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ABSTRACT

Segmentation of ventricles from cardiac magnetic resonance

(MR) images is a key step to obtaining clinical parameters

useful for prognosis of cardiac pathologies. To improve

upon the performance of existing fully convolutional network

(FCN) based automatic right ventricle (RV) segmentation

approaches, a multi-task deep neural network (DNN) archi-

tecture is proposed. The multi-task model can employ any

FCN as a building block, allows for leveraging shared fea-

tures between different tasks, and can be efficiently trained

end-to-end. Specifically, a multi-task U-net is developed and

implemented using the Tensorflow framework. Numerical

tests on real datasets showcase the merits of the proposed

approach and in particular its ability to offer improved seg-

mentation performance for small-size RVs.

Index Terms— Right ventricle segmentation, U-net, con-

volutional neural networks, multi-task learning

1. INTRODUCTION

The clinical relevance of the RV in cardiovascular diseases

such as cardiomyopathy is nowadays widely accepted [1]. To

assess RV function, MR imaging constitutes a rather power-

ful tool [2]. Here we will focus on estimating the endocardial

contours of the RV on short-axis cardiac cine MR images,

a problem referred to as RV segmentation. Once these con-

tours are estimated, several clinical parameters such as the

end-diastolic volume, end-systolic volume, and as a result the

RV ejection fraction, can be obtained [1]; note that the latter

is considered to be a prognostic indicator in cardiopulmonary

disorders [3].

Typically, RV segmentation is performed by medical

professionals, requiring approximately 15 minutes for a sin-

gle subject, while also being susceptible to inter and intra-

operator variability [2, 4]. The development of automatic

RV segmentation methods, such as the one examined in this

work, is therefore well motivated.

A number of deep learning based approaches have been

proposed in this context. In [5], a three step approach was de-
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veloped. In particular, the center of the RV is first estimated

using a convolutional neural network (CNN), followed by ini-

tial estimates of the contours using two stacked auto-encoders

(one for large and one for small-sized contours); a deformable

model, then, yields the final contour. In contrast to the com-

plex pipeline in [5], an RV segmentation approach based on

a FCN that is trained end-to-end has been proposed in [6].

Finally, several variants of FCN-based approaches have been

recently used for right ventricle segmentation; see for exam-

ple the 3D [7], multi-class [8], and times-series [9] FCN mod-

els that were recently devised for the MICCAI’17 automated

cardiac diagnosis challenge.

All the aforementioned FCN-based methods employ a

single model for all the training examples. It has been ob-

served, however, that their empirical segmentation perfor-

mance tends to be suboptimal for inputs with small-size RVs,

see e.g. [6, Fig. 4]. To boost the segmentation accuracy, [5]

divided the training data into two parts based on the area of

the RVs, and trained two separate neural networks for small-

and large-size RVs, respectively. While this can lead to im-

proved performance, the separated training strategy suffers

from three inherent inefficiencies. First, it is hard to decide

whether RVs are large or small in an automated fashion in

the test phase. Second, splitting the training data reduces

the number of training examples available for each neural

network while also rendering it impossible to leverage the

common features shared between large and small RV images.

Third, training two models is time consuming.

To overcome the aforementioned limitations, a multi-task

DNN for automated RV segmentation is put forth in this

work. The novel model merits a shared CNN module that

extracts features for three different tasks, namely classifying

whether the RV is small or large and generating segmentation

masks for small and large RVs. Furthermore, the segmen-

tation header for the small-size RV examples works with

cropped CNN features. This cropping strategy increases the

proportion of the image area covered by the RV, and as it will

become evident, it yields markedly improved segmentation

performance for small-size RVs. Intuitively, our multi-task

approach can be viewed as a scheme for enhancing the seg-

mentation accuracy for small objects by zooming in them for

a closer look. Although our multi-task approach works with
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any FCN model, a multi-task U-net is used in this work.

The performance of the developed multi-task U-net was

evaluated on the MICCAI’12 RV segmentation challenge

(RVSC) dataset [2]. Numerical tests showcase the improve-

ment in segmentation accuracy achieved by the multi-task U-

net over its single-task U-net counterpart. With only minimal

parameter tuning, the multi-task U-net achieves competitive

segmentation accuracy on the MICCAI ’12 RVSC test sets.

To the best of our knowledge, this is the first applica-

tion of multi-task DNNs to the problem of RV segmentation.

Nonetheless, multi-task learning has been employed in dif-

ferent tasks, see e.g., faster region-based CNN (R-CNN) for

object detection [10], mask R-CNN for instance segmenta-

tion [11], and multi-task DNNs for natural language process-

ing [12].

Notation. Lower- (upper-) case boldface letters denote

column vectors (matrices). The symbol > is reserved for

transposition. Finally, the operator ln(x) returns the natural

logarithm of x, whereas exp(x) denotes Euler’s number to

the power of x.

2. METHODOLOGY

Given N training pairs {(Xn,Yn)}
N
n=1 of input matri-

ces Xn ∈ R
d1×d2 and the corresponding matrix outputs

Yn ∈ {0, 1}d1×d2 , our goal is to estimate the function f(X)

so that a certain loss 1
N

∑
N

n=1 `(f(Xn),Yn) is minimized.

In the context of RV segmentation the given inputs {Xn} are

a series of cardiac MR images, whereas the outputs are manu-

ally labeled images whose pixel values are binary. Regarding

the latter, without loss of generality, assume that pixels within

the endocardium of the RV are labeled 1, while the rest are

labeled 0.

2.1. U-net

Since the relationships between Xn and Yn are complex,

f(X) is typically assumed to be a nonlinear function. To ren-

der nonlinear estimators tractable, kernel [13, 14] or DNN-

based approaches are commonly relied upon. More specifi-

cally, FCN-based approaches [15] are proving highly success-

ful in image segmentation tasks. Among the available variants

of 2D FCNs, the so-termed “U-net" has achieved remarkable

experimental results in medical image segmentation [16]. In

this subsection, a U-net tailored for RV segmentation is de-

vised. Compared to the original U-net in [16], the devised

U-net features less layers and as a result, much fewer param-

eters. This modification is well motivated since the number

of training examples for the RV segmentation task is limited.

The architecture of our U-net is shown in Fig. 1, where

C2, C4, C6, and C8 denote the feature maps obtained from

the 2nd, 4th, 6th, and 8th convolution stages, respectively. In

particular, the input image is first passed through 7×7 convo-

lutions followed by rectified linear units (ReLUs). The subse-

quent downsampling path consists of repeated application of

3× 3 convolutions, followed by ReLUs and max pooling op-

erations. The number of filters employed in the first to eighth

convolution stage is 32, 32, 64, 64, 128, 128, 256, and 256,

respectively. For all max pooling operations, the kernel size

is set to 2 × 2 and the stride is fixed to be 2. As a result, the

dimension of the features is halved after each max pooling

operation.

Since the segmentation task entails pixel-wise classifica-

tion, upsampling is necessary for obtaining an output that has

the same dimensions as the input. Specifically, the expansive

path, denoted by H1, starts with upsampling the feature map

C8 (cf. Fig. 1) by a factor of 2 by repeating each row and

column of the feature map twice. The upsampled features

are then concatenated with a copy of C6. This concatenation

turns out being beneficial as the lower level features contain

more accurate localization information, which is important

for improving segmentation accuracy. Repeated application

of convolutions, ReLUs, upsampling, and concatenation op-

erations follows the upsampling. In the final layer, the soft-

max activation function is used, after a 1 × 1 convolution, in

order to obtain a distribution over the number of classes for

each pixel.

Our U-net was implemented and trained using the Tensor-

flow framework. Unfortunately, U-net architecture alone may

not be sufficient for the challenging task of RV segmentation,

especially in the case of small RVs in the short-axis stack, as

it becomes evident in Fig. 4c; see also [6, Fig. 4]. Therefore,

we complement this architecture with a multi-task approach.

2.2. The proposed multi-task DNN model

The success of transfer learning indicates that lower levels of

CNNs can be viewed as feature extractors, where the obtained

features can be used for different learning tasks [17]. Based

on this observation, we will use the C8 features (cf. Fig. 1)

for inferring whether the RV in the input is small-sized or not,

in addition to using them for contour estimation. To that end,

a classification header consisting of two densely connected

layers is added on top of C8 as shown in Fig. 2.

Once we determine that the input has a small-size RV, we

can crop the image to a smaller size in order to get rid of

irrelevant information. Given that the RVs are always located

around the center of the input, one can simply center crop the

image rather than training an additional localization network

as in [5]. To segment the small-size RVs, another expansive

header denoted as H2 (cf. Fig. 2) is introduced, which has

the same structure as the expansive header H1 in Fig. 1. The

input to H2, however, is the cropped C8 (instead of the entire

map) since we know that our region of interest will be of small

size. In order to make the concatenation operation feasible,

the features from C6, C4 and C2 must be cropped as well.

Finally, the output of H2 is zero padded to ensure its spatial

dimensions are the same as those of the inputs.
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Fig. 1: Schematic representation of the employed U-net architecture. Each blue box represents a feature map, whereas while

boxes denote copied feature maps. The arrows stand for the different operations.

To summarize, our proposed multi-task DNN has three

distinct headers that are responsible for classifying the size

of RVs, segmenting the large-size RVs, and segmenting the

small-size RVs, respectively. Our approach, therefore, fea-

tures three outputs from a single model, which is trained end-

to-end using the whole dataset. Although we use the U-net

as a building block for the multi-task DNN, it is worth stress-

ing that the multi-task DNN can also be built on other FCN

models such as the one reported in [6].

Fig. 2: Headers for classifying and segmenting small RVs.

2.3. Multi-task DNNs: training and testing

In this subsection, the loss functions for the employed headers

will be detailed. Moreover, the joint training process, as well

as the deployment phase, will be outlined.

To train the classification header, each training example

needs to be labeled based on its RV contour size. To that

end, the average area of all the segmentation masks is first

computed as ᾱ =
∑

N

n=1 αn, where αn denotes the area of

the segmentation mask of the nth image. Letting cn represent

the classification label of the nth image, we define cn := 1
for αn ≥ 0.45ᾱ and 0 otherwise, where the constant 0.45 is

selected empirically so that the number of small-size RVs is

about half of the number of large-size RVs. With the labels

{cn}
N
n=1 obtained, the cross-entropy loss for the classification

header is given by

E0(w) = −
1

N

N∑

n=1

[cn ln pn(1) + (1− cn) ln pn(0)]

where w collects all the weight variables in the DNN, and

pn = [pn(0), pn(1)]
> is the vector output from the classifi-

cation header for input Xn.
For the segmentation header H1, the cross-entropy loss is

used for the output at each pixel (i, j), yielding the following
per-example loss

`(P(1)
n ,Yn) :=−

1

d1d2

d1∑

i=1

d2∑

j=1

[Yn(i, j) lnP
(1)
n (i, j, 1)

+ (1− Yn(i, j)) lnP
(1)
n (i, j, 0)].

in which P
(1)
n denotes the tensor output from header H1 for

input Xn. Likewise, the per-example loss `(P
(2)
n ,Yn) for

header H2 is defined. Subsequently, the loss functions for
headers H1 and H2 over all examples are given by

E1(w) :=
1

N

N∑

n=1

τ(cn)`(P
(1)
n ,Yn),

E2(w) :=
1

N

N∑

n=1

(1− τ(cn)) `(P
(2)
n ,Yn)

respectively, where τ(cn) equals 1 when cn = 1 and it is 0

otherwise.

In order to train the proposed model jointly (over w), we

use a multi-task loss in the training process, which is given by

E(w) = λ0E0(w) + λ1E1(w) + λ2E2(w)

with λ0, λ1, and λ2 denoting preselected non-negative weights

for the objective functions. When setting λ0 = λ2 = 0 and

{cn = 1}N
n=1, training our multi-task model boils down to

training its single-task U-net (cf. Fig. 1) counterpart. By

minimizing E(w), the weight variables w can be learned.

Regarding the deployment phase, when a new datum ar-

rives, the segmentation headers predict two masks. The out-

put is taken as the mask corresponding to the class predicted

by the classification header.

3. NUMERICAL TESTS

In this section the performance of the proposed multi-task

DNN will be evaluated on the MICCAI’12 RVSC dataset [2].

The original dataset comprises images of two different sizes,

that is, 256×216 and 216×256. For consistency, we rotate the
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