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ABSTRACT

Dynamic functional connectivity (dFC) analyses of fMRI

time-courses are typically performed using sliding-window

based schemes. Such approaches not only inherently con-

fine analysis to a single time-scale, but also do not generally

lend themselves to accurate change-time estimates of the dy-

namically evolving graph topology. Change point detection

methods on the other hand, offer the potential to overcome

both limitations. However, the approaches employed so far

in the dFC context are limited to detecting changes in linear

relationships among time-courses corresponding to distinct

regions of the brain. The present work puts forth a novel

multi-kernel change point detection approach with the goal

of capturing changes in the generally nonlinear relationships

among time-courses, and thus in the topologies of the cor-

responding dynamically evolving FC graphs. The approach

is tested on dynamic causal model (DCM) based synthetic

resting-state fMRI data.

Index Terms— fMRI, change detection, kernel-based re-

gression, multiple kernel learning

1. INTRODUCTION

Functional magnetic resonance imaging (fMRI) is an ap-

proach to assessing brain activity that has provided valuable

insights with regards to brain functionality [7]. The focus of

many contemporary fMRI studies has been on the so-termed

functional connectivity networks. These networks feature

brain regions as nodes and provide a representation of the

statistical dependencies between them [16].

The assumption that dependencies remain static for the

duration of the scan has remained prevalent until recently.

Dynamic (d)FC, however, challenges this assumption allow-

ing for time-varying dependencies [8].

Most dFC studies, though, rely on sliding-window based

approaches [8]. Their adherence to a single time scale as well

as their difficulty to coping with piecewise static setups and

the corresponding detection of change points renders them in-
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herently unsuitable for locating changes in the interregional

dependencies.

Change detection approaches on the other hand can poten-

tially overcome this limitation. Existing methods in the con-

text of dFC, however, rely on linear models and hence cannot

generally capture changes in nonlinear dependencies. These

methods include a graphical lasso based approach [4] and one

based on Pearson correlation coefficients [10].

Further impetus for considering nonlinear dependencies

comes from observations suggesting that the relationship be-

tween the blood-oxygen-level-dependent (BOLD) response

and the underlying neural activity may be nonlinear [2].

In this work, a kernel-based nonlinear regression ap-

proach for change detection is put forth, with the goal of de-

tecting changes in the nonlinear dependencies between brain

regions, in addition to linear ones. The choice of the kernel

that markedly influences the effectiveness of any kernel-based

method, is performed in a data driven fashion via multi-kernel

learning. A pseudolikelihood based test statistic for detecting

the presence and estimating the location of a single change

point (CP) is then developed. A variant of the binary seg-

mentation method [17], that makes use of the aforementioned

statistic, is employed when the number of change points is

unknown.

2. NONLINEAR MODELS FOR CHANGE

DETECTION

Consider a network consisting of |V| nodes, with V denoting

the corresponding set. Nodes, in our context, correspond

to regions of the brain. Hereafter, we will thus use the

terms node and region interchangeably. Let furthermore

xi := [xi[1], . . . , xi[T ]]
> denote the time course over T

slots corresponding to the i-th region (> stands for trans-

position). Moreover, define χ[t] := [x1[t], . . . , x|V|[t]]
>

as the vector gathering the measurements at all nodes at

time t, and let χ\i[t] comprise the measurements at all

nodes, except node i, for the same time instance. Finally,

χ̄\i[t] := [χ>
\i[t],χ

>[t − 1], . . . ,χ>[t − d]]> augments

χ\i[t] with d past network snapshots.

As a starting point, consider that the interregional depen-
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dencies are piecewise time invariant. In particular, they are

assumed to remain unchanged for the duration of each seg-

ment. The time interval [τn−1, τn − 1] is defined as the n-th

segment. Furthermore, the dependencies for the n-th segment

differ from those corresponding to segments n− 1 and n+1.

The beginning of each segment, let τn−1, hence, marks a

change in the aforementioned dependencies and is thus called

a change point. Hereafter, we will consider that the data is

divided into N segments, and we will estimate the locations

of the change points {τn}
N−1
n=1 , as well as N . By convention,

we also have τ0 = 1 and τN = T .

2.1. Kernel-based estimators

Focusing on the n-th segment and i-th node, let f
(n)
i be a

nonlinear function capturing the relation of xi[t] with χ̄\i[t].
Note that a FC graph is simply a representation of the de-

pendencies of each node on the rest of the nodes. The col-

lection of functions f
(n)
1 , . . . , f

(n)
|V| hence provides an implicit

description of the FC graph topology for the n-th segment.

The corresponding regression model for t ∈ [τn−1, τn − 1] is

given by

xi[t] = f
(n)
i (χ̄\i[t]) + ε

(n)
i [t] (1)

with ε
(n)
i [t] capturing noise and unmodeled effects.

In this work, a reproducing kernel Hilbert space (RKHS)

formulation will be employed for modeling f
(n)
i . Once a

symmetric and positive semidefinite function κ is selected to

act as a similarity measure, it induces a space of functions of

the following form [13]

H := { f : f(χ̄\i[t]) =

∞
∑

τ=1

βτ κ(χ̄\i[t], χ̄\i[τ ]) }. (2)

Functions κ satisfying the above properties are known as ker-

nels. A typical example of such a function is the Gaussian

kernel, defined as κG(χ1,χ2) := e−‖χ1−χ2‖
2
2/(2ρ

2).

In order to choose a function f
(n)
i that optimally fits the

data we will use kernel ridge regression. In particular, the

optimization problem considered is of the form

f̂
(n)
i = argmin

f∈H

τn−1∑

t=τn−1

(xi[t]− f(χ̄\i[t]))
2 + λ

(n)
i ‖f‖2H (3)

where ‖ · ‖H stands for the norm of H, and λ
(n)
i is a regular-

ization parameter; note that the second summand controls the

smoothness of the estimated function.

Resorting to the representer theorem [14], the form of an

optimal solution to (3) is given by

f̂
(n)
i (χ̄\i[t]) =

τn−1
∑

τ=τn−1

β
(n)
iτ κ(χ̄\i[t], χ̄\i[τ ]). (4)

Substituting (4) into (3) yields the final form of the optimiza-
tion problem considered

β̂
(n)
i = argmin

β
(n)
i

‖x
(n)
i −K

(n)
−i β

(n)
i ‖2 + λ

(n)
i β

(n)
i

>
K

(n)
−i β

(n)
i (5)

where x
(n)
i := [xi[τn−1], . . . , xi[τn − 1]]> and β

(n)
i :=

[β
(n)
iτn−1

, . . . , β
(n)
i(τn−1)]

>. Moreover, the kernel matrix entries

are [K
(n)
−i ]tτ := κ(χ̄\i[t], χ̄\i[τ ]) for t, τ ∈ [τn−1, τn − 1].

The solution to (5) is obtained as β̂
(n)
i = (K

(n)
−i +

λ
(n)
i I)−1

x
(n)
i and after substituting back to (4), one obtains

the optimal estimating function f̂
(n)
i .

With {f̂
(n)
i }

|V|
i=1 obtained, the estimated residuals are

given by ε̂
(n)
i [t] = xi[t]− f̂

(n)
i (χ̄\i[t]) for t ∈ [τn−1, τn − 1]

and i = 1, . . . , |V|. These residuals will be used for detecting

the presence and estimating the location of the change points,

as it will become evident in the following sections.

2.2. Detecting a single change point

We will first consider the base case, where there exists at most

one change point. Detecting the presence of a CP amounts to

performing a hypothesis test of the following general form

H0 : no CP in [1, T ]; H1 : a CP τ̂1 exists in [1, T ]. (6)

Let now f
(s) := [f

(s)
1 . . . f

(s)
|V| ]

> gather the functions de-

scribing the per-node dependencies for segment s, with s ∈
{0, 1, 2}; note that s = 0, by definition, corresponds to the

entire data record, namely t ∈ [1, . . . , T ]. In our context,

the sought after CP is indicative of a change to the aforemen-

tioned dependencies. The corresponding hypothesis test can

thus be written as

H0 : f
(1) = f

(2) := f
(0) H1 : f

(1) 6= f
(2) (7)

According to H1 the dependencies, and hence the functions

describing them, differ between the segments [1 . . . τ1−1] and

[τ1 . . . T ], for some τ1 which will be estimated. In contrast,

according to H0 no such τ1 exists. Finally, note that {f
(s)
i }

belong to the general class of nonlinear functions, thereby al-

lowing for capturing changes in nonlinear dependencies, in

addition to linear ones.

As a first step in developing a test statistic for (7), consider

the postulated (conditional) pseudolikelihood

p(χ[t]|χ[t− 1], . . . ,χ[t− d]) =

|V|
∏

i=1

p(xi[t]|χ\i[t],χ[t− 1], . . . ,χ[t− d]). (8)

Note that when d = 0 this form reduces to the regular pseu-

dolikelihood [1]. If ε
(n)
i [t] are Gaussian and (approximately)

uncorrelated, the pseudolikelihood (as per (8)) of the data

X := [x1, . . . ,x|V|] under the two hypotheses is given by
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p(X;H0) =

|V|
∏

i=1

T
∏

t=1

(
√
2πσ

(0)
i )−1 exp



− ε
(0)
i

2
[t]

2σ
(0)
i

2



 (9a)

p(X; τ1,H1) =

|V|
∏

i=1

τ1−1
∏

t=1

(
√
2πσ

(1,2)
i )−1 exp



− ε
(1)
i

2
[t]

2σ
(1,2)
i

2





T
∏

t=τ1

(
√
2πσ

(1,2)
i )−1 exp



− ε
(2)
i

2
[t]

2σ
(1,2)
i

2



 (9b)

where for H0, σ
(0)
i

2
:= var(ε

(0)
i ) and σ

(1,2)
i

2
is simi-

larly defined for H1. Once the estimators f̂
(s)
1 . . . f̂

(s)
|V|

are obtained for s ∈ {0, 1, 2}, the corresponding esti-

mated residual for the i-th node and t-th time instance

is given by ε̂
(s)
i [t] = xi[t] − f̂

(s)
i (χ̄\i[t]). For the vari-

ance estimates, we have σ̂
(0)
i

2
= 1

T

∑T
t=1 ε̂

(0)
i

2
[t] and

σ̂
(1,2)
i

2
= 1

T

[

∑τ1−1
t=1 ε̂

(1)
i

2
[t] +

∑T
t=τ1

ε̂
(2)
i

2
[t]
]

.

Substituting for the estimated quantities in the log-

(pseudo)likelihood ratio L(X; τ1) := log(p(X; τ1,H1)/
p(X;H0)) yields an approximate form of the generalized

likelihood ratio test statistic

Λ := max
τ1∈[Lmin+1,...,T−Lmin+1]

T

2
log

|V|
∑

i=1

σ̂
(0)
i

2

σ̂
(1,2)
i

2 (10)

where Lmin is the minimum allowed segment length. The ar-

gument for which this maximum is achieved, call it τ̂1, is the

proposed change point.

Deciding whether a CP exists or not amounts to compar-

ing Λ in (10) with a threshold, which for a prescribed maxi-

mum probability of false alarm (deciding H1 when H0 is in

effect), is obtained via the distribution of Λ under H0. In or-

der to estimate the latter, we rely on a model-based bootstrap

scheme; see e.g. [12, Ch. 8].

2.3. Detecting multiple change points

In this subsection, we will examine the case where both the

locations and the number of CPs are unknown. In particu-

lar, we will consider a variant of the binary segmentation ap-

proach [17], to which the hypothesis test in (7) serves as a

building block.

The process starts by assuming that there exist no CPs,

that is N = 1. This corresponds to the first stage, i.e. k = 1.

A hypothesis test using the statistic in (10) is subsequently

performed. Let τ̂11 denote the proposed CP, with the super-

script indicating the stage. If H1 is accepted, the process con-

tinues to stage k = 2 with the data segmented into [1, τ̂11 − 1]
and [τ̂11 , T ]. Otherwise the process stops with zero CPs dis-

covered. At stage k = 2, a test statistic is computed for

each segment. Let Λ̂1, Λ̂2 denote the test statistics estimated

for [1, τ̂11 − 1] and [τ̂11 , T ], respectively. We then pick the

maximum over {Λ̂1, Λ̂2}. For the sake of description, as-

sume that Λ̂1 = max{Λ̂1, Λ̂2}. A hypothesis test is then per-

formed in [1, τ̂11 − 1], since this is the segment corresponding

to the maximum. If H0 is accepted, the final segmentation is

[1, τ̂11 − 1], [τ̂11 , T ]. Otherwise we procceed to stage k = 3
with the data split into [1, τ̂21 − 1], [τ̂21 , τ̂

1
1 − 1], [τ̂11 , T ].

We will now describe a general stage of the algorithm,

let k. Note that at the beginning of the k-th stage k seg-

ments have been discovered. For each such segment, let n,

we then estimate the corresponding test statistic Λn. The seg-

ment for which the maximum over the test statistics {Λn}
k
n=1

is achieved, is given by

n∗ := argmax
n=1,...,k

Λn. (11)

A hypothesis test for the presence of a CP in segment n∗ is

then performed. If H0 is accepted, no additional CP is discov-

ered and the process stops; otherwise the proposed CP τ̂kn∗ is

added to the set of discovered CPs and the process continues

to stage (k + 1).

2.4. Multi-kernel learning

Our analysis so far presumed that the selection of the kernel

was made a priori. Choosing this similarity measure appro-

priately is key to obtaining meaningful estimators, since this

choice “shapes” the space H (cf. (2)). In this work, multi-

ple kernel learning [6] is employed for selecting an optimal

combination of kernels, from a dictionary, based on the data.

Consider a dictionary comprising the kernels κ1, . . . , κP
and let κ be a nonnegative combination of these, that is κ =
∑P

p=1 θpκp with θp ≥ 0 for p = 1, . . . , P . This choice

guarantees that as long as κ1, . . . , κP are valid kernels, so

will be κ.
Our goal is to choose an optimal weight vector θ :=

[θ1, . . . , θP ]. Towards that end, the kernel matrix K
(n)
−i in

(5) will be replaced by its multi-kernel counterpart, namely

K
(n)
−i =

∑P
p=1 θpK

(n)
p−i

, and we will jointly minimize over θ

and βi. To this end, note that (5) has the same solution as

argmin
β
(n)
i

‖(1/
√

λ
(n)
i )x

(n)
i −

√

λ
(n)
i β

(n)
i ‖2 + β

(n)
i

>
K

(n)
−i β

(n)
i . (12)

Based on this observation, we consider per segment n and
node i the problem

min
θ∈R

P :θ�0

‖θ−θ0‖2≤Λ

min
β
(n)
i

λ
(n)
i β

(n)>
i β

(n)
i − 2β

(n)>
i x

(n)
i

+

P∑

p=1

θpβ
(n)>
i K

(n)
p
−i

β
(n)
i (13)

where the constraint ‖θ − θ0‖2 ≤ Λ effects `2 regularization

on θ [3]. An iterative algorithm that alternates between esti-

mating θ and β
(n)
i is used to solve (13); see [3,11] for further

details.
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3. NUMERICAL TESTS

The proposed approach was evaluated on synthetic data

generated using a dynamic causal model [5], albeit with a

time-varying ground truth topology. The simulation setup for

each individual segment resembles that of [15].

Specifically, with ψi denoting the neural time course for

the i-th node, and ui standing for the input to the same node,

the dynamic causal neural network model for the n-th seg-

ment can be described by

ψ̇(t) = δA(n)ψ(t) + u(t) (14)

where ψ(t) := [ψ1(t), . . . , ψ|V|(t)]
>, u(t) := [u1(t), . . . ,

u|V|(t)]
>, and A

(n) denotes the ground truth connectivity

matrix for the n-th segment. Finally, the parameter δ regu-

lates the neural lags; we will set δ = 20 hereafter.

The inputs {ui(t)} were chosen so as to simulate rest-

ing state fMRI data; see [11] for further details on the input

signals, as well as the choice of the DCM parameters. Each

neural time course ψi obtained as a solution to (14) was sub-

sequently fed into the nonlinear balloon model for vascular

dynamics. Finally, the vectors {xν}
|V|
ν=1 were obtained by

sampling the output of the latter with period TR = 1s.

The ground truth upper triangular connectivity matrices

{A(n)}Nn=1, with A
(n) ∈ R

10×10, featured a fixed number

of randomly placed nonzero entries. Moreover, each nonzero

entry was drawn from a uniform distribution over the interval

[0.25, 0.6]. Since τn marks a CP in the topology, the connec-

tivity matrices further satisfy A
(n−1) 6= A

(n) and A
(n) 6=

A
(n+1) for all (valid) segments n.

Regarding the parameters of the method, the kernel dic-

tionary comprised 10 Gaussian kernels with variances span-

ning the interval [10−3, 102], and a linear kernel. The reg-

ularization parameters {λ
(n)
i } were chosen from the interval

[10−7, 102] so as to minimize the 5-step prediction error; see

e.g. [9] for further details. The model order was set to d = 10,

whereas Lmin = 25. Finally, 250 bootstrap realizations were

generated for estimating the distribution of Λn∗ .

With τ := [τ0, . . . , τN ] denoting the (ground truth)

vector of change points, the following temporal configu-

rations were considered τ = [1, 60, 110], [1, 40, 70, 180],
[1, 60, 175, 250], [1, 50, 90, 130, 180], [1, 60, 120, 180, 240].
For each configuration five realizations were generated.

The results indicate that the novel approach successfully

detects the presence of CPs, while also accurately estimating

their locations. Regarding the former, an average discrepancy

|N − N̂ | of 0.4, where N̂ − 1 stands for the estimated num-

ber of CPs, was achieved. For the latter, a mean absolute

error |τ − τ̂ | of 13 time points was obtained. Note that some

discrepancy should inherently be expected given the presence

of hemodynamics. Overall, 83% of the time points were as-

signed to the correct segment.

4. CONCLUSIONS

In this work, a novel kernel-based nonlinear change detec-

tion approach was introduced. The goal is that of capturing

changes in nonlinear dependencies that linear methods may

generally ignore. Multiple kernel learning was employed for

choosing an optimal combination of kernels, from a dictio-

nary, based on the data. An appropriate test statistic was de-

vised and an algorithm for detecting the presence and estimat-

ing the location of an unknown number of change points was

developed. Tests on DCM-based synthetic data demonstrated

the potential of the proposed approach.
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