SMPI Courseware: Teaching Distributed-Memory
Computing with MPI in Simulation

Henri Casanova
Information and Computer Sciences Dept.
University of Hawai‘i at Manoa,
Honolulu, HI, U.S.A.
henric @hawaii.edu

Martin Quinson
IRISA laboratory, ENS Rennes,
Université de Rennes 1, Inria, CNRS
Rennes, France
martin.quinson @ens-rennes. fr

Abstract—TIt is typical in High Performance Computing (HPC)
courses to give students access to HPC platforms so that
they can benefit from hands-on learning opportunities. Using
such platforms, however, comes with logistical and pedagogical
challenges. For instance, a logistical challenge is that access to
representative platforms must be granted to students, which can
be difficult for some institutions or course modalities; and a
pedagogical challenge is that hands-on learning opportunities are
constrained by the configurations of these platforms.

A way to address these challenges is to instead simulate
program executions on arbitrary HPC platform configurations.
In this work we focus on simulation in the specific context of
distributed-memory computing and MPI programming educa-
tion. While using simulation in this context has been explored
in previous works, our approach offers two crucial advantages.
First, students write standard MPI programs and can both debug
and analyze the performance of their programs in simulation
mode. Second, large-scale executions can be simulated in short
amounts of time on a single standard laptop computer. This is
possible thanks to SMPI, an MPI simulator provided as part
of SimGrid. After detailing the challenges involved when using
HPC platforms for HPC education and providing background
information about SMPI, we present SMPI Courseware. SMPI
Courseware is a set of in-simulation assignments that can be
incorporated into HPC courses to provide students with hands-on
experience for distributed-memory computing and MPI program-
ming learning objectives. We describe some these assignments,
highlighting how simulation with SMPI enhances the student
learning experience.

Index Terms—High Performance Computing Education, Paral-
lel Computing Education, Message Passing Interface, Simulation

I. INTRODUCTION

Many challenges are involved in teaching High Performance
Computing (HPC) concepts and practices, as indicated by the
establishment of workshop series focused on HPC education.
Although part of the HPC curriculum can be taught at theo-
retical or conceptual levels, it is widely acknowledged that
a large portion of it is taught more effectively if students

Arnaud Legrand
Université Grenoble Alpes,
CNRS, Inria, INP, LIG
Grenoble, France
arnaud.legrand @imag.fr

Frédéric Suter
IN2P3 Computing Center, CNRS
Inria, LIP, ENS Lyon
Lyon-Villeurbanne, France
frederic.suter@cc.in2p3.fr

are provided with hands-on experience opportunities. This is
typically achieved by providing students with access to one or
more HPC platforms for them to design, implement, execute,
and analyze the execution of programs developed as part of
lab activities and/or homework assignments. Unfortunately,
using real-world platforms to teach HPC courses comes with
logistical challenges as well as, perhaps counter-intuitively,
pedagogical challenges. We review both types of challenges
hereafter.

Logistical Challenges — The most obvious logistical chal-
lenges is that it is not always possible to obtain access to
a representative HPC platform in the first place. For some
institutions, it may be that no HPC platform is available
whatsoever. In this case, one can resort to building low-
cost HPC platforms for teaching purposes [1]-[6], to us-
ing virtualization and/or container technology to emulate an
HPC platform, e.g., in cloud environments [7]-[10], or to
gain access to public HPC testbeds. Although a lot can
be achieved pedagogically on such platforms, they are not
necessarily representative of production HPC platforms (in
terms of capabilities, scale, and/or performance behaviors),
which can be problematic for performance-oriented learning
objectives. Even if an institution hosts HPC platforms, there
may be no straightforward mechanism to use these platforms
for education purposes. Throughout the careers of the authors
of this paper, in their past and present institutions, although
production HPC resources were available for research pur-
poses, providing access to students in a course has often times
proved more challenging than expected. In many cases, access
can be secured, but only to a small subset of the platform, thus
making it difficult for students to experience scaling effects.
If access is secured to a large platform, either hosted in-house
or as part of some community HPC testbed, this platform is
typically used in production, and thus is shared among students

and regular platform users. This often raises social issues in
which regular platform users, e.g., researchers working toward
conference deadlines, are then impacted by an influx of new
(student) users, which can create tensions. Furthermore, these
student users are novices, and can make mistakes that lead
to resource waste. For instance, when teaching HPC courses,
we have seen students asking for long batch allocations for
a program that does not terminate, bringing down compute
nodes due to creating too many processes, filling up local
disks instead of writing files to a distributed file systems, etc.
Although such mistakes can occur with any user, “unleashing”
dozens of novices on a production platform at once tends
to, unsurprisingly, increase the number of user complaints
significantly. Even if a platform is dedicated to the students in
a course, another logistical challenge is that students share this
platform among themselves, which leads to possibly unhealthy
competition (e.g., batch queue competition in the hours before
an assignment due date). The above can result in non-trivial
effort and time commitments by the course instructor (e.g.,
platform monitoring, interaction with platform administrators,
managing user interactions), which could be better invested
into course preparation or delivery.

Pedagogical Challenges — Even assuming that access to one
or more representative HPC platforms is provided, using these
platforms still raises challenges from a pedagogical standpoint.
First, students must be trained to use the platform, which
entails learning how to use various software infrastructures,
the most complex of which is often a batch scheduler, as
well as various usage policies. Some courses could deliberately
devote a large portion of the syllabus to teaching the practice
and the details of the software infrastructures used in typical
HPC environments. But for other courses (e.g., for a course
focused on parallel algorithms and MPI programming), the
time and effort spent learning the software infrastructure and
usage policies, which is necessary for providing students with
hands-on experience, could likely be better spent on more
course-relevant learning objectives.

Second, and more importantly, students are exposed to
platform configurations that are specific and limited to those of
the HPC platform(s) provided to them. Unless several (large)
platforms are available, many interesting phenomena simply
cannot be experienced hands-on by students. The instructor is
then forced to mention what would happen in hypothetical, but
relevant, scenarios that are simply not available to students. For
instance, in our experience instructors often find themselves
make statements such as “if the network topology were
different, this algorithm would behave differently”, “if the
platform were heterogeneous, there would be many interesting
issues with data/load distribution”, etc. These statements,
albeit valid, fall short of deepening student interest, and thus
understanding, as several important concepts may never be
experienced hands-on. Finally, from a logistical perspective,
when the platform in use changes from one incarnation of the
course to the next, there can be a large burden placed on the
instructor to ensure that previous assignments can still help

students achieve the required learning objectives.

Third, real-world platforms are known to be “noisy” [11]—
[14]. The observed performance of a program is subject to
many effects, some deterministic and some non-deterministic,
which make performance difficult to understand without deep
knowledge about hardware/software infrastructures and with-
out solid experimental and analytical skills. This is problematic
since most students initially lack such knowledge and skills.
Therefore, in order for them to acquire knowledge about
fundamental HPC concepts and practices, the possible sophis-
tication and depth of course assignments, and thus the learning
experience, are diminished. At the simplest level, it is difficult
to observe small performance variations due to platform noise,
and thus it is difficult to teach effectively those techniques that
result in marginal, but still desirable, performance improve-
ments (e.g., using asynchronous communication to overlap
some amount of computation with communication). In our
experience, in some cases platform noise can even make it
difficult for an instructor to grade programming assignments
fairly based on observing executions of student’s programs.

Fourth, it is by running experiments that students can de-
velop their own understanding of the material, e.g., by validat-
ing/invalidating their own intuitions. Yet, running experiments
on an HPC platform is not free as it requires time, electrical
power, and in some cases funds. The number of experiments
that students can perform is thus typically limited, as are their
opportunities to deepen their independent understanding of the
subject matter.

Fifth, a popular way to reach students is to develop and
make available Massive Open Online Courses (MOOCs), so
that students can acquire skills from anywhere and at their own
pace. Developing an HPC course as a MOOC that provides
students with valuable hands-on experience would require that
access to a representative HPC platform be guaranteed for a
large, diverse, and distributed student population, which can
be done effectively only by a few institutions.

One approach to overcome the above logistical and peda-
gogical challenges is to use simulation, i.e., instead of running
programs on a few actual HPC platforms, simulate the execu-
tion of programs on a software realization of arbitrary HPC
platform configurations. Using simulation for HPC education
was pioneered in the early 1990’s [15]-[17]. More recently,
the work in [18] demonstrates the benefit of using simulation
for teaching HPC, with student surveys showing increases in
both satisfaction and acquired knowledge due to the use of
simulation. In this work we describe SMPI Courseware, a
set of assignments that can be incorporated into any HPC
course. These assignments are structured as progressive steps
with well-defined learning objectives. The scope is distributed-
memory parallel computing with the Message Passing Inter-
face (MPI). The foundational technology is SMPI [19], an
MPI simulator provided as part of the SimGrid simulation
framework [20], [21]. SMPI makes it possible to simulate
accurately the execution of unmodified MPI applications on
arbitrary platform configurations. Furthermore, simulations

can be executed quickly on a standard laptop computer. The
above is made possible thanks to the scalable and validated
simulation models provided by SimGrid. SMPI Courseware
thus does not require access to any HPC resource, and has been
used already in graduate-level HPC courses as a complement
to or completely replacing the use of HPC platforms.

In this work, we describe some of the assignments in
SMPI Courseware, and showcase how simulation with SMPI
makes it possible to achieve popular HPC learning objectives
effectively. The rest of this paper is organized as follows. Sec-
tion II discusses related work. Section III provides necessary
background information on SMPI. Section IV describes some
of SMPI Courseware assignments and how they capitalize
on the simulation capabilities of SMPI. Finally, Section V
concludes with a summary and future work directions.

II. RELATED WORK

Several authors have addressed the logistical challenge
of procuring an HPC platform for educational purposes by
establishing low-cost such platforms [1]-[6] or by using
virtualization and/or container technology [7]-[10]. Although
these solutions offer compelling capabilities, such as exposing
students to real-world software infrastructures, they impose
limits on platform scale and/or may not be representative of
production HPC platforms, especially in terms of performance
behaviors. In this work, instead, we resort to simulation so
as to be completely free of the need for a hardware HPC
platform and can simulate arbitrary platform configurations.
In what follows we review previous works that have also used
simulation for the purpose of HPC education.

Simulation is used routinely as a pedagogic tool in many
areas of the computer science curriculum. For instance, it is
traditional to use simulation frameworks for teaching computer
architecture and network concepts, since without simulation it
can be extremely challenging to create hands-on experience
opportunities in these domains. By comparison, the use of
simulation as a pedagogic tool is relatively rare in the HPC
domain, likely because in many cases it is possible to use
some HPC platform for teaching purposes, albeit facing the
logistical and pedagogical challenges identified in Section I.
Several works in the early 1990’s proposed using simulation
for the purpose of parallel computing education. In [15] the
authors argue that using a simulator via which students im-
plement and execute parallel algorithms enhances the learning
experience. A parallel algorithm is described as an abstract
model, and a large part of the proposed approach is a graph-
ical user interface with execution visualization capabilities
(e.g., execution Gantt charts). A similar approach is proposed
in [17], but in this approach programs are written in an actual
programming language (Modula-P) and compiled to run in
“simulation mode”, which is also what we propose in this
work. The author reports on increased student motivation
and satisfaction. A textbook was developed that comes with
a simulator and programming exercises in simulation [22].
In [16], it is proposed to teach parallel computing using
a SIMD architecture simulator as one of the options for

teaching parallel computing at low cost. In all the above, the
authors motivate their work by some of the same rationales as
those outlined in Section I, namely: (i) acquiring a platform
may not be possible (due to cost); (ii) learning is limited
because experimental scenarios are limited by the platform at
hand; and (iii) simulation makes it possible to easily observe
and understand deterministic program executions that are not
subject to any platform ‘“noise.”

More recently, the authors in [18] describe the parallel
computing module of a M.S. degree in HPC, which relies
on simulation as a foundational technology. They report on
improvements in student grades and self perception of ac-
quired knowledge, attributing these improvements to the use
of simulation. Although there is overlap between the authors’
motivations and our own motivations as outlined in Section I,
there are two significant differences between this work and that
in [18]. First, the work in [18] is based on the OPNET Modeler
(now known as Riverbed Modeler [23]) simulation framework.
This framework uses packet-level network simulation, which
simulates the behavior of individual network packets in a dis-
crete event simulation fashion. Although typically considered
accurate, packet-level simulation of full-fledged applications
is time-consuming (in part because the number of packets
increases with the communicated data size). This problem is
acknowledged by the authors in [18], and is the reason why
they provide students with a software tool to run simulations
on an remote HPC platform. By contrast, our approach relies
on the SimGrid simulation framework, which uses scalable
“macroscopic” network simulation models and provide high
accuracy and orders of magnitude simulation speed improve-
ments over packet-level network simulators [24]. As a result,
full-fledged simulations of large-scale HPC applications can
be executed in a as little as a few seconds on a student laptop.
In our approach there is thus no need for an actual HPC
platform. The second significant difference is that while with
the approach in [18] students work with parameterizable pre-
defined simulation scenarios to understand performance issues,
instead with our approach students write standard MPI code
that is then executed in simulation mode transparently. Thus
not only can students achieve the learning objectives in [18]
(and can be provided with predefined simulation scenarios as
already implemented MPI applications if so desired), but they
can also learn how to use MPI and can debug their MPI code
in simulation mode.

Another recent work, Paralab teachware, is presented
in [25], which uses the Paralab system [26] to teach parallel
computing concepts and algorithms using simulation. Paralab
itself is available for Windows and, based on what can be
learned in [26], implements idealized simulation models that
may not be representative of real-world HPC platforms. For
instance, network simulation seems to be based on a “latency
plus data size divided by bandwidth” model. While simple
models can have pedagogic value as they make understanding
performance trends easier, these models can be far from the
realities of HPC platforms. By contrast, in this work we use
SMPI, which implements sophisticated validated simulation

models that incorporate many features encountered in real-
world platforms (e.g., protocol switching based on message
size, network congestion). The Paralab teachware provides
students with pre-packaged applications and a set of network
topologies (with configurable parameters) for students to ex-
perience application performance for learning purposes. By
contrast, this work allows students to write standard MPI
programs and to simulate their executions on arbitrary platform
configurations. Therefore, the scope of this work, and thus of
the learning objectives that can be achieved, is larger. It would
be straightforward to re-implement Paralab teachware entirely
using our approach.

III. SMPI: SIMULATED MPI

SMPI [19], which comes with the SimGrid [20], [21]
distribution, makes it possible to simulate the execution of
MPI applications. SMPI works seamlessly with unmodified
MPI programs written in C, C++, or FORTRAN. For in-
stance, assuming the program is written in C, one simply
compiles it with smpicc, instead of mpicc, and execute
it with smpirun, instead of mpirun. The only difference
between smpirun and mpirun is that smpirun takes one
extra command-line argument, ~platform. This argument
is used to specify a description of the hardware platform on
which the execution of the MPI program is to be simulated.
This description is in XML and allows the specification
of arbitrary platform configurations [27]. At the most basic
level, the platform description specifies a network topology
between hosts, where network links have specified latencies
and bandwidths, and hosts have specified hostnames, numbers
of cores, and per-core compute speeds. The XML description
schema provides higher-level constructs (e.g., a homogeneous
cluster with a single switch) so that these descriptions can be
easily written by hand if so desired. The SimGrid distribution
comes with many example XML platform descriptions. Given
an MPI program, simulating and comparing its executions
on different platforms is easily done by running smpirun
multiple times, each time with a different XML platform
description file as specified by the -platform command-
line argument. Because SMPI simulations are deterministic,
differences between simulated executions of the same MPI
program, provided this program is itself deterministic, are
guaranteed to be solely due to the differences in the platforms.
However, non-deterministic programs are subject to the same
issues when simulated with SMPI as when executed with MPI
on real-world platforms (e.g., race conditions caused by non-
deterministic message receptions from multiple senders due to
using MPI_ANY_SOURCE).

The basic principle behind SMPI simulations is as follows.
The code of the MPI program is executed as is, but the
MPI processes actually execute as threads in a single process,
and thus share the same address space. This is depicted in
Figure 1. Each time an MPI API function is called, control is
handed off to SMPI where network operations are replaced
by simulated delays. These delays are computed using the
simulation models at the core of SimGrid. Each block of code

host 0 host 1

‘...,., Simulated Network
: ’ SIM
v Network | c>§ H§ N§ m§
e e e e
. . . C.
) &) ¢©) ©
single UNIX process
host 2 host 3

Fig. 1. Realization of a multi-process MPI execution (left) as a multi-threaded
simulated execution with SMPI (right).

in between two MPI API calls is benchmarked on the machine
used to execute the simulation. This is possible because, with
SMPI, MPI processes execute as threads in mutual exclusion.
The benchmarked execution times of each block of code
can then be scaled and simulated as compute delays that
correspond to the compute speeds of the hosts in the simulated
platform. In this way, both communication and computation
operations are simulated as computed delays by SMPI.

As described above, the SMPI simulation approach would
have two severe drawbacks. First, the simulation of an MPI
application with p processes in which each process computes
for ¢ seconds on machines of compute speed s, would run
in time at least pts/s’ on a machine with compute speed s'.
Second, the simulation of an MPI application with p processes
in which each process allocates m bytes of RAM would need
to be executed on a machine with pm bytes of RAM. As a
result, simulating long and/or large MPI application executions
would be intractable.

To address the long execution time problem, SMPI can
avoid executing the entire application code. While executing
the entire code of an MPI application is required to obtain valid
application output, the objective of most SMPI users is only to
reproduce the performance behavior of the application. Once
encountered again on the same or a different MPI process, the
execution of a basic block of code can be simulated by SMPI
without executing the code itself, but merely as a delay based
on previously benchmarked executions of it. This is done by
inserting code in the application at compile time. While the
modified code likely produces incorrect application output,
performance behavior can be preserved and simulation time
is vastly reduced.

To address the large memory footprint problem SMPI makes
it possible for MPI processes to share allocated memory re-
gions (e.g., malloc may return a pointer to a memory region
already allocated by another MPI process). Furthermore, SMPI
implements a mechanism that allows the same memory page
to be used multiple time as part of a single allocate zone or
RAM. As a result, scenarios with large memory footprints can
be simulated on a computer with small RAM capacity. Here
again the application output is compromised but performance
behavior can be preserved.

These two techniques, which are activated via straightfor-
ward and succinct code annotations, can only be viably applied

to non-data-dependent applications, i.e., for applications in
which branching does not depend on application data. In
summary, SMPI makes it possible to simulate small-scale
executions of any MPI application for validation/debugging
purposes, but also possible to simulate large-scale executions
of data-independent applications (at the expense of applica-
tion output correctness) for performance/scalability analysis
purposes, all on a single machine.

SMPI implements the MPI-2 standard and a portion of
the MPI-3 standard. An important performance consideration
when using an implementation of the MPI standard is the
algorithms used for collective communication operations. This
is because production MPI applications use these operations
extensively, and their performance often determines overall
parallel efficiency. The design space for collective communi-
cation algorithms is large, and thus many algorithms exist,
exhibiting different performance characteristics depending on
the network topology, the message size, and the number of
communicating processes [28]. MPI implementations thus of-
ten select at runtime which algorithm to employ, which leads to
relatively complex collective communication implementations.
For instance, in OpenMPI, the MPI_Allreduce operation
amounts to about 2,300 lines of code. It is necessary for an ac-
curate MPI simulation framework to capture such complexity.
To this end, SMPI implements all the collective algorithms
and selection logic of both OpenMPI and MPICH [29] as
well as a few other collective algorithms and selectors from
Star-MPI [28], the Intel vendor implementation of MPI, and
MVAPICH?2 [30]. Overall, SMPI currently provides more than
120 different collective communication algorithms. Users can
activate these implementations via command-line arguments
passed to smpirun, which makes it straightforward to com-
pare collective communication implementations for arbitrary
application and platform scenarios.

To date, SMPI has been validated for representative ap-
plications and benchmarks [19], and used to simulate large-
scale MPI application executions on a single machine [31].
SMPI has also been used to successfully simulate 51 unmod-
ified MPI applications included in standard HPC application
benchmarks/suites (ECP Proxy Applications, CORAL, Trin-
ity, PRACE CodeVault, HPL, and Meteo-France), which are
included as part of SMPI’s nightly integration testing [32].

Given the above capabilities and accomplishments, SMPI
provides a compelling foundation for addressing the chal-
lenges outlined in Section I in the context of distributed-
memory parallel computing and MPI programming education.

IV. SMPI COURSEWARE
A. Objectives and Availability

The HPC community has developed sets of learning ob-
jectives as well as entire curricula to meet these objectives.
The goal of SMPI CourseWare is not to define or provide a
curriculum. Rather, its goal is to provide ready-to-use assign-
ments through which students can achieve learning objectives
in the context of distributed-memory parallel computing and
MPI programming. Capitalizing on the capabilities of SMPI

(see Section III), these assignments can be integrated into an
HPC course without any need for an HPC platform. These
assignments can and have been used with several modalities.
These include in-class sessions during which instructors and
teaching assistants provide instructional scaffolding, students
working in groups outside of the classroom, or students
working individually outside of the classroom.

To date, SMPI Courseware is simply available as a Web
site [33]. Instructors can either point their students to that
site, or download and modify assignments as they wish. A
first section of the site provides instructions on how to install
and test SMPI. In the near future, this site will also provide
pre-installed Docker containers with all necessary software
and assignment files. Currently no mechanisms is available
for retrieving assignment solutions, but they can be requested
directly via e-mail to henric @hawaii.edu.

B. Sample Assignments and Usefulness of Simulation

In this section we showcase four of the assignments pro-
vided in SMPI Courseware. While we hope that these assign-
ments have some pedagogic merit, our main focus here is to
explain how, in the context of these assignments, simulation
with SMPI enhances the student learning experience. In several
cases, the use of simulation unlocks learning opportunities
that would remain out of reach otherwise. We refer readers
interested in the details of the assignments to the SMPI
Courseware site [33]. In what follows we also report on our
own experience using SMPI in our courses. No formal user
studies have been conducted to date. But we believe that what
we observed in the classroom, although for now anecdotal, is
nevertheless enlightening.

1) Parallel Julia set computation: SMPI Courseware pro-
vides an introductory assignment in which students implement
a parallel Julia set computation. The learning objectives in-
clude (i) to understand the principle of SPMD (Single Program
Multiple Data) programming; (ii) to understand and imple-
ment the concept of data distribution in distributed memory
programming; (iii) to understand and implement some pro-
cess communication/synchronization feature; (iv) to achieve
mastery of essential MPI calls.

The first (optional) step of the assignment is to implement a
sequential program that generates a jpeg image of a Julia set
with dimensions provided as command-line arguments. The
rest of the assignment consists in parallelizing this program
in a sequence of baby steps. Students are led to discover
the concepts of partitioning the work across MPI ranks in an
SPMD fashion.

In this assignment, students must understand and implement
the notion of data distribution across MPI ranks. As expected,
the assignment imposes the constraint that if the Julia set
consists of n pixels, then each process in a p-process execution
can allocate memory for no more than [n/p| pixels. As a
result, students are exposed to the (initially quite difficult)
notions of local indices and global indices: computing a pixel
in the Julia set is based on the pixel’s coordinates in the global
image, but these pixels must be stored in a local array using

some local indexing scheme. Students first use a 1-D strip data
distribution and then a 2-D block distribution. This is likely
the most challenging learning objective in this assignment. In
fact, the rationale for having the program compute a Julia set is
that students can detect and understand data distribution bugs
quickly by visually inspecting the output image. As part of this
assignment, therefore, the students must generate the output
image. This requires that students use some communication
in their MPI program since pixels blocks must be written in
the right order to a single file. Students are free to implement
some token-passing scheme in which each process writes its
“piece” of the image to the file, or have a master process do all
the writing after receiving image pieces from other processes.
This assignment places very little emphasis on performance
(beyond common-sense “it goes faster with more processors”
or “it goes faster with faster processors” observations), and
students mostly focus on producing correct programs.

Even for this introductory assignment, the use of SMPI
affords some pedagogical advantages. First, students can hit
the deck running without having to learn all the logistics
of using an HPC resource. Learning these logistics can be
completely decoupled from learning parallel computing and
MPI programming concepts (it can come later in the course if
desired, or not be part of the course at all). Furthermore, even
if acquired by the students, these logistics tend to lengthen the
implement-test-debug cycle, which is particularly frustrating
for an introductory assignment. For this particular assignment
for instance, the image of the Julia file is created on the
student’s own laptop. It thus can be opened in some image
viewer that automatically updates the image when it changes,
i.e., each time the MPI program execution is simulated. This
is to be contrasted with having students view the image on a
remote HPC platform (often requires, e.g., multiple scp hops,
ssh X forwarding). In our experience, these seemingly small
details can end up getting in the way of the initial learning
experience, requiring extra time and effort. Furthermore, “tech-
nical difficulties” do occur on HPC platforms in spite of the
instructor’s best effort, especially for a large class size.

A consequence of the above is that it is possible to hold an
effective, efficient, and relatively short in-class development
session in which students perform the full assignment under
the guidance of the instructor. This makes it possible to address
the inevitable initial difficulties with MPI programming in
the classroom, focusing 100% on MPI programming issues.
This is by contrast with our experience using real-world HPC
platforms at the introductory level, in which attempts at hold-
ing such sessions are hindered by the logistics of using these
platforms. One option that is sometimes used for introductory
assignment is to have each student run MPI on their laptop
in class (using a hostfile with only localhost entries).
But in this case no performance benefit due to parallelism
can be observed beyond the number of cores, which we
have found to be an underwhelming first parallel computing
experience for the students. With SMPI, instead, students are
able to experiment right away with using arbitrary numbers of
hosts, and witness the performance benefits. As a result, we

have observed that well-prepared students who go through the
assignment relatively quickly are able to discover on their own
several parallel computing principles simply by modifying
platform descriptions and execution conditions. For instance,
in the last instance of the graduate-level ‘“Principles of High
Performance Computing” course at the University of Hawai‘i
at Manoa (UHM), during the 1hl15min in-class development
session in which students go through this assignment with help
from the instructor, several students were able to independently
discover the fundamental notions of weak scaling and strong
scaling. We contend that such invaluable independent learning
would have been difficult to achieve if an actual HPC platform
had been used for this session.

2) Physical topologies and communication patterns: One
assignment in SMPI Courseware has students implement sev-
eral versions of a broadcast. The learning objectives include:
(i) to be proficient with a large subset of the MPI API for point-
to-point communication; (ii) to be able to implement mod-
erately complex communication patterns efficiently; (iii) to
experience and understand the effect of network topology on
communication patterns; (iv) to experience and understand
the trade-offs between message size, network bandwidth, and
network latency; (iv) to be able to conduct experimental
performance comparisons of competing implementations and
draw sensible conclusions; and (v) to become aware of the
large size of the design space for collective communication
operations and of the challenges involved.

After implementing a naive broadcast in which a message
is sent by one process to n other processes via n MPI_Send
calls, the students implement a broadcast first using a ring
communication pattern, and then using a binary tree communi-
cation pattern. This assignment, if done entirely, is challenging
as many students are not necessarily used to thinking about,
let alone implementing, communication patterns. Throughout
the assignment students compare their implementations with
each other, and with MPI_Bcast as provided by several
implementations of the MPI standard. They perform these
comparisons using various network topologies, varying mes-
sage size, and varying network bandwidth and latency values.
They thus get to experience relevant performance effects
(e.g., for small messages and/or high bandwidth the broadcast
is latency-bound, if the communication pattern matches the
physical topology then the broadcast is more efficient).

The obvious way in which simulation makes this assignment
effective, or even possible, is that the HPC platform, and
more specifically its network topology, is entirely simulated.
As a result, it is possible to provide students with many
network topology configurations. These configurations can
be hypothetical and used for confirming expectations (e.g.,
the ring, resp. tree, broadcast perform well on a platform
whose physical topology is an actual ring, resp. tree), or can
be representative of actual network topologies used in HPC
platforms (e.g., a single switch, a shared backplane, a fat-tree
structure, a k-ary mn-cube). Also, thanks to simulation, stu-
dents can tweak platform descriptions to test hypotheses. For
instance, it is possible to vary network latencies to understand

State MPI_Finalize wPi_Recy [l MPI_Send state [l MPI_Finalize

wPi_Reey [l MP1_send State [I] MPI Finaize MPI_Recv [l MPI_send

Rank
—
S
Rank

010
Time

(a)

Time

(b)

1/ |
3@

ol
Léarh‘

;.— &r 1'!’

/z
(
(2
(
I
2

il

Fig. 2. Execution Gantt charts of 11 consecutive 92-process binomial tree broadcasts of 400,000-byte messages implemented using MPI point-to-point
communication primitives and with different broadcast roots. (a) Execution on six 16-core nodes (2.40GHz cores) connected via 10Gbps Ethernet in the
Paravance cluster of the Grid’5000 testbed [34] using OpenMPI 2.0.2; (b) Execution on one 4-core laptop computer (1.30GHz cores) using OpenMPI 2.1.1;
and (c) Execution on 92 nodes of the Griffon cluster of the Grid’5000 testbed as simulated using SMPI. Time spent in MPI_Send, MPI_Recv, and
MPI_Finalize are indicated with different colors, and black arrows match sends to their respective receives.

the impact of latency as message size varies. The scale of
the platform can also be changed at will to explore scalability
limits of the implementations. Finally, because SMPI provides
many implementations of collective operations from popular
implementations of the MPI standard (see Section III), students
can experiment with all these implementations. This allows
students to see first-hand that these implementations are not
all equal, and that some of them work better than others
in some regimes. This brings home the message that the
design space for collective communication algorithms and
their implementations is large.

All the above would be at best very difficult if teaching with
real-world HPC platforms (i.e., changing network topologies is
not possible, installing several MPI versions on a production
platform is typically problematic, scale is limited). Instead,
simulation makes it possible to provide students with a wide
range of relevant scenarios, makes it possible for students
to design their own scenarios, and in the end makes the
learning objectives easier to achieve because the entire gamut
of relevant effects can still be experienced hands-on.

3) Pipelined and asynchronous communication: One sober-
ing (by design) conclusion from the assignment above is that
popular MPI distributions provide broadcast implementations
that are orders of magnitude faster that the implementations
developed by the students. Another part of that assignment
is thus focused on boosting broadcast performance. The ad-
ditional learning objectives include: (i) to understand how
splitting a message into chunks can increase throughput; (ii) to
understand how asynchronous communication can increase
throughput; (iii) to be able to enhance a communication pattern
and implement a version of it that achieves high throughput
using message splitting and asynchronous communication;
and (iv) to be suitably impressed by the performance of
production broadcast implementations provided by various
MPI implementations.

In this phase of the assignment the students enhance their

implementations by first splitting the message into chunks.
Via experiments they draw conclusions about the best chunk
size to use. They then use asynchronous communications
to increase throughput further by overlapping sending and
receiving operations. This is typically a challenging part of
the assignment, as many students find it difficult to use
asynchronous communication primitives in a way that actually
achieves increase in throughput as well as correctness. In this
assignment, student can also witness first-hand how impres-
sive some production MPI_Bcast implementations can be
performance-wise. For instance, once they have developed
a ring-based broadcast that splits the message into chunks
and uses asynchronous communication to benefit from com-
munication pipelining, students experimentally determine the
best chunk size to use for a given message size, a given
total number of processes, and a physical platform that is
an actual ring. In this case, their naive implementation does
outperform the best MPI_Bcast implementations, but this
improvement is typically marginal. And yet, the MPI_Bcast
implementations do not know the topology structure and do
not get to pick a good chunk size based on experiments.
Furthermore, when changing the topology, the number of
processes, and the message size, students then see that their
own implementation can be outperformed by the adaptive
MPI_Bcast implementations by orders of magnitude. In the
graduate-level “Principles of High Performance Computing”
at UHM, this assignment provides the motivation to explore
what algorithmic and implementation techniques are used by
these “Swiss army knife” MPI_Bcast implementations, often
resulting in some students extending this assignment into their
capstone course project, all in simulation with SMPL

Most of the considerations in Section IV-B2 on why sim-
ulation is key to achieving learning objectives apply for the
above learning objectives as well. Another consideration here,
however, is that simulated executions are “clean”. In other
terms, they are reproducible and well-structured because they

do not suffer from idiosyncratic effects seen in real-world
platforms [11]-[14]. Therefore, it is possible to observe clearly
performance effects of variations in algorithms, implementa-
tions, and platform configurations. As an example, consider
Figure 2, which depicts Gantt charts of 2 real-world executions
of an MPI program that performs a sequence of 92-process
binomial tree broadcasts, on 92 cores of a real-world cluster
and on 4 cores of a single laptop computer, and one simulated
execution of the same program on a specification of another
real-world cluster. As seen in the figure, while the simulated
execution shows clear, expected patterns, the real-world ex-
ecutions experience software/hardware effects that make the
pattern more chaotic and difficult to understand. Furthermore,
not shown on the figure, there are differences between multiple
runs of the same program on the same platform. We include
the results on a single laptop since this is one option when
teaching an HPC course without giving access to an actual
HPC platform and have student instead run MPI programs
on their own computers. Even on a single computer, due to
time-sharing of cores, the patterns are also complex and non-
deterministic. Understanding the effects the impact real-world
executions is interesting from a research and development
perspective. But they impede learning for novice students by
obfuscating fundamental principles. Finally, another problem
with these platform effect is that even if an instructor verifies
that some learning objective is easily achievable on a specific
platform used for a course, in spite of platform effects, there
is no guarantee their the same holds on other platforms. This
makes it difficult to share assignments among instructors and
institutions, and places a large burden on the instructor if the
platform changes from one course instance to the next.

4) Scalability studies: SMPI Courseware provides an as-
signment in which students study the performance of a matrix
multiplication application. The learning objectives include:
(i) to be able to determine an application’s performance bottle-
neck; (ii) to understand both strong and weak scaling concepts
and be able to perform an experimental scalability study;
(iii) to be able to develop algorithmic and implementation
techniques for pushing scalability further.

Student actually implement the matrix multiplication im-
plementation in another assignment (they can of course be
provided with the implementation directly for this assignment,
if so desired). That implementation is based on an outer prod-
uct algorithm and uses a 2-D (non-cyclic) block distribution.
The algorithm entails performing multicasts between rows and
columns of processes, which are logically arranged in a 2-
D grid. This is done by creating MPI communicators and
performing broadcasts within these communicators. In terms
of learning objectives, that assignment is a step up from the
assignment described in SectionIV-B1.

In this assignment students first instrument their MPI
program to measure communication and computation times
separately. They then perform various scalability studies by
keeping the matrix sizes fixed and increasing the number of
processors, and by keeping the number of processors fixed and
increasing the matrix sizes. They also experiment with various

platform configurations that are more or less network-bound.
Throughout, students draw conclusions regarding the weak and
strong scaling properties of the program. Given the O(n?)
computation and O(n?) data features of matrix multiplication,
students can observe good strong scaling behavior but poor
weak scaling behavior in several relevant scenarios (e.g., slow
network, poor broadcast implementations).

The benefit of using simulation for the above is that large-
scale executions can be simulated on each student’s laptop.
This is because, as explained in Section III, SMPI provides
techniques to reduce the CPU and RAM footprints of MPI
applications. These techniques compromise the output of the
simulated application (i.e., the computed matrix product is
erroneous) but preserve the performance behavior when the
application execution is non-data-dependent, which is the case
for a matrix multiplication. As a result, students can push
their scalability studies up to large scales, well beyond scales
that could be achieved on HPC platforms used for teaching
purposes in the majority of institutions.

V. CONCLUSION

Teaching HPC topics on a real-world HPC platform comes
with many logistical and pedagogical challenges. In this work
we have described SMPI Courseware, a set of ready-to-use
assignments that target part of the HPC curriculum, namely
distributed-memory parallel computing and MPI program-
ming, and uses simulation to enhance the learning experience.
More specifically, using SMPI, SimGrid’s MPI application
simulator, it is possible to have students implement MPI
programs and run them unmodified in simulation mode for
arbitrary platform configurations on their own computers. We
have illustrated the pedagogic benefits of these capabilities by
describing the content of and our experience with some of the
assignments included in SMPI Courseware. SMPI Courseware
has already been used in university courses, namely in several
instance of the “Principles of High Performance Computing”
graduate course at the University of Hawai‘i at Manoa (USA)
and of the “Parallel Systems” graduate course at the University
of Grenoble (France). In some instances in-simulation assign-
ments were used in addition to assignments on a real-world
HPC platform, while in other instances all assignments in the
course were in simulation. Although no formal user studies
have been conducted, feedback in the classroom has been
overwhelmingly positive. Simple questionnaires revealed that
students did not find it frustrating to perform assignments in a
“fake” environment. No student has complained that, instead
of experiencing actual execution times first-hand, they merely
see in the simulation output what the execution time would
have been in the real-world. In those courses in which students
used both real-world and simulated HPC platforms, students
felt they learned a lot in simulation because they could tweak
experimental conditions at will to explore ideas. Students also
acknowledged that although the typical frustrations with real-
world platforms (e.g., being “stuck” in the batch queue for a
log time, being subjected to announced but regular platform
down times, being forced to carefully plan job submissions)

are valuable experiences, they do get in the way of learning if
encountered for every assignment. A clear future direction for
this work is to perform a thorough pedagogic evaluation in the
classroom to obtain evidence-based qualitative and quantitative
measures of the merit of using our approach for teaching
parallel computing and MPI programming.

To date, SMPI Courseware contains seven assignments,
most of which have already been used in university courses.
While current assignments hit fundamental MPI programming
and parallel computing learning objectives, many more assign-
ments can be designed that capitalize on SMPI for the same or
other learning objectives. For instance, current assignments do
not include any master-worker or stencil applications, and only
have students use the most basic collective communication
operations. There are also several ways in which to further
capitalize on simulation to achieve learning objectives that
are often out of reach in traditional non-simulation-based
courses. For instance, one important topic is heterogeneous
computing. Many parallel algorithms for heterogeneous ar-
chitectures are known, and in a traditional course one often
merely describes their principles without students gaining any
hands-on experience. With SMPI it is straightforward to have
students experiment with arbitrarily heterogeneous (simulated)
platform configurations. More generally, many compelling
assignments are proposed/used in the HPC education com-
munity that could be part of SMPI Courseware (e.g., those
presented at the eduPar and eduHPC workshop series, those
available in popular HPC training opportunities such as Blue
Waters and XSEDE). Developing in-simulation versions of
such assignments would be straightforward in many cases and
SMPI Courseware welcomes contributors. Although currently
modest in size and scope, with both our own and outside
contributions SMPI Courseware has the potential to become
an invaluable resource for many HPC curricula world-wide.

A broader future direction is to use simulation for HPC
education beyond the scope of MPI programming and tradi-
tional parallel computing. For instance, we are involved in
a simulation project focused on scientific workflows [35].
In a nutshell, this project uses SimGrid as a foundation to
develop a simulation framework for quickly prototyping and
simulating the execution of Workflow Management Systems.
We are currently developing a set of pedagogic modules
with reusable in-simulation assignments that target learning
objectives centered around fundamental distributed computing
principles (data locality, load balancing, resource management
and scheduling, fault-tolerance). The use of simulation in
this context is if anything even more compelling than in the
context of distributed-memory parallel computing and MPI
programming. Ultimately, we aim at developing a large ped-
agogic corpus that provides a wealth of reusable assignments
that can be integrated across the HPC curriculum for both
undergraduate and graduate courses.

ACKNOWLEDGMENTS

Some of the experiments in this work were carried out
on the Grid’5000 experimental testbed, supported by a sci-

entific interest group hosted by Inria and including CNRS,
RENATER, and other Universities and organizations (see
https://www.grid5000.fr). Part of this work was supported
through the HAC SPECIS Inria Project Laboratory. Part of
this work was supported by NSF under contracts #1642369
and #1642335, and by CNRS under grant #PICS07239.

REFERENCES

[1] M. Ludin, A. Weeden, J. Houchins, S. Thompson, C. Peck, I. Babic,
K. Muterspaw, and E. Sergienko, “LittleFe: The high performance com-
puting education appliance,” in Proc. of the International Conference on
Cluster Computing, 2013.

[2] S. Holt, A. Meaux, J. Roth, and D. Toth, “Making the One Cluster Per
Student Method of Teaching Parallel Computing Financially Practical,”
Journal of Computing Sciences in Colleges, vol. 33, no. 4, pp. 106-113,
2018.

[3] R. Brown, J. Adams, S. Matthews, and E. Shoop, “Teaching Parallel and
Distributed Computing with MPI on Raspberry Pi Clusters,” in Proc. of
the 49th ACM Technical Symposium on Computer Science Education,
2018, pp. 1054-1054.

[4] A. M. Pfalzgraf and J. A. Driscoll, “A low-cost computer cluster for
high-performance computing education,” in Proc. of the International
Conference on Electro/Information Technology, 2014, pp. 362-366.

[5] K. Doucet and J. Zhang, “Learning Cluster Computing by Creating a
Raspberry Pi Cluster,” in Proc. of the SouthEast Conference, 2017, pp.
191-194.

[6] O. Abuzaghleh, K. Goldschmidt, Y. Elleithy, and J. Lee, “Implement-
ing an Affordable High-performance Computing for Teaching-oriented
Computer Science Curriculum,” ACM Transactions on Computing Edu-
cation, vol. 13, no. 1, pp. 3:1-3:14, 2013.

[7]1 C. Ivica, J. T. Riley, and C. Shubert, “StarHPC — Teaching parallel
programming within elastic compute cloud,” in Proc. if the 31st Inter-
national Conference on Information Technology Interfaces, 2009, pp.
353-356.

[8] P. Marshall, M. Oberg, N. Rini, T. Voran, and M. Woitaszek, “Virtual
Clusters for Hands-on Linux Cluster Construction Education,” in Proc.
of the 11th LCI International Conference on High-Performance Clus-
tered Computing, 2010.

[91 N. A. Robison and T. J. Hacker, “Comparison of VM Deployment

Methods for HPC Education,” in Proc. of the 1st Annual Conference

on Research in Information Technology, 2012, pp. 43-48.

D. Johnson, S. Mason, and B. Hartpence, “Designing, Constructing

and Implementing a Low-Cost Virtualization Cluster for Education,”

in Proc. of International Multi-Conference on Society, Cybernetics and

Informatics, 2013.

S. Hunold and A. Carpen-Amarie, “Reproducible MPI Benchmarking Is

Still Not As Easy As You Think,” IEEE Transactions on Parallel and

Distributed Systems, vol. 27, no. 12, pp. 3617-3630, 2016.

A. Bhatele, K. Mohror, S. H. Langer, and K. E. Isaacs, “There Goes

the Neighborhood: Performance Degradation Due to Nearby Jobs,”

in Proceedings of the International Conference on High Performance

Computing, Networking, Storage and Analysis, 2013, pp. 1-41:12.

Y. Inadomi, T. Patki, K. Inoue, M. Aoyagi, B. Rountree, M. Schulz,

D. Lowenthal, Y. Wada, K. Fukazawa, M. Ueda, M. Kondo, and

I. Miyoshi, “Analyzing and Mitigating the Impact of Manufacturing

Variability in Power-constrained Supercomputing,” in Proc. of the In-

ternational Conference for High Performance Computing, Networking,

Storage and Analysis, 2015, pp. 1-78:12.

O. Tuncer, E. Ates, Y. Zhang, A. Turk, J. Brandt, V. J. Leung,

M. Egele, and A. K. Coskun, “Diagnosing Performance Variations in

HPC Applications Using Machine Learning,” in Proc. of International

Supercomputing Conference, 2017, pp. 355-373.

E. Luque, R. Suppi, and J. Sorribes, “A Quantitative Approach for

Teaching Parallel Computing,” in Proc. of the 23rd SIGCSE Technical

Symposium on Computer Science Education, 1992, pp. 286-298.

[16] J. Hartman and D. Sanders, “Teaching parallel processing using free

resources,” in Proc. 26th IEEE Frontiers in Education Conference, vol. 3,

1996, pp. 1483-1486.

A. N. Pears, “Using the DiST Simulator to Teach Parallel Computing

Concepts,” in Proc. of the Ist International Forum on Parallel Comput-

ing Curricula, 1995.

[10]

(11]

(12]

[13]

[14]

[15]

[17]

(18]

[19]

[20]

[21]
[22]
[23]

[24]

[25]

[26]

[27]

[28]

[29]

[31]

[32]
(33]

[34]
[35]

G. Zarza, D. Lugones, D. Franco, and E. Luque, “An Innovative
Teaching Strategy to Understand High-Performance Systems through
Performance Evaluation,” in Proc. of International Comference on
Computational Science, 2012.

A. Degomme, A. Legrand, G. Markomanolis, M. Quinson, M. Stillwell,
and F. Suter, “Simulating MPI applications: the SMPI approach,” IEEE
Transactions on Parallel and Distributed Systems, vol. 28, pp. 2387—
2400, 2017.

H. Casanova, A. Giersch, A. Legrand, M. Quinson, and F. Suter, “Ver-
satile, Scalable, and Accurate Simulation of Distributed Applications
and Platforms,” Journal of Parallel and Distributed Computing, vol. 74,
no. 10, pp. 2899-2917, 2014.

“The SimGrid Project,” Available at http://simgrid.org/, 2018.

B. Lester, The Art of Parallel Programming. Prentice Hall, 1993.
“Riverbed Modeler,” Available at https://www.riverbed.com/fr/products/
steelcentral/steelcentral-riverbed-modeler.html, 2018.

P. Velho, L. Mello Schnorr, H. Casanova, and A. Legrand, “On the
Validity of Flow-level TCP Network Models for Grid and Cloud
Simulations,” ACM Transactions on Modeling and Computer Simulation,
vol. 23, no. 4, 2013.

A. Kozinov, E.and Shtanyuk, “Learning Parallel Computations with
ParalLab,” in Proc. of the 1st Ural Workshop on Parallel, Distributed,
and Cloud Computing for Young Scientists, 2015, pp. 11-20.

V. Gergel and A. Labutina, “Paralab System for Investigating the
Parallel Algorithms,” in Proc. of the Russia-Taiwan Symposium on
Methods and Tools of Parallel Processing, 2010, pp. 95-104.

L. Bobelin, A. Legrand, D. A. G. Mirquez, P. Navarro, M. Quinson,
F. Suter, and C. Thiery, “Scalable Multi-Purpose Network Representation
for Large Scale Distributed System Simulation,” in Proceedings of the
12th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid), Ottawa, Canada, May 2012, pp. 220-227.

A. Faraj, X. Yuan, and D. Lowenthal, “STAR-MPI: self tuned adaptive
routines for MPI collective operations,” in Proc. of the 20th ACM Intl.
Conf. on Supercomputing, 2006, pp. 199-208.

R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization of Collective
Communication Operations in MPICH,” International Journal of High
Performance Computing Applications, vol. 19, no. 1, pp. 49-66, 2005.
D.-K. Panda, K. Tomko, K. Schulz, and M. A., “The MVAPICH Project:
Evolution and Sustainability of an Open Source Production Quality MPI
Library for HPC,” in Proc. of the Workshop on Sustainable Software for
Science: Practice and Experiences, 2013.

T. Cornebize, “Capacity Planning of Supercomputers: Simulating
MPI Applications at Scale,” Master’s thesis, Grenoble INP ;
Université Grenoble - Alpes, 2017. [Online]. Available: https:
//hal.inria.fr/hal-01544827

“SMPI Integration Testing of MPI Proxy applications,” https://github.
com/simgrid/SMPI-proxy-apps, 2018.

“SMPI Courseware,” https://simgrid . github.io/SMPI_CourseWare/,
2018.

“Grid’5000 Testbed,” www.grid5000.fr, 2018.

“The WRENCH Project,” http://wrench-project.org, 2018.

