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ABSTRACT

The task of community detection over complex networks is of
paramount importance in a multitude of applications. The present
work puts forward a top-to-bottom community identification ap-
proach, termed DC-EgoTen, in which an egonet-tensor (EgoTen)
based algorithm is developed in a divide-and-conquer (DC) fashion
for breaking the network into smaller subgraphs, out of which the
underlying communities progressively emerge. In particular, each
step of DC-EgoTen forms a multi-dimensional egonet-based rep-
resentation of the graph, whose induced structure enables casting
the task of overlapping community identification as a constrained
PARAFAC decomposition. Thanks to the higher representational
capacity of tensors, the novel egonet-based representation improves
the quality of detected communities by capturing multi-hop con-
nectivity patterns of the network. In addition, the top-to-bottom
approach ensures successive refinement of identified communi-
ties, so that the desired resolution is achieved. Synthetic as well as
real-world tests corroborate the effectiveness of DC-EgoTen.

This work has been recently published as a regular paper in IEEE
Intl. Conf. on Data Mining (ICDM), New Orleans, LA, 2017.
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1 INTRODUCTION

Real-world networks often exhibit distinct characteristics, such as
power-law degree distribution, the small-world phenomena, and
the presence of densely connected sub-graphs, also referred to as
łcommunitiesž or łclustersž [17]. Focusing on the last, strong connec-
tivity of a subset of nodes along with their sparse interactions with
the rest of the network is indicative of a łreal-world associationž
among the participating nodes. The task of community detection
targets the discovery of such communities, whose identification is of
great importance in diverse fields ranging from gene-regulatory net-
works [12], to brain functionality [33], and social-media evolution
analysis [27, 29], to name a few.
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Past works on community detection include those based on
generative and statistical models [1, 3, 44], modularity and related
local-metric optimization [8, 11, 13], spectral clustering [39], and
matrix factorization approaches [9, 33, 34, 40, 46, 47]; see also [17]
and [15] for comprehensive overviews. However, most existing
works pursue a bottom-up approach, where small collections of
nodes with strong connectivity patterns (e.g., cliques) are selected
as łseeds,ž and larger communities are łgrownž around them by
merging other (clusters of) nodes [11, 42]. In contrast, another class
of algorithms follows a top-to-bottom perspective, where a graph is
progressively broken into smaller pieces, out of which communities
eventually emerge [18, 28, 35].

Recent exploratory studies have revealed new challenges over
contemporary networks, addressing the presence of overlapping
communities [19, 41, 43], multimodal interaction of nodes over mul-
tiview networks [30, 32], exploitation of nodal and edge-related
side-information [45], as well as dynamic interactions within a
network [4, 5]. In tackling these challenges, tensors as multi-modal
structures offer increased representational capacity, which trans-
lates to improved performance [4, 7, 20, 23, 30, 32, 36].

In this work, we develop a novel top-to-bottom community de-
tection approach, termed łdivide-and-concur EgoTenž (DC-EgoTen),
which relies on a successive application of łEgoTenž, a tensor-based
toolbox for intermediate steps of community identification. Our
core algorithm EgoTen builds on a novel multi-dimensional repre-
sentation of a network, whose ability in capturing multi-hop con-
nectivities is particularly appealing when communities are overlap-
ping as well as highly-mixing. The proposed tensor-based approach
views a network as a union of its egonets, where each egonet is the
subgraph induced by a node, its immediate neighbors, and their
connections [2]. The resultant three-way tensor is thus built by
concatenation of egonet adjacency matrices as frontal slabs. The
tensor’s constrained decomposition lends itself to an algorithm
revealing communities though the trilinear decomposition factors.
A desirable characteristic of this algorithm is its ability to trade
off flexibility for increased redundancy and memory costs. Never-
theless, the resulting tensor is extremely sparse, and off-the-shelf
tools for sparse tensor computations can be readily utilized; see
e.g., [22, 31, 37].

The upshot of our novel framework is three-fold: i) the per-
formance of community detection in complex networks improves
markedly thanks to the rich structure of tensors; ii) construction
of the egonet-tensor via parallel implementation and exploitation
of sparsity endow the algorithm with scalability; and, iii) the pro-
posed top-to-bottom approach offers communities with the desired
resolution. In fact, many of the previously developed algorithms
are susceptible to łresolution limitž [16], where identification of
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Figure 2: (a) A toy network with 5 non-overlapping

communities; (b) corresponding egonet-tensor; and (c) its

community-revealing factorization via PARAFAC.

Had the communities been complete sub-graphs, each block
would have been an all-one three-way tensor (considering non-
zero diagonal entries provided by self-loops), which could have
been readily decomposed into the outer product of three all-one
vectors (each of the size of the community); that is, 1p×p×p = 1p×1◦

1p×1 ◦ 1p×1, where p is the size of the community. Moreover, had
the communities been disjoint, that is if no inter-community links
were present, the egonet-tensor could have been readily written
as the summation of five tensors, each of whom can be effectively
approximated by the outer-product of three vectors; see Fig. 2c.

Such decomposition is indeed reminiscent of the well-known
canonical polyadic decomposition (CPD) [22] also known as PARAFAC,
where the number of terms, i.e., the rank of the decomposition, re-
veals the number of communities. Prompted by this observation,
let us introduce the constrained nonnegative PARAFAC over the
egonet adjacency tensor W as

{Â, B̂, Ĉ} = arg min
A,B,C

{
∥W −

∑K
k=1 ak ◦ bk ◦ ck ∥

2
F

+λ(∥A∥2
F
+ ∥B∥2

F
)
}

(1)

s.t. A ≥ 0,B ≥ 0,C ≥ 0
∑K
k=1 cnk = 1 ∀n = 1, 2, ...,N

The first term in the objective is the original Frobenious term in
the well-known PARAFAC, through which minimization of the
mismatch between the multi-way data structure W and its approx-
imation is achieved. Furthermore, nonnegativity of the egonet-
tensor is effected through additional constraints over the factors
A := [a1, . . . , aK ], B := [b1, . . . , bK ] and C := [c1, . . . , cK ]. Re-
garding the simplex constraints on the rows of matrix C, let us
now focus on the n-th frontal slab of the egonet-tensor. One can
readily show that the tensor approximation gives rise to following
decomposition

W
(n) ≃

K∑

k=1

cnk (ak ◦ bk ) (2)

where cnk denotes the (n,k)-th entry of factor C. As stated earlier,
parameter K is referred to as the rank of the decomposition, and in

this application reveals the number of identified communities. Thus,
such decomposition can be interpreted as a weighted sum over K
łbasisž {ak ◦ bk }

K
k=1

, where (ak ◦ bk ) captures the łconnectivity
structurež within the k-th community. Consequently, cnk can be
viewed as association level of node n to community k . Thus, the
simplex constraint over the rows of matrix C readily guarantees a
normalized association vector for every node in the graph to the
identified K communities. Finally, the Frobenious regularizers over
factors A and B simply resolve the scaling ambiguity between the
two factors, and is different from [6]. The overall optimization in
(1) is a block-convex problem [21], whose solver is discussed next.

3.2 Constrained PARAFAC Solver

Exploiting the block-convex structure of the constrained PARAFAC
in (1), the optimization can be solved by alternating minimization,
where each of A,B,C is optimized respectively by fixing the other
two at their current values. Factors are repeatedly updated until a
stopping criterion or a maximum number of iterations is achieved.
Considering iteration i , factors are updated as follows.

3.2.1 Factor A update. Fixing factors B(i−1) and C
(i−1) at their

current values, the update of factor A is obtained by the corre-
sponding subproblem, which after algebraic manipulation can be
readily rewritten as a regularized nonnegative least-squares (LS)
minimization as

A
(i)
= arg min

A≥0

∥W1 − H
(i)
A
A
⊤∥2F + λ∥A∥

2
F (3)

where W1 := [vec(W1, :, :), . . . , vec(WN , :, :)] ∈ R
N 2×N is a matri-

cized reshaping of the tensor W, and

H
(i)
A

:=
[
b
(i−1)
1 ⊗ c

(i−1)
1 , . . . , b

(i−1)
K

⊗ c
(i−1)
K

]
, with b

(i−1)
c (c

(i−1)
c ) de-

noting column c of B(i−1) (resp. C(i−1)), and ⊗ the Kronecker prod-
uct operator; see also [22]. Solving the subproblem in (3) by the
alternating direction method of multipliers (ADMM), the updates
are obtained as




Ā
(r )
= argmin

Ā
L
(i)
A
(A(r−1), Ā,Y(r−1))

=

(
H
(i)⊤
A

H
(i)
A
+ (λ + ρ/2)IK×K

)−1

×
(
W
⊤
1 H
(i)
A
+

ρ

2
(Y(r−1) + A(r−1))

)

A
(r )
= P+(Y

(r−1) − Ā(r ))

Y
(r )
= Y

(r−1) − ρ(A(r ) − Ā(r ))

r = r + 1

(4)

where Ā,Y ∈ RN×K are the auxiliary and dual variables, respec-

tively, and regularization parameter is set as ρ = ∥H(i)
A
∥2
F
/K . Also,

P+(.) denotes the element-wise projection onto the nonnegative
subspace. The iterations proceed until ∥A(r ) −A(r−1)∥/∥A(r−1)∥ ≤
ϵ , or the maximum number of iterations is exceeded. Upon its ter-
mination, factor A is updated as A(i) ← A

(r ), and the algorithm
proceeds with updating factor B as in the following.

3.2.2 Factor B update. Upon fixing A = A
(i) and C = C

(i−1),
factor B is updated by solving the subproblem

B
(i)
= arg min

B≥0

∥W2 − H
(i)
B
B
⊤∥2

F
+ λ∥B∥2

F
(5)
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whereW2 := [vec(W:,1, :), . . . , vec(W:,N , :)] ∈ R
N 2×N , and H

(i)
B

:=[
a
(i)
1 ⊗ c

(i−1)
1 , . . . , a

(i)
K
⊗ c
(i−1)
K

]
, yielding a similar optimization prob-

lem as in (3). Undertaking the same approach as for (4), the ADMM
update for solving (5) yields




B̄
(r )
=

(
H
(i)⊤
B

H
(i)
B
+ (λ + ρ/2)IK×K

)−1

×
(
W
⊤
2 H
(i)
B
+

ρ

2
(Y(r−1) + B(r−1))

)

B
(r )
= P+

(
Y
(r−1) − B̄(r )

)

Y
(r )
= Y

(r−1) − ρ(B(r ) − B̄(r ))

r = r + 1 .

(6)

Upon the termination of (6) due to either attaining the stopping
criterion or reaching the maximum number of iterations, factor B
is updated as B(i) ← B

(r ).

3.2.3 Factor C update. Fixing factors A = A
(i) and B = B

(i),
update of factor C is obtained by solving the subproblem

C
(i)
= argminC ∥W3 − H

(i)
C
C
⊤∥2

F
(7)

s.t. ,C ≥ 0
∑K
k=1 cnk = 1 ∀n = 1, . . . ,N

where W3 := [vec(W:, :,1), . . . , vec(W:, :,N )] is the matricized ver-

sion ofW along the 3-rdmode, andH(i)
C

:=
[
a
(i)
1 ⊗ b

(i)
1 , . . . , a

(i)
K
⊗ b
(i)
K

]
.

ADMM solver proceeds with the following iterative updates




C̄
(r )
= argminC L

(i)
C
(C(r−1), C̄,Y(r−1))

= (H
(i)⊤
C

H
(i)
C
+ ρ/2 IK×K )

−1

×
(
W
⊤
3 H
(i)
C
+

ρ

2
(Y(r−1) + C(r−1))

)

C
(r )
= Psimp(Y

(r−1) − C̄(r ))

Y
(r )
= Y

(r−1) − ρ(C(r ) − C̄(r ))

r = r + 1 .

(8)

Projection of the rows of matrix (Y(r−1) − C̄(r )) onto the simplex
set can be achieved via the algorithm in [14]. Upon termination,
factor C is updated as C(i) ← C

(r ).
Once the overall trilinear optimization in (1) is solved, factor

C unravels soft community association of the nodes. Extraction
of hard communities based on the learned PARAFAC model is
discussed in the next section. Also, Algorithm 2 lists the pseudocode
of the proposed EgoTen followed by hard community assignments.

4 COMMUNITY ASSIGNMENT

As discussed in Section 3, the introduced EgoTen community de-
tection algorithm aims at solving a constrained decomposition of
the egonet-tensor, thus providing factor C whose entries unravel
soft community associations. In order to transform the łsoftž to
łhardž memberships, one can simply utilize a threshold approach,
according to which if cnk > τk , node n is assigned to community
k , and it is not assigned otherwise. The main challenge here is on
selecting a proper threshold τk . To this end, let Ĉk denote the set
of nodes in community k (with hard memberships), and define its
conductance as [17]

ϕ(Ĉk ) :=

∑
i ∈Ĉk , j<Ĉk

Wi j

min{vol(Ĉk ), vol(V \ Ĉk )}

Algorithm 2 EgoTen Community Detection Core Algorithm

procedure EgoTen(W,K )
Initialize A,B,C ∈ RN×K at random and set i = 0
while i < Imax do or not-converged

A
(i)← Solve (3) using (4)

B
(i)← Solve (5) using (6)

C
(i)← Solve (7) using (8)
i ← i + 1

end while

for k = 1, 2, · · · ,K do

Ĉk = {}

for n = 1, 2, · · · ,N do Ĉk ← Ĉk ∪ {n} if cnk ≥ τk
end for

end for

end procedure

retrun {Ĉk }
K
k=1

where vol(Ĉk ) :=
∑
i ∈Ĉk ,∀j

Wi j and (V \ Ĉk ) is the complement

of Ĉk . According to ϕ(.), high-quality communities yield small
conductance scores as they exhibit dense connections among the
nodes within the community and sparse connections with the rest.

Considering conductance as a measure of community quality, we
can now set threshold τk such that the quality of community k after
hard member assignment is maximized. In order to lower complex-
ity, we simply choose τk from the discretized range [1/K , 2/K , . . . ].
Note that having an association level cnk = 1/K ∀k for a given
node n is tantamount to having an equally favorable association
with the K communities, and having threshold τk = 1/K will result
in a community assignment if the association is higher than this
uniform level. Also, setting τk = 1/K together with the simplex
constraints on the rows of factor C guarantees that every node
will be assigned to at least one community, and no node will be
left unassigned. However, tuning τk to obtain low conductance
communities improves quality.

4.1 DC-EgoTen

Having delineated different modules of DC-EgoTen, we are ready
to present the overall algorithm. Given graph G = (V, E), DC-
EgoTen initially constructs the egonet-tensorW using Alg. 1, ap-
plies EgoTen in Alg. 2 overW, and obtains detected communities

{Ĉk }
K
k=1

. Next, the resolution of Ĉk for k = 1, 2, ... will determine
whether further refining is necessary for each of the identified
communities. That is, if |Ĉk | < Cmax, the resolution of detected
community Ĉk is satisfactory, and no further processing is required.
On the other hand, if |Ĉk | > Cmax, the subgraph induced by the set
of nodes in Ĉk will be extracted, over which the entire process will
be repeated. Alg/ 3 lists the pseudocode for the overall DC-EgoTen.

Figure 3 provides a schematic over our toy network with five
communities, each of size |Ck | = 15 for k = 1, 2, . . . , 5. In this
example, in every EgoTen the rank parameter is K = 2, which gives
rise to a binary tree of detected communities. As in this example, in
the first application of EgoTen, the green community is detected by
the constrained PARAFAC, while the rest of the network is ‘lumped’
together in the second community. Thus, the green community
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between non-resident nodes. Moreover, parameters on ,om respec-
tively set the number of overlapping nodes and communities (with
which these nodes are associated).

In order to assess the resilience of the proposed DC-EgoTen to
variations of µ and on , we have generated networks withN = 2, 000,
d̄ = 100, γ1 = 2, γ2 = 1, and varied µ ∈ [0.1, 0.7] as well as on in
10% − 70% of the total networks size N , respectively. DC-EgoTen
is run by setting the rank K in the initial application as K = 100,
while following applications are set as K = 2, essentially leading
to a bisection of the network in the subsequent steps, and sparse
tensor decompositions are handled via the SPLATT toolbox [38].
Thresholding parameter τk is selected as explained in Section 4 for
the top EgoTen (allowing for overlapping community detection),
and set as τ = 1/2 for next steps. Maximum community size is
set as Cmax = 200. The performance is compared with state-of-
the-art algorithms BigClam [44], Demon [10], and Nise [42] with
‘spread-hub’ seeding strategy, where |Ŝ | = 200 is provided as an
estimate on the number of communities in Nise and BigClam. Due
to the availability of underlying communities, the performance is
assessed via NMI and F1-scores and averaged over 10 realizations
of the network for each setting. As the results in Figures 4 and 5
corroborate, DC-EgoTen provides higher performance in terms of
NMI and F1-score, thanks to the rich egonet-based representation
as well as the progressive identification of refined communities.

5.2 Real-world Networks

In this subsection, the performance of DC-EgoTen is compared
with state-of-the-art overlapping community detection algorithms
on various real-world networks, listed in Table I, available in [26].
In DC-EgoTen, constructing the egonet-tensors as well as solving
the constrained PARAFAC utilize parallel implementation, while
Bigclam and Nise also allow for parallel threading. Thus, for net-
works with N < 1 million, these algorithms are run using 8 threads
and 32GB of RAM, while for the Youtube dataset, 24 threads with
256 GB of RAM are utilized. As with synthetic datasets, we apply
DC-EgoTen withK = 100 for the first application of EgoTen, and set
K = 2 for subsequent steps. Threshold τk is selected as explained
in Sec. 4 for the top EgoTen (allowing for overlapping community
detection), and τ = 1/2 for next steps. Also, maximum community
size Cmax is set to 1% of the network size for each dataset.

Figure 6 plots the run time of different algorithms while Table
II lists the coverage and number of detected communities. Due
to unavailability of ground-truth communities, NMI and F1-score
could not be evaluated, thus performance is assessed using the

Table 1: Real-world networks.

Dataset No. of vertices N No. of edges |E | Edge type
Facebook 4,039 88,234 Undirected
Enron 36,692 183,831 Undirected
Epinion 75,879 508,837 Directed
Slashdot 82,168 948,464 Directed
Email 265,214 420,045 Directed

Stanford 281,903 2,312,497 Directed
Notredame 325,729 1,497,134 Directed
Youtube 1,134,890 2,987,624 Undirected
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Figure 4: Performance of different algorithms versus differ-

ent community mixing values µ for on = 600, and om = 3.
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Figure 5: Performance of different algorithms versus differ-

ent number of overlapping nodes on for µ = 0.2, and om = 3.

conductance-coverage curve. To this end, for a given algorithm,
the conductance of the identified communities is computed and
the communities are sorted accordingly in an increasing order.
Conductance-coverage curve is then plotted by increasing the max-
imum conductance, and progressively adding the sorted commu-
nities to the set of covered nodes. Figure 7 depicts the aforemen-
tioned curve for various datasets. As low values of conductance
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Table 2: Coverage and number of detected communities of

different methods over real-world networks.

Dataset DC-EgoTen Bigclam Demon Nise
Facebook Coverage 100% 95% 99% 89%

# comm. 523 500 8 16
Enron Coverage 100% 90% 65% 100%

# comm. 553 500 343 520
Slashdot Coverage 100% 100% 95% 100%

# comm. 1163 500 51 485
Epinion Coverage 100% 100% 35% 100%

# comm. 1274 2000 136 2041
Email Coverage 100 % 83% 11% 100%

# comm. 965 2000 24 2404
Notredame Coverage 100% 100% 39% 100%

# comm. 1169 2000 1497 1454
Stanford Coverage 100% 90% 85% 100%

# comm. 807 2000 2596 1411
Youtube Coverage 100% 100% 22% 100%

# comm. 813 5000 3835 5162

correspond to more cohesive communities, a smaller area under
curve (AUC) generally implies better performance. However, the
resolution of the communities is another important metric which
must be considered in drawing conclusions. Interestingly, the sep-
aration of different scattered points for a given algorithm in the
conductance-coverage curve reveals the granularity of the detected
communities. That is, if a detected community is very large, its
inclusion creates a jump in the coverage, which is noticeable by
the two consecutive points in the plot being placed far apart. Thus,
examining Figure 7 reveals that the identified communities via DC-
EgoTen and Bigclam are usually of more refined sizes as those plots
are always smooth, while the performance of Nise and Demon is
often limited to detecting very large communities (upto 40% of the
whole network). Furthermore, although one may not particularly
be interested in 100% coverage, it is desirable that a relatively high
number of nodes to be covered whithin the detected communities,
and thus low coverage where more than 50% of the nodes are left
uncovered is considered undesirable.

6 CONCLUSION

This work dealt with identification of overlapping communities via
DC-EgoTen, a top-to-bottom tensor-based framework. Specifically,
a novel egonet-based tensor representation of a network was in-
troduced and utilized in a constrained PARAFAC decomposition,
whose factors subsequently reveal the underlying communities. To
provide the detected communities with desirable resolution, this
algorithm was applied progressively in a top-to-bottom fashion,
where the network is decomposed into K communities per step.
Parallel implementation as well as exploitation of the sparsity in
the egonet-tensor endow the algorithm with scalability, while the
structured redundancy and the rich representational capacity of the
egonet-tensor enhance the performance of the toolbox. Sparse sam-
pling of egonets along the thirdmode is among our future directions,
through which memory as well as computational requirements of
the algorithm can be reduced, while the structured redundancy in
the egonet-tensor is expected to preserve performance.
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Figure 7: Conductance-coverage curve for various datasets using different community detection algorithms.
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