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ABSTRACT

The task of community detection over complex networks is of
paramount importance in a multitude of applications. The present
work puts forward a top-to-bottom community identification ap-
proach, termed DC-EgoTen, in which an egonet-tensor (EgoTen)
based algorithm is developed in a divide-and-conquer (DC) fashion
for breaking the network into smaller subgraphs, out of which the
underlying communities progressively emerge. In particular, each
step of DC-EgoTen forms a multi-dimensional egonet-based rep-
resentation of the graph, whose induced structure enables casting
the task of overlapping community identification as a constrained
PARAFAC decomposition. Thanks to the higher representational
capacity of tensors, the novel egonet-based representation improves
the quality of detected communities by capturing multi-hop con-
nectivity patterns of the network. In addition, the top-to-bottom
approach ensures successive refinement of identified communi-
ties, so that the desired resolution is achieved. Synthetic as well as
real-world tests corroborate the effectiveness of DC-EgoTen.

This work has been recently published as a regular paper in IEEE
Intl. Conf. on Data Mining (ICDM), New Orleans, LA, 2017.
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1 INTRODUCTION

Real-world networks often exhibit distinct characteristics, such as
power-law degree distribution, the small-world phenomena, and
the presence of densely connected sub-graphs, also referred to as
“communities” or “clusters” [17]. Focusing on the last, strong connec-
tivity of a subset of nodes along with their sparse interactions with
the rest of the network is indicative of a “real-world association”
among the participating nodes. The task of community detection
targets the discovery of such communities, whose identification is of
great importance in diverse fields ranging from gene-regulatory net-
works [12], to brain functionality [33], and social-media evolution
analysis [27, 29], to name a few.
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Past works on community detection include those based on
generative and statistical models [1, 3, 44], modularity and related
local-metric optimization [8, 11, 13], spectral clustering [39], and
matrix factorization approaches [9, 33, 34, 40, 46, 47]; see also [17]
and [15] for comprehensive overviews. However, most existing
works pursue a bottom-up approach, where small collections of
nodes with strong connectivity patterns (e.g., cliques) are selected
as “seeds,” and larger communities are “grown” around them by
merging other (clusters of) nodes [11, 42]. In contrast, another class
of algorithms follows a top-to-bottom perspective, where a graph is
progressively broken into smaller pieces, out of which communities
eventually emerge [18, 28, 35].

Recent exploratory studies have revealed new challenges over
contemporary networks, addressing the presence of overlapping
communities [19, 41, 43], multimodal interaction of nodes over mul-
tiview networks [30, 32], exploitation of nodal and edge-related
side-information [45], as well as dynamic interactions within a
network [4, 5]. In tackling these challenges, tensors as multi-modal
structures offer increased representational capacity, which trans-
lates to improved performance [4, 7, 20, 23, 30, 32, 36].

In this work, we develop a novel top-to-bottom community de-
tection approach, termed “divide-and-concur EgoTen” (DC-EgoTen),
which relies on a successive application of “EgoTen”, a tensor-based
toolbox for intermediate steps of community identification. Our
core algorithm EgoTen builds on a novel multi-dimensional repre-
sentation of a network, whose ability in capturing multi-hop con-
nectivities is particularly appealing when communities are overlap-
ping as well as highly-mixing. The proposed tensor-based approach
views a network as a union of its egonets, where each egonet is the
subgraph induced by a node, its immediate neighbors, and their
connections [2]. The resultant three-way tensor is thus built by
concatenation of egonet adjacency matrices as frontal slabs. The
tensor’s constrained decomposition lends itself to an algorithm
revealing communities though the trilinear decomposition factors.
A desirable characteristic of this algorithm is its ability to trade
off flexibility for increased redundancy and memory costs. Never-
theless, the resulting tensor is extremely sparse, and off-the-shelf
tools for sparse tensor computations can be readily utilized; see
eg. [22,31,37].

The upshot of our novel framework is three-fold: i) the per-
formance of community detection in complex networks improves
markedly thanks to the rich structure of tensors; ii) construction
of the egonet-tensor via parallel implementation and exploitation
of sparsity endow the algorithm with scalability; and, iii) the pro-
posed top-to-bottom approach offers communities with the desired
resolution. In fact, many of the previously developed algorithms
are susceptible to “resolution limit” [16], where identification of
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very large communities reveals little information on the underlying
graph structure. The rest of the paper is organized as follows. Sec.
2 introduces DC-EgoTen, and Sec. 3 presents EgoTen as the core
tensor-based community detection approach. Extraction of com-
munities and performance metrics are the subjects of Sec. 4, while
Sec. 5 presents numerical tests, and Sec. 6 concludes the paper.

2 PRELIMINARIES AND THE TOP-DOWN
APPROACH

Given a network of N vertices v € V where |['V| = N, and their
edgeset &, community detection aims at finding subsets of nodes,
a.k.a. clusters or communities, for which resident nodes demon-
strate dense intra-community connections while distinct commu-
nities are sparsely connected. A cover is defined as the set of such
communities, with “desirable covers” exhibiting certain character-
istics, namely: i) constituent communities should include dense
intra-connections and sparse inter-connections; ii) communities of
very large sizes are not appealing as they bear little information on
the underlying structure of the network; and, iii) the union of the
identified communities should cover the entire graph, leaving few
or no “homeless” nodes, not assigned to any community.

The proposed “DC-EgoTen” method relies on the construction of
an egonet-based multi-dimensional representation of the network.
It utilizes “EgoTen” to solve a sequence of nonnegative tensor de-
composition subproblems, and progressively unveils the identified
communities over the graph. Let us treat EgoTen as a black-box
module in this section, postponing its detailed explanation to Sec-
tion 3, and further delineate the overall algorithm here.

In particular, DC-EgoTen takes a top-down approach for commu-
nity identification. To this end, “EgoTen” is initially applied over the
entire network to provide an assignment of nodes to a few “coarse”
communities. Each of the detected communities is in fact a subset
of nodes, inducing a subgraph in the overall graph. Thus, the iden-
tified “coarse” communities are further amenable to a subsequent
application of EgoTen for unraveling a more refined community
structure. This procedure can be applied consecutively for a number
of times over each of the detected communities, creating a tree of
communities, until the desired resolution, i.e., maximum acceptable
community size, is achieved for all detected communities (at the
leaves of the tree). In Section 3, the proposed egonet-based multi-
dimensional graph representation is introduced, and “EgoTen” as
our core toolbox for community detection is detailed.

3 EGONET-TENSOR CONSTRUCTION AND
CONSTRAINED DECOMPOSITION

Given graph G = (‘V, &), the binary adjacency matrix W € RN*N
is constructed by setting the (i, j)-th entry as w;; = 1if (i, ) € &,
and w;; = 0, otherwise. Furthermore, the egonet of node n is defined
as the subgraph induced by node n, its one-hop neighbors denoted
by N(n), and all their connections [2]. Thus, the egonet of node n
can be conveniently represented by the induced subgraph G\ =
(v, M), where &M is the edge set of the links in between nodes
{n} U N(n). Subsequently, the egonet adjacency matrix wn ¢

RNXN js defined as wg.l) = wijif (i, ) € EM and (i,j) e &M = ¢
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Figure 1: Construction of the three-way egonet-tensor.

Algorithm 1 Egonet-tensor construction

procedure EGONET-TENSOR CONSTRUCTION(V, W)
for neV do
N(n) = {v € V|wy, # 0}
W™ — subgraph({n} U N(n), W)

W, = wm
end for
end procedure

return W

otherwise. Typically, the center node n is excluded from G\, but
it is included here for convenience.

Let us now consider a three-way egonet-tensor W € RNVXNXN
constructed by contanetating egonet adjacency matrices W for
all nodes n € V in the frontal slabs of W. In tensor parlance, that is
tantamount to setting the n-th frontal slab of W as W, . := wm),
where : is a free index that spans its range. ”

The advantage of representing a graph via its egonet-tensor is
due to the fact that tensors as multi-way data structures are ca-
pable of capturing higher-order connectivities, namely two-hop
links among neighboring nodes. Thus, in networks where over-
lapping as well as highly-mixed communities render the task of
community detection very challenging, egonet-tensors provide a
rich representation of the graph, which will be leveraged in the
upcoming algorithm. The egonet-based representation is also of
interest particularly in the absence of extra nodal features, as the
enhanced representation is a result of careful exploitation of the
adjacency matrix where no other source of information is provided.

Fig. 1 illustrates the egonet-tensor construction procedure, while
Alg. 1 provides its pseudocode. In the ensuing subsection we cast the
task of community detection as a constrained tensor decomposition
over the egonet-tensor W, elaborate on the intuition behind the
proposed approach, and introduce EgoTen as its efficient solver.

3.1 EgoTen: A Constrained Tensor
Decomposition Approach

In order to gain insights into the properties of the introduced egonet-
tensor, consider the toy network whose connectivity is depicted in
Figure 2a. The network under consideration comprises five com-
munities with dense intra-community and fewer inter-community
connections. Upon constructing the egonet-tensor and after permu-
tation (so that resident nodes are indexed right after one another), it
becomes evident that the egonet-tensor demonstrates a block struc-
ture; see Fig. 2b. In particular, dense diagonal blocks in the tensor
capture the dense intra-community links, while spare off-diagonal
entries represent inter-community connections.
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Figure 2: (a) A toy network with 5 non-overlapping
communities; (b) corresponding egonet-tensor; and (c) its
community-revealing factorization via PARAFAC.

Had the communities been complete sub-graphs, each block
would have been an all-one three-way tensor (considering non-
zero diagonal entries provided by self-loops), which could have
been readily decomposed into the outer product of three all-one
vectors (each of the size of the community); that is, 1pxpxp = 1px1©
1px1 © 1px1, where p is the size of the community. Moreover, had
the communities been disjoint, that is if no inter-community links
were present, the egonet-tensor could have been readily written
as the summation of five tensors, each of whom can be effectively
approximated by the outer-product of three vectors; see Fig. 2c.

Such decomposition is indeed reminiscent of the well-known

canonical polyadic decomposition (CPD) [22] also known as PARAFAC,

where the number of terms, i.e., the rank of the decomposition, re-
veals the number of communities. Prompted by this observation,
let us introduce the constrained nonnegative PARAFAC over the
egonet adjacency tensor W as

{A,B,C} = arg min{l|w—21k<=1 ay °bk°Ck||12:
A,B,C
+AIALE + IBI2)} 1)
st. A20B20C20
2115:1 Cnk =1 Vn=12,..,N

The first term in the objective is the original Frobenious term in
the well-known PARAFAC, through which minimization of the
mismatch between the multi-way data structure W and its approx-
imation is achieved. Furthermore, nonnegativity of the egonet-
tensor is effected through additional constraints over the factors
A = [aj,...,ag], B := [by,...,bg] and C := [cy,...,ck]. Re-
garding the simplex constraints on the rows of matrix C, let us
now focus on the n-th frontal slab of the egonet-tensor. One can
readily show that the tensor approximation gives rise to following

decomposition
K

W = 3 (g o by) )

k=1
where c, ;. denotes the (n, k)-th entry of factor C. As stated earlier,
parameter K is referred to as the rank of the decomposition, and in
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this application reveals the number of identified communities. Thus,
such decomposition can be interpreted as a weighted sum over K
“basis” {aj o bk}szl’ where (aj o by) captures the “connectivity
structure” within the k-th community. Consequently, ¢, ; can be
viewed as association level of node n to community k. Thus, the
simplex constraint over the rows of matrix C readily guarantees a
normalized association vector for every node in the graph to the
identified K communities. Finally, the Frobenious regularizers over
factors A and B simply resolve the scaling ambiguity between the
two factors, and is different from [6]. The overall optimization in
(1) is a block-convex problem [21], whose solver is discussed next.

3.2 Constrained PARAFAC Solver

Exploiting the block-convex structure of the constrained PARAFAC
in (1), the optimization can be solved by alternating minimization,
where each of A, B, C is optimized respectively by fixing the other
two at their current values. Factors are repeatedly updated until a
stopping criterion or a maximum number of iterations is achieved.
Considering iteration i, factors are updated as follows.

3.2.1 Factor A update. Fixing factors BU~1 and CU=1 at their
current values, the update of factor A is obtained by the corre-
sponding subproblem, which after algebraic manipulation can be
readily rewritten as a regularized nonnegative least-squares (LS)
minimization as

AD = arg min||W; - HVAT |12 + 2|A|13 3)
A>0
where Wy := [vec(W, . ),...,vec(Wy )] € RNN s a matri-
cized reshaping of the tensor W, and
i i~ i-1 i-1 i-1 . i-1) , (i-1

Hg) = [b(ll N ® c(ll ), ... ,b(Ié )® C(Ié )], with b(cl ) (c(cl )) de-
noting column c of B(-D (resp. C(=1), and ® the Kronecker prod-
uct operator; see also [22]. Solving the subproblem in (3) by the
alternating direction method of multipliers (ADMM), the updates
are obtained as

Al = argming LX)(A(r_l),A’ Y(r—l))
. . -1
= (BYTHD + o+ p/2)To)
@), P _
x(wlTH/; + B 4 AC 1>)) @
AP = (YD _ AL
YO = =D Z p(A() — A0
r = r+1

where A, Y € RV*K are the auxiliary and dual variables, respec-
tively, and regularization parameter is set as p = ||HEL§) ||12E /K. Also,
P.(.) denotes the element-wise projection onto the nonnegative
subspace. The iterations proceed until AT — AC=Dj/|AC-D|| <
€, or the maximum number of iterations is exceeded. Upon its ter-
mination, factor A is updated as A A(r), and the algorithm
proceeds with updating factor B as in the following.

3.2.2 Factor B update. Upon fixing A = AW and ¢ = cl-D,
factor B is updated by solving the subproblem

B = arg min||W, - H{)BT|2 + A||B|12 )
B>0
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where Wy := [vec(W_ | ),...,vec(W, y )] € RN“N and Hg) =

a(li) ® c(lifl), e, a(Ié) ® c%ﬁl)] , yielding a similar optimization prob-
lem as in (3). Undertaking the same approach as for (4), the ADMM
update for solving (5) yields

— i i _l
B = (Hg>TH§3’) +(A+ p/2)IKxK)
x(WZTHg) + g(Y(H) + B(”l)))

BN = o, (Y<r—1> _ B(r)) (6)
Y = y(r=1 _ 5B —B()
r = r+1.

Upon the termination of (6) due to either attaining the stopping
criterion or reaching the maximum number of iterations, factor B
is updated as B « B,

3.2.3 Factor C update. Fixing factors A = A®) and B = B(i),
update of factor C is obtained by solving the subproblem
c = arg ming ||[W3 — H(CI,)CTHIZE 7)
s.t. ,C>0 ZIk(:lan=1 Vn=1,...,N

where W3 := [vec(W, . ,),...,vec(W. . )] is the matricized ver-

sion of W along the 3-rd mode, and H(Cl;) = [agi) ® b(li), o, ag? ® b(I? .

ADMM solver proceeds with the following iterative updates
A(r) — . O er-1) @ yr-1
¢ = arg('r)n_rm((;.;[C (cr-1, ¢, y(r-1)
= HZ HE +p/2Tkxk) ™!
TH® L Py (r-1) L o(r-1)
x(w3 HY + LD v c ))

_ )
c() = psimp(y(r—l) - ¢y
Y = y(r=1 _ () — ¢y
r = r+1.

Projection of the rows of matrix (Y(’ - _¢lr )) onto the simplex
set can be achieved via the algorithm in [14]. Upon termination,
factor C is updated as C() « C(").

Once the overall trilinear optimization in (1) is solved, factor
C unravels soft community association of the nodes. Extraction
of hard communities based on the learned PARAFAC model is
discussed in the next section. Also, Algorithm 2 lists the pseudocode
of the proposed EgoTen followed by hard community assignments.

4 COMMUNITY ASSIGNMENT

As discussed in Section 3, the introduced EgoTen community de-
tection algorithm aims at solving a constrained decomposition of
the egonet-tensor, thus providing factor C whose entries unravel
soft community associations. In order to transform the “soft” to
“hard” memberships, one can simply utilize a threshold approach,
according to which if ¢, > 7, node n is assigned to community
k, and it is not assigned otherwise. The main challenge here is on
selecting a proper threshold 7;. To this end, let C’k denote the set
of nodes in community k (with hard memberships), and define its
conductance as [17]

Ziéék,jéék Wij
min{vol(ék), vol(V \ ék)}

$(Cy) =
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Algorithm 2 EgoTen Community Detection Core Algorithm

procedure EGoTEN(W, K)
Initialize A,B,C € RN*K at random and set i = 0
while i < I;yax do or not-converged
AD « Solve (3) using (4)
B — Solve (5) using (6)
Cc® — Solve (7) using (8)
ie—i+1
end while
forlf: 1,2,--- ,Kdo
Ce=1{} R X
forn=1,2,--- ,Ndo Cx <« Cr U {n}ifc,p > 7%
end for
end for
end procedure
retrun {ék}kK:1

where vol((}k) = ZieC‘k,Vj Wi; and (V \ C‘k) is the complement

of Ck. According to ¢(.), high-quality communities yield small
conductance scores as they exhibit dense connections among the
nodes within the community and sparse connections with the rest.

Considering conductance as a measure of community quality, we
can now set threshold 7. such that the quality of community k after
hard member assignment is maximized. In order to lower complex-
ity, we simply choose 73 from the discretized range [1/K, 2/K,...].
Note that having an association level ¢,,; = 1/K Vk for a given
node n is tantamount to having an equally favorable association
with the K communities, and having threshold 7 = 1/K will result
in a community assignment if the association is higher than this
uniform level. Also, setting 7, = 1/K together with the simplex
constraints on the rows of factor C guarantees that every node
will be assigned to at least one community, and no node will be
left unassigned. However, tuning 7 to obtain low conductance
communities improves quality.

4.1 DC-EgoTen

Having delineated different modules of DC-EgoTen, we are ready
to present the overall algorithm. Given graph G = (V, &), DC-
EgoTen initially constructs the egonet-tensor W using Alg. 1, ap-
plies EgoTen in Alg. 2 over W, and obtains detected communities
{C:‘k}lle. Next, the resolution of C’k for k = 1,2, ... will determine
whether further refining is necessary for each of the identified
communities. That is, if |C’k| < Cmax, the resolution of detected
community Cris satisfactory, and no further processing is required.
On the other hand, if || > Cpax. the subgraph induced by the set
of nodes in C:‘k will be extracted, over which the entire process will
be repeated. Alg/ 3 lists the pseudocode for the overall DC-EgoTen.

Figure 3 provides a schematic over our toy network with five
communities, each of size |C| = 15 for k = 1,2,...,5. In this
example, in every EgoTen the rank parameter is K = 2, which gives
rise to a binary tree of detected communities. As in this example, in
the first application of EgoTen, the green community is detected by
the constrained PARAFAC, while the rest of the network is ‘lumped’
together in the second community. Thus, the green community



Robust Overlapping Community Detection via
Constrained Egonet Tensor Decomposition

Figure 3: The proposed DC-EgoTen on a toy example.

Algorithm 3 DC-EgoTen

procedure DC-EGoTEN(V, W)
Set parameters K, Crax
Define global cover set S = {}
W « Egonet-tensor construction(V, W)
{Ci}i=1,2,....k < EgoTen(W, K)
for C € {Ci}izlvz’ LK do
# If community C is refined enough, add it to the cover
set S, otherwise refine it using EgoTen
if |C| < Cpax then
S—SucC
else
# Extract the subgraph of nodes in C
Wb < subgraph(C, W)
DC-EgoTen (C, Wp)
end if
end for
end procedure
return S

needs no further processing as its size is below Cpax = 20, while
application of EgoTen on the second term gives rise to two relatively
more refined communities. Proceeding with another set of EgoTen
application on the detected communities will reveal the remaining
clusters, creating overall five leaves in the tree, corresponding to
the detected fine-resolution communities.

If an oracle had provided the number of underlying communities,
the algorithm would have identified all clusters in its first applica-
tion of EgoTen by setting K = 5. However, successive application of
EgoTen with smaller target rank K can compensate for the lack of
such information, which is almost-always encountered in practice.
Furthermore, DC-EgoTen nicely proceeds with the desiderata of
community identification discussed in Section 2, because: i) the
multi-dimensional egonet-based representation captures multi-hop
connectivities, leading to an improved quality in the detected com-
munities; ii) consecutive division of large communities enhances
resolution; and, iii) setting threshold parameter 7 = 1/K in EgoTen
can guarantee a full coverage of the network, while its tuning can
further control the trade-off between coverage and quality.
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4.2 Performance Evaluation

In addition to conductance, normalized mutual information and
F1-score are measures for assessing the performance of community
identification when ground-truth communities are provided.
Normalized mutual information (NMI) [15]: Given

*={Cj,... ’C\*Sl} and S = {C1, ... ’é\Sl} as ground-truth and
detected covers, respectively, the information theoretic measure
NMI is defined as (cf. [15])

NMI(S*,S') = L’S)A
H(S*) + H(S)
where H(S) denotes the entropy of set S defined as
S| I 5
A B ICil , 1Cil
H(S) = Zp(&)logp(@) - 2; N o~

and similarly for H(S*). Furthermore, I(S¥, 8) denotes the mutual
information between S* and S, defined as

7118 |c*mc N|c.*mé-|
1(S*,8) = ! i 9)
Z Z ICFIIC;

i=1 j=1

Intuitively, the mutual information I(S¥, 3) reflects a measure of
similarity between the two covers. Thus, high values of NMI, namely
its maximum at 1, reflect high accuracy in community identification,
whereas low values of NMI, namely its minimum at 0, represent
poor discovery of the true underlying communities. This measure
has been generalized for overlapping communities in [24], and will
be utilized for performance assessment in such networks.
Average F1-score [44]: F1-score is a measure of binary classifi-
cation accuracy. Specifically, the harmonic mean of precision and
recall takes its highest value at 1 and lowest value at 0. Average
F1-score for detected cover & is

IS*| S|
F1:= 2|S*| Z 1(01»01(1))+ Zn(c iy C)
where I(i) = argmax; Fl(C*,Cj),I (i) = argmax; Fl(C;,C,‘) in
hich F1(C;, C;) 216Gl
whic i,Cj) = ——————.
v ICi| + |C;

5 NUMERICAL TESTS

In this section, the proposed DC-EgoTen is applied to synthetic
as well as real datasets. Synthetic Lancicchinetti-Fortunatoand-
Radicci (LFR) networks [25] are utilized as a benchmark to study the
resilience and performance of different community identification
algorithms with overlapping as well as mixing communities.

5.1 LFR Benchmark Networks

LFR graphs serve as benchmark networks in which certain real-
world properties, namely power-law distribution for nodal degree
and community sizes, as well as the presence of overlapping and
mixing communities are preserved. Such networks are configured
by a total number of N nodes, d average degree, and power-law
distribution exponents y; and y» for degree and community sizes, re-
spectively. Furthermore, parameter p controls the community mix-
ing, where higher values result in more out-of-community edges in



WSDM ’18, Heteronam Workshop, Los Angeles, CA, USA

between non-resident nodes. Moreover, parameters 0y, 0, respec-
tively set the number of overlapping nodes and communities (with
which these nodes are associated).

In order to assess the resilience of the proposed DC-EgoTen to
variations of y1 and 0, we have generated networks with N = 2, 000,
d =100, y; = 2,y2 = 1, and varied y € [0.1,0.7] as well as 0, in
10% — 70% of the total networks size N, respectively. DC-EgoTen
is run by setting the rank K in the initial application as K = 100,
while following applications are set as K = 2, essentially leading
to a bisection of the network in the subsequent steps, and sparse
tensor decompositions are handled via the SPLATT toolbox [38].
Thresholding parameter 7y is selected as explained in Section 4 for
the top EgoTen (allowing for overlapping community detection),
and set as 7 = 1/2 for next steps. Maximum community size is
set as Cpax = 200. The performance is compared with state-of-
the-art algorithms BigClam [44], Demon [10], and Nise [42] with
‘spread-hub’ seeding strategy, where |S| = 200 is provided as an
estimate on the number of communities in Nise and BigClam. Due
to the availability of underlying communities, the performance is
assessed via NMI and F1-scores and averaged over 10 realizations
of the network for each setting. As the results in Figures 4 and 5
corroborate, DC-EgoTen provides higher performance in terms of
NMI and F1-score, thanks to the rich egonet-based representation
as well as the progressive identification of refined communities.

5.2 Real-world Networks

In this subsection, the performance of DC-EgoTen is compared
with state-of-the-art overlapping community detection algorithms
on various real-world networks, listed in Table I, available in [26].
In DC-EgoTen, constructing the egonet-tensors as well as solving
the constrained PARAFAC utilize parallel implementation, while
Bigclam and Nise also allow for parallel threading. Thus, for net-
works with N < 1 million, these algorithms are run using 8 threads
and 32GB of RAM, while for the Youtube dataset, 24 threads with
256 GB of RAM are utilized. As with synthetic datasets, we apply
DC-EgoTen with K = 100 for the first application of EgoTen, and set
K = 2 for subsequent steps. Threshold 7 is selected as explained
in Sec. 4 for the top EgoTen (allowing for overlapping community
detection), and 7 = 1/2 for next steps. Also, maximum community
size Cpax is set to 1% of the network size for each dataset.

Figure 6 plots the run time of different algorithms while Table
II lists the coverage and number of detected communities. Due
to unavailability of ground-truth communities, NMI and F1-score
could not be evaluated, thus performance is assessed using the
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ent community mixing values y for o, = 600, and 0, = 3.
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Table 1: Real-world networks.

Dataset | No. of vertices N No. of edges |&| Edge type
Facebook 4,039 88,234 Undirected
Enron 36,692 183,831 Undirected
Epinion 75,879 508,837 Directed
Slashdot 82,168 948,464 Directed
Email 265,214 420,045 Directed
Stanford 281,903 2,312,497 Directed
Notredame 325,729 1,497,134 Directed
Youtube 1,134,890 2,987,624 Undirected

#Overlapping nodes o n
(b)
Figure 5: Performance of different algorithms versus differ-
ent number of overlapping nodes o, for ; = 0.2, and o, = 3.

conductance-coverage curve. To this end, for a given algorithm,
the conductance of the identified communities is computed and
the communities are sorted accordingly in an increasing order.
Conductance-coverage curve is then plotted by increasing the max-
imum conductance, and progressively adding the sorted commu-
nities to the set of covered nodes. Figure 7 depicts the aforemen-
tioned curve for various datasets. As low values of conductance
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Table 2: Coverage and number of detected communities of
different methods over real-world networks.

Dataset DC-EgoTen Bigclam Demon Nise
Facebook | Coverage 100% 95% 99% 89%
# comm. 523 500 8 16

Enron Coverage 100% 90% 65% 100%
# comm. 553 500 343 520

Slashdot | Coverage 100% 100% 95% 100%
# comm. 1163 500 51 485

Epinion Coverage 100% 100% 35% 100%
# comm. 1274 2000 136 2041

Email Coverage 100 % 83% 11% 100%

# comm. 965 2000 24 2404

Notredame | Coverage 100% 100% 39% 100%

# comm. 1169 2000 1497 1454

Stanford | Coverage 100% 90% 85% 100%
# comm. 807 2000 2596 1411

Youtube | Coverage 100% 100% 22% 100%
# comm. 813 5000 3835 5162

correspond to more cohesive communities, a smaller area under
curve (AUC) generally implies better performance. However, the
resolution of the communities is another important metric which
must be considered in drawing conclusions. Interestingly, the sep-
aration of different scattered points for a given algorithm in the
conductance-coverage curve reveals the granularity of the detected
communities. That is, if a detected community is very large, its
inclusion creates a jump in the coverage, which is noticeable by
the two consecutive points in the plot being placed far apart. Thus,
examining Figure 7 reveals that the identified communities via DC-
EgoTen and Bigclam are usually of more refined sizes as those plots
are always smooth, while the performance of Nise and Demon is
often limited to detecting very large communities (upto 40% of the
whole network). Furthermore, although one may not particularly
be interested in 100% coverage, it is desirable that a relatively high
number of nodes to be covered whithin the detected communities,
and thus low coverage where more than 50% of the nodes are left
uncovered is considered undesirable.

6 CONCLUSION

This work dealt with identification of overlapping communities via
DC-EgoTen, a top-to-bottom tensor-based framework. Specifically,
a novel egonet-based tensor representation of a network was in-
troduced and utilized in a constrained PARAFAC decomposition,
whose factors subsequently reveal the underlying communities. To
provide the detected communities with desirable resolution, this
algorithm was applied progressively in a top-to-bottom fashion,
where the network is decomposed into K communities per step.
Parallel implementation as well as exploitation of the sparsity in
the egonet-tensor endow the algorithm with scalability, while the
structured redundancy and the rich representational capacity of the
egonet-tensor enhance the performance of the toolbox. Sparse sam-
pling of egonets along the third mode is among our future directions,
through which memory as well as computational requirements of
the algorithm can be reduced, while the structured redundancy in
the egonet-tensor is expected to preserve performance.
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Figure 7: Conductance-coverage curve for various datasets using different community detection algorithms.
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