reduced random feature

approximation, we developed a scalable online multi-kernel

learning approach that we term Raker. We established that

Raker achieves sub-linear regret, meaning that the predictions

generated by Raker are no worse than those under the best

static function on average. Experiments on real datasets vali-

date the effectiveness of our Raker method.
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