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ABSTRACT

Dynamic functional connectivity (dFC) analyses of fMRI
time-courses are typically performed using sliding-window
based schemes. Such approaches not only inherently con-
fine analysis to a single time-scale, but also do not generally
lend themselves to accurate change-time estimates of the dy-
namically evolving graph topology. Change point detection
methods on the other hand, offer the potential to overcome
both limitations. However, the approaches employed so far
in the dFC context are limited to detecting changes in linear
relationships among time-courses corresponding to distinct
regions of the brain. The present work puts forth a novel
multi-kernel change point detection approach with the goal
of capturing changes in the generally nonlinear relationships
among time-courses, and thus in the topologies of the cor-
responding dynamically evolving FC graphs. The approach
is tested on dynamic causal model (DCM) based synthetic
resting-state fMRI data.

Index Terms— fMRI, change detection, kernel-based re-
gression, multiple kernel learning

1. INTRODUCTION

Functional magnetic resonance imaging (fMRI) is an ap-
proach to assessing brain activity that has provided valuable
insights with regards to brain functionality [7]. The focus of
many contemporary fMRI studies has been on the so-termed
functional connectivity networks. These networks feature
brain regions as nodes and provide a representation of the
statistical dependencies between them [16].

The assumption that dependencies remain static for the
duration of the scan has remained prevalent until recently.
Dynamic (d)FC, however, challenges this assumption allow-
ing for time-varying dependencies [8].

Most dFC studies, though, rely on sliding-window based
approaches [8]. Their adherence to a single time scale as well
as their difficulty to coping with piecewise static setups and
the corresponding detection of change points renders them in-
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herently unsuitable for locating changes in the interregional
dependencies.

Change detection approaches on the other hand can poten-
tially overcome this limitation. Existing methods in the con-
text of dFC, however, rely on linear models and hence cannot
generally capture changes in nonlinear dependencies. These
methods include a graphical lasso based approach [4] and one
based on Pearson correlation coefficients [10].

Further impetus for considering nonlinear dependencies
comes from observations suggesting that the relationship be-
tween the blood-oxygen-level-dependent (BOLD) response
and the underlying neural activity may be nonlinear [2].

In this work, a kernel-based nonlinear regression ap-
proach for change detection is put forth, with the goal of de-
tecting changes in the nonlinear dependencies between brain
regions, in addition to linear ones. The choice of the kernel
that markedly influences the effectiveness of any kernel-based
method, is performed in a data driven fashion via multi-kernel
learning. A pseudolikelihood based test statistic for detecting
the presence and estimating the location of a single change
point (CP) is then developed. A variant of the binary seg-
mentation method [17], that makes use of the aforementioned
statistic, is employed when the number of change points is
unknown.

2. NONLINEAR MODELS FOR CHANGE
DETECTION

Consider a network consisting of |V| nodes, with V denoting
the corresponding set. Nodes, in our context, correspond
to regions of the brain. Hereafter, we will thus use the
terms node and region interchangeably. Let furthermore
x; = [x;[1],...,2;[T]]" denote the time course over T
slots corresponding to the ¢-th region (T stands for trans-
position). Moreover, define x[t] = [z1[t],...,2y[t]]T
as the vector gathering the measurements at all nodes at
time ¢, and let x\;[f] comprise the measurements at all
nodes, except node 4, for the same time instance. Finally,
x\ilt] = [X;ri[t],x—r[t —1],...,x"[t — d]]T augments
X\i[t] with d past network snapshots.

As a starting point, consider that the interregional depen-
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dencies are piecewise time invariant. In particular, they are
assumed to remain unchanged for the duration of each seg-
ment. The time interval [7,,—1, 7, — 1] is defined as the n-th
segment. Furthermore, the dependencies for the n-th segment
differ from those corresponding to segments n — 1 and n + 1.
The beginning of each segment, let 7,,_;, hence, marks a
change in the aforementioned dependencies and is thus called
a change point. Hereafter, we will consider that the data is
divided into N segments, and we will estimate the locations
of the change points {7, })', as well as N. By convention,
we alsohave ip = land v =T

2.1. Kernel-based estimators

Focusing on the n-th segment and i-th node, let fi(n) be a
nonlinear function capturing the relation of x;[t] with x\;[t].
Note that a FC graph is simply a representation of the de-
pendencies of each node on the rest of the nodes. The col-
lection of functions fl(n) e fl(\?l) hence provides an implicit
description of the FC graph topology for the n-th segment.
The corresponding regression model for ¢ € [1,,—1, T, — 1] is
given by

zilt] = £ (xlt]) + e [t) )

with e( )[ t] capturing noise and unmodeled effects.

In thls work, a reproducing kernel Hilbert space (RKHS)
formulation will be employed for modeling fi("). Once a
symmetric and positive semidefinite function « is selected to
act as a similarity measure, it induces a space of functions of
the following form [13]

={f:flx Z Br w(x\ilt]
Functions & satisfying the above properties are known as ker-
nels. A typical example of such a function is the Gaussian
kernel, defined as kg (X1, X2) = e~ lIxi=x23/(20%)

xlth) b @)

In order to choose a function fi(m that optimally fits the
data we will use kernel ridge regression. In particular, the
optimization problem considered is of the form

Tn—1

f(n) = arg mln Z (z:i[t] —

t=Tn_1

FRGID) + MM Nf13 3)

where || - || stands for the norm of #, and AE") is a regular-
ization parameter; note that the second summand controls the
smoothness of the estimated function.

Resorting to the representer theorem [14], the form of an
optimal solution to (3) is given by

Tn—1

T=Tn—-1

Pkl xal). @

Substituting (4) into (3) yields the final form of the optimiza-
tion problem considered

n n n n n n T n n
B = argmin [x{" — K8 |* + A" K" 8™ (5)
B(ﬂ)

where xgn) = [wi[rn_il, szl

8t 17.--,65?3,,1)F
are [K_Z ltr i= K(X0\a[t], X\a[T]) for t, 7 € [T 1, 70 — 1.

The solution to (5) is obtained as ﬁz(n) = (K(_"Z> +
A™1)=1x(™ and after substituting back to (4), one obtains
the optimal estimating function f, ),

With {f, (n)}‘- , obtained, the estimated residuals are
given by A("’[ ] = ailt] = f" (Rl for t € [ra-r, 7 — 1]
andi=1,...,|V|. These residuals will be used for detecting
the presence and estimating the location of the change points,
as it will become evident in the following sections.

—1)]7 and g™ =
. Moreover, the kernel matrix entries

2.2. Detecting a single change point

We will first consider the base case, where there exists at most
one change point. Detecting the presence of a CP amounts to
performing a hypothesis test of the following general form

Ho:noCPin [1,T]; Hi:aCP7yexistsin[1,7]. (6)

Let now £() := [f{*) ... f(s)} gather the functions de-
scribing the per-node dependenc1es for segment s, with s €
{0,1,2}; note that s = 0, by definition, corresponds to the
entire data record, namely ¢t € [1,...,7]. In our context,
the sought after CP is indicative of a change to the aforemen-
tioned dependencies. The corresponding hypothesis test can
thus be written as

Ho: £ =@ =0 34,0 £ 2@ (7)

According to H; the dependencies, and hence the functions
describing them, differ between the segments [1...7; —1] and
[71...T], for some 71 which will be estimated. In contrast,
according to Ho no such 7y exists. Finally, note that { fi(s)}
belong to the general class of nonlinear functions, thereby al-
lowing for capturing changes in nonlinear dependencies, in
addition to linear ones.

As afirst step in developing a test statistic for (7), consider
the postulated (conditional) pseudolikelihood

p(x[tIx[t =1, x[t —d]) =
V]
[T pltbxeult) xlt =1, oxlt = d)). @)
i=1
Note that when d = 0 this form reduces to the regular pseu-
dolikelihood [1]. If Egn) [t] are Gaussian and (approximately)
uncorrelated, the pseudolikelihood (as per (8)) of the data
X := [x1,. .., X]y|] under the two hypotheses is given by
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p(X;Ho)

VI T
= H 1—[(\/%01(,0))71 exp (

i=1t=1

(0)?
e [t]) )

2050)2

ot 1,2 6(-1)2['5]
p(X;71,H1) = H H (\/271’01( ’ ))7lexp - 1(1 22
20,

i=1 t=1

T e(2>2[t]
H(\/27TO‘§1’2))_16XP - (9b)
t=T1 20’51’2)
2 ._
where for Ho, o; = var(e
larly defined for H;. Once the estimators f1(5> . f‘(s)

are obtained for s € {0,1,2}, the corresponding esti-
mated residual for the ¢-th node and ¢-th time instance

2
()) and 051’2) is simi-

is given by &[] = a[t] — fi(s)()‘(\i[ t]). For the vari-
2

ance estimates, we have [72(0) = 1 Zt L€ A(O) [t] and

. (1,2)2 -1 A(1)2 T (2

0 = g [Tt e + 5, )

Substituting for the estimated quantities in the log-
(pseudo)likelihood ratio L(X;7) = log(p(X;7,H1)/
p(X;Ho)) yields an approximate form of the generalized
likelihood ratio test statistic

V| A(o)2

A= ma gz X
UZ

T1E€[Liin+1,.. T Liin+1]
where L, is the minimum allowed segment length. The ar-
gument for which this maximum is achieved, call it 71, is the
proposed change point.

Deciding whether a CP exists or not amounts to compar-
ing A in (10) with a threshold, which for a prescribed maxi-
mum probability of false alarm (deciding 7{; when H, is in
effect), is obtained via the distribution of A under Hy. In or-
der to estimate the latter, we rely on a model-based bootstrap
scheme; see e.g. [12, Ch. 8].

2.3. Detecting multiple change points

In this subsection, we will examine the case where both the
locations and the number of CPs are unknown. In particu-
lar, we will consider a variant of the binary segmentation ap-
proach [17], to which the hypothesis test in (7) serves as a
building block.

The process starts by assuming that there exist no CPs,
that is N = 1. This corresponds to the first stage, i.e. kK = 1.
A hypothesis test using the statistic in (10) is subsequently
performed. Let 7{ denote the proposed CP, with the super-
script indicating the stage. If H; is accepted, the process con-
tinues to stage k = 2 with the data segmented into [1, 71 — 1]
and [7{,T]. Otherwise the process stops with zero CPs dis-
covered. At stage k = 2, a test statistic is computed for
each segment. Let [Xl, [\2 denote the test statistics estimated
for [1,7{ — 1] and [#{, T), respectively. We then pick the

maximum over {A17 Ag} For the sake of description, as-
sume that A; = max{A;, A;}. A hypothesis test is then per-
formed in [1, 7 — 1], since this is the segment corresponding
to the maximum. If H is accepted, the final segmentation is
[1,7f — 1], [#{,T]. Otherwise we procceed to stage k = 3
with the data split into [1, 72 — 1], [#2, 7 — 1], [#1, T).

We will now describe a general stage of the algorithm,
let k. Note that at the beginning of the k-th stage k seg-
ments have been discovered. For each such segment, let n,
we then estimate the corresponding test statistic A,,. The seg-
ment for which the maximum over the test statistics { A, }*_;
is achieved, is given by

n* :=argmax A,. (11)

n=1,....k

A hypothesis test for the presence of a CP in segment n* is
then performed. If H is accepted, no additional CP is discov-
ered and the process stops; otherwise the proposed CP 7%, is
added to the set of discovered CPs and the process continues
to stage (k + 1).

2.4. Multi-kernel learning

Our analysis so far presumed that the selection of the kernel
was made a priori. Choosing this similarity measure appro-
priately is key to obtaining meaningful estimators, since this
choice “shapes” the space H (cf. (2)). In this work, multi-
ple kernel learning [6] is employed for selecting an optimal
combination of kernels, from a dictionary, based on the data.

Consider a dictionary comprising the kernels x1,...,kp
and let x be a nonnegative combination of these, that is K =
Z 1 0pkp with 6, > 0 forp = 1,...,P. This choice
guarantees that as long as Ki,...,Kp are Valid kernels, so
will be .

Our goal is to choose an optimal weight vector 8 :=
[01,...,0p]. Towards that end, the kernel matrix K(_"i) in
(5) will be replaced by its multi-kernel counterpart, namely
K(ng Zp 10 Kén)l, and we will jointly minimize over 6
and 3;. To this end, note that (5) has the same solution as

.
arg min |1/ A A g2 4 g kMg (12)

B

Based on this observation, we consider per segment n and
node ¢ the problem

min  min /\(")ﬂgn)Tﬂ(n)
ocrP.0-0 gm  ° ‘
lle—6ol2<A "

. Q/BZ(TL)TX/ETL)

I

+> 0.8 K B (13)
p=1

where the constraint ||@ — 0g]|2 < A effects {5 regularization

on @ [3]. An iterative algorithm that alternates between esti-

mating @ and ,8§"> is used to solve (13); see [3, 11] for further

details.
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3. NUMERICAL TESTS

The proposed approach was evaluated on synthetic data
generated using a dynamic causal model [5], albeit with a
time-varying ground truth topology. The simulation setup for
each individual segment resembles that of [15].

Specifically, with v; denoting the neural time course for
the i-th node, and u; standing for the input to the same node,
the dynamic causal neural network model for the n-th seg-
ment can be described by

¥(t) = SAMp(t) + u(t) (14)

where (t) == [t1(0),. ., ¥ (O], u(t) = [us(0),...,
upy(t)]", and A™ denotes the ground truth connectivity
matrix for the n-th segment. Finally, the parameter § regu-
lates the neural lags; we will set § = 20 hereafter.

The inputs {u;(t)} were chosen so as to simulate rest-
ing state fMRI data; see [11] for further details on the input
signals, as well as the choice of the DCM parameters. Each
neural time course v); obtained as a solution to (14) was sub-
sequently fed into the nonlinear balloon model for vascular
dynamics. Finally, the vectors {x,,}lyvzl1 were obtained by
sampling the output of the latter with period TR = 1s.

The ground truth upper triangular connectivity matrices
{ACIHN | with AW € R10%10 featured a fixed number
of randomly placed nonzero entries. Moreover, each nonzero
entry was drawn from a uniform distribution over the interval
[0.25,0.6]. Since 7, marks a CP in the topology, the connec-
tivity matrices further satisfy A1 £ A(™) and A(™) =+
A1) for all (valid) segments n.

Regarding the parameters of the method, the kernel dic-
tionary comprised 10 Gaussian kernels with variances span-
ning the interval [1073,102], and a linear kernel. The reg-

ularization parameters {/\gn)} were chosen from the interval
[10~7,10?] so as to minimize the 5-step prediction error; see
e.g. [9] for further details. The model order was set to d = 10,
whereas Ly, = 25. Finally, 250 bootstrap realizations were
generated for estimating the distribution of A, .

With 7 := [r9,...,7n] denoting the (ground truth)
vector of change points, the following temporal configu-
rations were considered 7 = [1,60,110], [1,40,70,180],
[1,60,175,250], [1,50,90,130,180], [1, 60,120,180, 240].
For each configuration five realizations were generated.

The results indicate that the novel approach successfully
detects the presence of CPs, while also accurately estimating
their locations. Regarding the former, an average discrepancy
|N — N| of 0.4, where N — 1 stands for the estimated num-
ber of CPs, was achieved. For the latter, a mean absolute
error |7 — 7| of 13 time points was obtained. Note that some
discrepancy should inherently be expected given the presence
of hemodynamics. Overall, 83% of the time points were as-
signed to the correct segment.

4. CONCLUSIONS

In this work, a novel kernel-based nonlinear change detec-
tion approach was introduced. The goal is that of capturing
changes in nonlinear dependencies that linear methods may
generally ignore. Multiple kernel learning was employed for
choosing an optimal combination of kernels, from a dictio-
nary, based on the data. An appropriate test statistic was de-
vised and an algorithm for detecting the presence and estimat-
ing the location of an unknown number of change points was
developed. Tests on DCM-based synthetic data demonstrated
the potential of the proposed approach.
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