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Abstract—The present work deals with data-adaptive active
sampling of graph nodes representing training data for binary
classification. The graph may be given or constructed using sim-
ilarity measures among nodal features. Leveraging the graph for
classification builds on the premise that labels over neighboring
nodes are correlated according to a categorical Markov random
field (MRF). This model is further relaxed to a Gaussian (G)MRF
with labels taking continuous values, an approximation that not
only mitigates the combinatorial complexity of the categorical
model, but also offers optimal unbiased soft predictors of the
unlabeled nodes. The proposed sampling strategy is based on
querying the node whose label disclosure is expected to inflict the
largest expected mean-square deviation on the GMRF, a strategy
which subsumes the existing variance-minimization-based sam-
pling method. A simple yet effective heuristic is also introduced
for increasing the exploration capabilities, and reducing bias of
the resultant estimator, by taking into account the confidence
on the model label predictions. The novel sampling strategy is
based on quantities that are readily available without the need for
model retraining, rendering it scalable to large graphs. Numerical
tests using synthetic and real data demonstrate that the proposed
methods achieve accuracy that is comparable or superior to the
state-of-the-art even at reduced runtime.

Index Terms—Active learning, classification, graphs, expected
change.

I. INTRODUCTION

Active learning or adaptive sampling has recently gained
popularity for various applications ranging from bioinformat-
ics [1] to distributed signal classification and estimation [2]. It
yields markedly improved classification accuracy over passive
or random sampling when the number of training labels is
fixed [3]–[5]. Moreover, it can be particularly appealing when
unlabeled data (instances) are readily available, but obtaining
training labels is expensive. For instance, a classifier trained
to predict the presence of cancer based on certain protein at-
tributes requires labels that involve costly and time-consuming
medical examinations (see, e.g. [1]). Arguably, active sampling
is expected to outperform random sampling when (un)labeled
instances are correlated. Such a case emerges with graph-
aware classification, where each instance is denoted by a node,
while edges capture correlation among nodes. Although graphs
may arise naturally in certain applications (e.g. social and
citation networks), they can in general be constructed from
any set of instances using proper similarity measures; see e.g.,
[6], [7]. In a nutshell, graph-aware classification boils down to
propagating the information from labeled nodes to unlabeled
ones through edges of neighboring nodes; thus, predictions of
unlabeled nodes are performed jointly using the entire graph
structure, see, e.g. [8]. As a result, classification on graphs
is inherently semi-supervised and thus conducive to active
learning.
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Prior art in graph-based active learning is either non-
adaptive or adaptive. The former includes the non-adaptive

design-of-experiments-type methods, where sampling strate-
gies are designed offline depending only on the graph structure,
based on ensemble optimality criteria such as variance min-
imization [9], the error upper bound minimization [10]; and
the Σ-optimality metric [11]. The adaptive approaches select
samples online and jointly with the classification process,
taking into account both graph structure as well as previously
obtained labels. Such data-adaptive methods give rise to
sampling schemes that are not optimal on average, but adapt
to a given realization of labels on the graph. Adaptive methods
include the Bayesian risk minimization [12], the information
gain maximization [13], as well as the manifold preserving
method of [14]; see also [15]–[17]. Finally, related works
deal with selective sampling of nodes that arrive sequentially
in a gradually augmented graph [18]–[20], as well as active
sampling to infer the graph structure [21], [22].

The present work develops an adaptive pool based active
learning algorithm for graph-aware classification. The pro-
posed sampling strategy relies on querying the node that
is expected to inflict the largest change on the underlying
label correlation model. Albeit in different context, a related
criterion was adopted for semantic segmentation of images
[23], and for regression of Gaussian processes [24]. Our
approach here advocates a novel metric of expected model
change based on the mean-square deviation (MSD) of the
GMRF. A simple yet effective heuristic is also introduced
for improving the exploration capabilities and reducing the
bias of the resultant classifier, by taking into account the
confidence on the model label predictions. The rest of the
paper is organized as follows. Section II states the problem
and the GMRF model adopted to approximate the marginal
distributions of the unknown categorical node labels. Section
III develops our MSD-based active sampling scheme and bias
reduction heuristic. Finally, Section IV presents numerical
tests on real and synthetic datasets.

II. MODELING AND PROBLEM STATEMENT

Consider a connected undirected graph G = {V,E}, where
V is the set of N nodes, and E contains the edges that are
also represented by the N × N weighted adjacency matrix
W whose (i, j)−th entry denotes the weight of the edge
that connects nodes vi and vj . Let us further suppose that
a binary label yi ∈ {−1,1} is associated with each node vi.
The weighted binary labeled graph can either be given, or,
it can be inferred from a set of N data points {xi, yi}

N
i=1

such that each node of the graph corresponds to a data point.
Matrix W can be obtained from the feature vectors {xi}

N
i=1

using different similarity measures. For example, one may use
the radial basis function wi,j = exp

(

−‖xi−xj‖
2
2/σ

2
)

that
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assigns large edge weights to pairs of points that are neighbors
in Euclidean space, or the Pearson correlation coefficients
wi,j = 〈xi,xj〉/(‖xi‖2‖xj‖2) . If wi,j 6= 0 ∀i,j, the resulting
graph will be fully connected, but one may obtain a more
structured graph by rounding small weights to 0.

Having embedded the data on a graph, semi-supervised
learning amounts to propagating an observed subset of labels
to the rest of the network. Thus, upon observing {yi}i∈L

where L ⊆ V , henceforth collected in the |L| × 1 vector
yL, the goal is to infer the labels of the unlabeled nodes
{yi}i∈U concatenated in the vector yU , where U := V/L.
Let us consider labels as random variables that follow an
unknown joint distribution (y1,y2,...,yN )∼ p(y1,y2,...,yN ),
or y∼ p(y) for brevity.

For the purpose of inferring unobserved from observed
labels, it would suffice if the posterior p (yU |yL) were
available; then, yU could be obtained as a combination of
labels that maximizes p (yU |yL). Moreover, obtaining the
marginal p(yi|yL) of each unlabeled node i is often of interest,
especially in the present greedy active sampling approach. To
this end, it is well documented that MRFs are suitable for
modeling probability mass functions over undirected graphs
using the generic form, see e.g., [12]

p(y) :=
1

Zβ

exp(−
β

2
Φ(y)) (1a)

where the “partition function” Zβ ensures that (1a) integrates
to 1, β is a scalar that controls the smoothness of p(y), and
Φ(y) is the so termed “energy” of a given configuration of
labels

Φ(y) :=
∑

i,j∈V

wi,j (yi−yj)
2
=yTLy (1b)

that captures the graph-induced label dependencies through the
graph Laplacian matrix L := D−W with D := diag(W1).
This categorical MRF model in (1a) naturally incorporates the
known graph structure (through L) in the label distribution by
assuming label configurations where nearby labels (large edge
weights) are similar, and have lower energy as well as higher
likelihood. Still, finding the joint and marginal posteriors using
(1a) and (1b) remains a task of exponential complexity since
yU ∈ {−1, 1}|U|. To deal with this challenge, less complex
continuous-valued models are well motivated for a scalable
approximation of the marginal posteriors. This prompts our
next step to allow for continuous-valued label configurations
ψU ∈R

|U| that are modeled by a GMRF.

A. GMRF relaxation

Consider approximating the binary field y∈{−1,1}|U| that
is distributed according to (1a) with the continuous-valued
ψ∼N (0,C), where the covariance matrix satisfies C−1 =L.
When the inverse of the rank deficient L is needed, the
inverse of L + δI will be used instead, with δ � 1. Label
propagation under this relaxed GMRF model becomes readily
available in closed form. In fact, vector ψU|L of unlabeled
nodes conditioned on the labeled ones is follows

ψU|L ∼N (µU|L,L
−1

UU ) (2)

where LUU is the part of the graph Laplacian that corresponds
to unlabeled nodes in the partitioning

L=

[

LUU LUL

LLU LLL

]

. (3)

Conditional expectation of the unobserved field given the
observed ψL is given by

µU|L =CULC
−1

LLψL =−L−1

UULULψL (4)

where the first equality is the conditional expectation of jointly
Gaussian zero-mean vectors (see e.g., [25, p. 382]), while the
second equality can be established using the partitioned form
of the matrix factors in the identity LC = I. When binary
labels yL are obtained, they can be treated as measurements
of the continuous field (ψL :=yL), and combined with (4) to
yield

µU|L =−L−1

UULULyL (5)

Interestingly, the mean of the Gaussian field may serve as
an approximation of the marginal posteriors of the unknown
labels, that is

p(yi =1|yL)=
1

2

(

E
[[

yU|L]i
]

+1
)

≈
1

2

(

E

[

[

ψU|L

]

i

]

+1
)

:=
1

2

(

[

µU|L

]

i
+1

)

(6)

where the first equality follows because the expectation of a
Bernouli random variable equals its probability. Consequently,
given the approximation of p(yi|yL) in (6), and the uninfor-
mative prior p(yi =1)=0.5 ∀i∈V , the maximum a posteriori
(MAP) estimate of yi, which in the Gaussian case here reduces
to the minimum distance decision rule, is

ŷi =

{

1
[

µU|L

]

i
> 0

−1 else
, ∀i∈U (7)

thus completing the propagation of the observed yL to the
unlabeled nodes of the graph. It is worth stressing at this
point, that as the set of labeled samples changes, so does the
dimensionality of the conditional mean in (5), along with the
“auto-” and “cross-” Laplacian sub-matrices that enable label
propagation via (5). Two remarks are now in order.
Remark 1. The method discussed here for label propagation
(cf. (5)) is related with the one reported in [12]. The main
differences are: i) we perform oprimal soft label propagation
by minimizing the mean-square prediction error of unlabeled
from labeled samples; and ii) our model approximates {−1,1}
labels with a zero-mean Gaussian field, while the model in [12]
approximates {0, 1} labels also with a zero-mean Gaussian
field ( instead of one centered at 0.5). Apparently, [12] treats
the two classes differently since it exhibits a bias towards class
0; thus, simply denoting class 0 as class 1 yields different
marginal posteriors and classification results. In contrast, our
model is bias-free and treats the two classes equally.

B. Active sampling with GMRFs

In passive learning, the set L of labeled nodes is either cho-
sen at random, or, it is determined a priori. In our pool based
active learning setup, the learner can examine a set of instances
(nodes in graph-aware classification), and can choose which
instances to label. Given its cardinality |L|, the exponentially
complex task of selecting L can be approximately tackled by
greedily sampling one node per iteration t with index

kt =arg max
i∈Ut−1

U(vi,L
t−1) (8)

where U(v, Lt−1) is a utility function that evaluates how
informative node v is while taking into account information
already available in Lt−1. Upon acquiring the label ykt

, it can
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Algorithm 1 Active Graph Sampling Algorithm

Input: Adjacency matrix W, δ� 1
Initialize: U0 =V , L0 = ∅, µ=0,G0 =(L+δI)−1

First query is chosen at random
for t=1 :T do

Scan U t−1 to find best query node vkt
as in (8)

Obtain label ykt
of vkt

Update the GMRF mean as in (9)
Update Gt as in (10)
U t =U t−1/{kt}, Lt =Lt−1∪{kt}

end for
Predict remaining unlabeled nodes as in (7)

be shown that instead of re-solving (5), the GMRF mean is
updated recursively using the “dongle node” trick in [12] as

µ
+ykt

Ut−1|Lt−1 =µUt−1|Lt−1 +
1

gktkt

(ykt
− [µUt−1|Lt−1 ]kt

)gkt

(9)

where µ
+ykt

Ut−1|Lt−1 is the conditional mean of the unlabeled

nodes when node vkt
is assigned label ykt

(thus “gravi-
tating” the GMRF mean [µUt−1|Lt−1 ]kt

toward its replace-

ment ykt
); vector gkt

:= [L−1

Ut−1Ut−1 ]:kt
and scalar gktkt

:=
[L−1

Ut−1Ut−1 ]ktkt
are the kt−th column and diagonal entry

of the Laplacian inverse, respectively. Using Shur’s lemma

it can be shown that the inverse Laplacian G−kt

t when the
kt−th node is removed from the unlabeled sub-graph can be
efficiently updated from Gt =L−1

UtUt as [11]
[

G−kt

t 0

0T 0

]

=Gt−
1

gktkt

gkt
gT
kt

(10)

which requires only O(|U|2) computations instead of O(|U|3)
for matrix inversion. Alternatively, one may obtain G−kt

t

by applying the matrix inversion lemma employed by the
RLS-like solver in [12]. The resultant greedy active sampling
scheme for graphs is summarized in Algorithm 1.

In summary, designing proper sampling strategies amounts
to judiciously selecting the appropriate U(v,Lt−1) in (8). In
this context, we leverage the properties of GMRFs, in order
to develop a novel data-adaptive active learning scheme that
does not require retraining.

III. EXPECTED MODEL CHANGE

Here, we introduce a novel utility function based that relies
on expected model change. From a high-level vantage point,
the idea is to identify and sample nodes of the graph that are
expected to have the greatest impact on the available GMRF
model of the unknown labels. Thus, contrary to the expected
error reduction and entropy minimization approaches that
actively sample with the goal of increasing the “confidence”
on the model, our focus is on effecting maximum perturbation
of the model with each node sampled. The intuition is that
by sampling nodes with large impact, one may take faster
steps towards a model of satisfactory accuracy. Specifically, we
propose sampling by maximizing the mean-square deviation
(MSD) that a new sample is expected to inflict on the GMRF.
The MSD between two rv’s X1 and X2 is

MSD(X1,X2) :=

∫

(X1−X2)
2
f(X1,X2)dX1dX2

=E

[

(X1−X2)
2
]

.

Our utility function is the expected MSD between ψU and

ψ
+yi

U before and after obtaining yi; that is,

UMSD(vi,L)=Eyi|yL

[

MSD(ψ+yi

U ,ψU )
]

=
∑

yi∈{−1,1}

p(yi|yL)
[

MSD(ψ+yi

U ,ψU )
]

≈
1

2
(µi+1)MSD(ψ+yi=1

U ,ψU )

+

[

1−
1

2
(µi+1)

]

MSD(ψ+yi=−1

U ,ψU ) (11)

where

MSD(ψ+yi

U ,ψU ) :=E
[

‖ψ+yi

U −ψU‖
2
]

=2tr(L−1

UU )+‖µ+yi

U|L−µU|L‖
2
2

∝
1

g2ii
(yi−µi)

2‖gi‖
2
2 (12)

where the term 2tr(L−1

UU ) is ignored since it does not depend
on yi, and the final expression of (12) is obtained using (9);
the proof of (12) is omitted due to space limitation. Finally,
substituting (12) into (11) yields the following closed-form
expression of the MSD-based utility score function

UMSD(vi,L)∝ (1−µ2
i )
‖gi‖

2
2

g2ii
. (13)

It is worth mentioning that the MSD-based method sub-
sumes the variance minimization method in [9]. This becomes
apparent upon recalling that the variance-minimization utility
score functions is given by UVM (vi) := ‖gi‖

2
2/gii. Then,

further inspection reveals that the metrics are related by

UMSD(vi)∝
1

gii
(1−µ2

i )UVM (vi).

In fact, UMSD may be interpreted as a data-driven version of
UVM that is enhanced with the uncertainty term (1−µ2

i ). On
the one hand, UΣ−opt and UVM are design-of-experiments-
type methods that rely on ensemble criteria and offer offline

sampling schemes more suitable for applications where the set
L of nodes may only be labeled as a batch. On the other hand,
UMSD is an adaptive sampling scheme that adjusts to the spe-

cific realization of labels, and is expected to outperform batch
alternatives in general. Note also that the results presented here
for binary classification can be easily generalized to multiple
classes. Nevertheless, before proceeding to numerical tests, an
important modification is proposed in the ensuing section in
order to deal with the challenge of bias that is inherent to all
data-adaptive sampling schemes.

A. Incorporating model confidence

In the present section, we introduce a bias-reduction heuris-
tic that is better tailored to the sampling strategy at hand. The
main idea is to obtain expected change using a different set
of probabilities than the ones provided by the model (cf. (6)).
Specifically, we average over label predictions that are closer
to an “non-informative” prior early on, and gradually converge
to the ones provided by the trained model as our confidence
on the latter increases. Thus, instead of taking the expectation
in (11) over p(yi|yL), we instead use

p̌(yi|yL;αt)=αtπ(yi)+(1−αt)p(yi|yL) (14)
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