
SMPI Courseware: Teaching Distributed-Memory

Computing with MPI in Simulation

Henri Casanova

Information and Computer Sciences Dept.

University of Hawai‘i at Mānoa,

Honolulu, HI, U.S.A.

henric@hawaii.edu

Martin Quinson

IRISA laboratory, ENS Rennes,

Université de Rennes 1, Inria, CNRS

Rennes, France

martin.quinson@ens-rennes.fr

Arnaud Legrand

Université Grenoble Alpes,

CNRS, Inria, INP, LIG

Grenoble, France

arnaud.legrand@imag.fr

Frédéric Suter

IN2P3 Computing Center, CNRS

Inria, LIP, ENS Lyon

Lyon-Villeurbanne, France

frederic.suter@cc.in2p3.fr

Abstract—It is typical in High Performance Computing (HPC)
courses to give students access to HPC platforms so that
they can benefit from hands-on learning opportunities. Using
such platforms, however, comes with logistical and pedagogical
challenges. For instance, a logistical challenge is that access to
representative platforms must be granted to students, which can
be difficult for some institutions or course modalities; and a
pedagogical challenge is that hands-on learning opportunities are
constrained by the configurations of these platforms.

A way to address these challenges is to instead simulate

program executions on arbitrary HPC platform configurations.
In this work we focus on simulation in the specific context of
distributed-memory computing and MPI programming educa-
tion. While using simulation in this context has been explored
in previous works, our approach offers two crucial advantages.
First, students write standard MPI programs and can both debug
and analyze the performance of their programs in simulation
mode. Second, large-scale executions can be simulated in short
amounts of time on a single standard laptop computer. This is
possible thanks to SMPI, an MPI simulator provided as part
of SimGrid. After detailing the challenges involved when using
HPC platforms for HPC education and providing background
information about SMPI, we present SMPI Courseware. SMPI
Courseware is a set of in-simulation assignments that can be
incorporated into HPC courses to provide students with hands-on
experience for distributed-memory computing and MPI program-
ming learning objectives. We describe some these assignments,
highlighting how simulation with SMPI enhances the student
learning experience.

Index Terms—High Performance Computing Education, Paral-
lel Computing Education, Message Passing Interface, Simulation

I. INTRODUCTION

Many challenges are involved in teaching High Performance

Computing (HPC) concepts and practices, as indicated by the

establishment of workshop series focused on HPC education.

Although part of the HPC curriculum can be taught at theo-

retical or conceptual levels, it is widely acknowledged that

a large portion of it is taught more effectively if students

are provided with hands-on experience opportunities. This is

typically achieved by providing students with access to one or

more HPC platforms for them to design, implement, execute,

and analyze the execution of programs developed as part of

lab activities and/or homework assignments. Unfortunately,

using real-world platforms to teach HPC courses comes with

logistical challenges as well as, perhaps counter-intuitively,

pedagogical challenges. We review both types of challenges

hereafter.

Logistical Challenges – The most obvious logistical chal-

lenges is that it is not always possible to obtain access to

a representative HPC platform in the first place. For some

institutions, it may be that no HPC platform is available

whatsoever. In this case, one can resort to building low-

cost HPC platforms for teaching purposes [1]–[6], to us-

ing virtualization and/or container technology to emulate an

HPC platform, e.g., in cloud environments [7]–[10], or to

gain access to public HPC testbeds. Although a lot can

be achieved pedagogically on such platforms, they are not

necessarily representative of production HPC platforms (in

terms of capabilities, scale, and/or performance behaviors),

which can be problematic for performance-oriented learning

objectives. Even if an institution hosts HPC platforms, there

may be no straightforward mechanism to use these platforms

for education purposes. Throughout the careers of the authors

of this paper, in their past and present institutions, although

production HPC resources were available for research pur-

poses, providing access to students in a course has often times

proved more challenging than expected. In many cases, access

can be secured, but only to a small subset of the platform, thus

making it difficult for students to experience scaling effects.

If access is secured to a large platform, either hosted in-house

or as part of some community HPC testbed, this platform is

typically used in production, and thus is shared among students



and regular platform users. This often raises social issues in

which regular platform users, e.g., researchers working toward

conference deadlines, are then impacted by an influx of new

(student) users, which can create tensions. Furthermore, these

student users are novices, and can make mistakes that lead

to resource waste. For instance, when teaching HPC courses,

we have seen students asking for long batch allocations for

a program that does not terminate, bringing down compute

nodes due to creating too many processes, filling up local

disks instead of writing files to a distributed file systems, etc.

Although such mistakes can occur with any user, “unleashing”

dozens of novices on a production platform at once tends

to, unsurprisingly, increase the number of user complaints

significantly. Even if a platform is dedicated to the students in

a course, another logistical challenge is that students share this

platform among themselves, which leads to possibly unhealthy

competition (e.g., batch queue competition in the hours before

an assignment due date). The above can result in non-trivial

effort and time commitments by the course instructor (e.g.,

platform monitoring, interaction with platform administrators,

managing user interactions), which could be better invested

into course preparation or delivery.

Pedagogical Challenges – Even assuming that access to one

or more representative HPC platforms is provided, using these

platforms still raises challenges from a pedagogical standpoint.

First, students must be trained to use the platform, which

entails learning how to use various software infrastructures,

the most complex of which is often a batch scheduler, as

well as various usage policies. Some courses could deliberately

devote a large portion of the syllabus to teaching the practice

and the details of the software infrastructures used in typical

HPC environments. But for other courses (e.g., for a course

focused on parallel algorithms and MPI programming), the

time and effort spent learning the software infrastructure and

usage policies, which is necessary for providing students with

hands-on experience, could likely be better spent on more

course-relevant learning objectives.

Second, and more importantly, students are exposed to

platform configurations that are specific and limited to those of

the HPC platform(s) provided to them. Unless several (large)

platforms are available, many interesting phenomena simply

cannot be experienced hands-on by students. The instructor is

then forced to mention what would happen in hypothetical, but

relevant, scenarios that are simply not available to students. For

instance, in our experience instructors often find themselves

make statements such as “if the network topology were

different, this algorithm would behave differently”, “if the

platform were heterogeneous, there would be many interesting

issues with data/load distribution”, etc. These statements,

albeit valid, fall short of deepening student interest, and thus

understanding, as several important concepts may never be

experienced hands-on. Finally, from a logistical perspective,

when the platform in use changes from one incarnation of the

course to the next, there can be a large burden placed on the

instructor to ensure that previous assignments can still help

students achieve the required learning objectives.

Third, real-world platforms are known to be “noisy” [11]–

[14]. The observed performance of a program is subject to

many effects, some deterministic and some non-deterministic,

which make performance difficult to understand without deep

knowledge about hardware/software infrastructures and with-

out solid experimental and analytical skills. This is problematic

since most students initially lack such knowledge and skills.

Therefore, in order for them to acquire knowledge about

fundamental HPC concepts and practices, the possible sophis-

tication and depth of course assignments, and thus the learning

experience, are diminished. At the simplest level, it is difficult

to observe small performance variations due to platform noise,

and thus it is difficult to teach effectively those techniques that

result in marginal, but still desirable, performance improve-

ments (e.g., using asynchronous communication to overlap

some amount of computation with communication). In our

experience, in some cases platform noise can even make it

difficult for an instructor to grade programming assignments

fairly based on observing executions of student’s programs.

Fourth, it is by running experiments that students can de-

velop their own understanding of the material, e.g., by validat-

ing/invalidating their own intuitions. Yet, running experiments

on an HPC platform is not free as it requires time, electrical

power, and in some cases funds. The number of experiments

that students can perform is thus typically limited, as are their

opportunities to deepen their independent understanding of the

subject matter.

Fifth, a popular way to reach students is to develop and

make available Massive Open Online Courses (MOOCs), so

that students can acquire skills from anywhere and at their own

pace. Developing an HPC course as a MOOC that provides

students with valuable hands-on experience would require that

access to a representative HPC platform be guaranteed for a

large, diverse, and distributed student population, which can

be done effectively only by a few institutions.

One approach to overcome the above logistical and peda-

gogical challenges is to use simulation, i.e., instead of running

programs on a few actual HPC platforms, simulate the execu-

tion of programs on a software realization of arbitrary HPC

platform configurations. Using simulation for HPC education

was pioneered in the early 1990’s [15]–[17]. More recently,

the work in [18] demonstrates the benefit of using simulation

for teaching HPC, with student surveys showing increases in

both satisfaction and acquired knowledge due to the use of

simulation. In this work we describe SMPI Courseware, a

set of assignments that can be incorporated into any HPC

course. These assignments are structured as progressive steps

with well-defined learning objectives. The scope is distributed-

memory parallel computing with the Message Passing Inter-

face (MPI). The foundational technology is SMPI [19], an

MPI simulator provided as part of the SimGrid simulation

framework [20], [21]. SMPI makes it possible to simulate

accurately the execution of unmodified MPI applications on

arbitrary platform configurations. Furthermore, simulations



can be executed quickly on a standard laptop computer. The

above is made possible thanks to the scalable and validated

simulation models provided by SimGrid. SMPI Courseware

thus does not require access to any HPC resource, and has been

used already in graduate-level HPC courses as a complement

to or completely replacing the use of HPC platforms.

In this work, we describe some of the assignments in

SMPI Courseware, and showcase how simulation with SMPI

makes it possible to achieve popular HPC learning objectives

effectively. The rest of this paper is organized as follows. Sec-

tion II discusses related work. Section III provides necessary

background information on SMPI. Section IV describes some

of SMPI Courseware assignments and how they capitalize

on the simulation capabilities of SMPI. Finally, Section V

concludes with a summary and future work directions.

II. RELATED WORK

Several authors have addressed the logistical challenge

of procuring an HPC platform for educational purposes by

establishing low-cost such platforms [1]–[6] or by using

virtualization and/or container technology [7]–[10]. Although

these solutions offer compelling capabilities, such as exposing

students to real-world software infrastructures, they impose

limits on platform scale and/or may not be representative of

production HPC platforms, especially in terms of performance

behaviors. In this work, instead, we resort to simulation so

as to be completely free of the need for a hardware HPC

platform and can simulate arbitrary platform configurations.

In what follows we review previous works that have also used

simulation for the purpose of HPC education.

Simulation is used routinely as a pedagogic tool in many

areas of the computer science curriculum. For instance, it is

traditional to use simulation frameworks for teaching computer

architecture and network concepts, since without simulation it

can be extremely challenging to create hands-on experience

opportunities in these domains. By comparison, the use of

simulation as a pedagogic tool is relatively rare in the HPC

domain, likely because in many cases it is possible to use

some HPC platform for teaching purposes, albeit facing the

logistical and pedagogical challenges identified in Section I.

Several works in the early 1990’s proposed using simulation

for the purpose of parallel computing education. In [15] the

authors argue that using a simulator via which students im-

plement and execute parallel algorithms enhances the learning

experience. A parallel algorithm is described as an abstract

model, and a large part of the proposed approach is a graph-

ical user interface with execution visualization capabilities

(e.g., execution Gantt charts). A similar approach is proposed

in [17], but in this approach programs are written in an actual

programming language (Modula-P) and compiled to run in

“simulation mode”, which is also what we propose in this

work. The author reports on increased student motivation

and satisfaction. A textbook was developed that comes with

a simulator and programming exercises in simulation [22].

In [16], it is proposed to teach parallel computing using

a SIMD architecture simulator as one of the options for

teaching parallel computing at low cost. In all the above, the

authors motivate their work by some of the same rationales as

those outlined in Section I, namely: (i) acquiring a platform

may not be possible (due to cost); (ii) learning is limited

because experimental scenarios are limited by the platform at

hand; and (iii) simulation makes it possible to easily observe

and understand deterministic program executions that are not

subject to any platform “noise.”

More recently, the authors in [18] describe the parallel

computing module of a M.S. degree in HPC, which relies

on simulation as a foundational technology. They report on

improvements in student grades and self perception of ac-

quired knowledge, attributing these improvements to the use

of simulation. Although there is overlap between the authors’

motivations and our own motivations as outlined in Section I,

there are two significant differences between this work and that

in [18]. First, the work in [18] is based on the OPNET Modeler

(now known as Riverbed Modeler [23]) simulation framework.

This framework uses packet-level network simulation, which

simulates the behavior of individual network packets in a dis-

crete event simulation fashion. Although typically considered

accurate, packet-level simulation of full-fledged applications

is time-consuming (in part because the number of packets

increases with the communicated data size). This problem is

acknowledged by the authors in [18], and is the reason why

they provide students with a software tool to run simulations

on an remote HPC platform. By contrast, our approach relies

on the SimGrid simulation framework, which uses scalable

“macroscopic” network simulation models and provide high

accuracy and orders of magnitude simulation speed improve-

ments over packet-level network simulators [24]. As a result,

full-fledged simulations of large-scale HPC applications can

be executed in a as little as a few seconds on a student laptop.

In our approach there is thus no need for an actual HPC

platform. The second significant difference is that while with

the approach in [18] students work with parameterizable pre-

defined simulation scenarios to understand performance issues,

instead with our approach students write standard MPI code

that is then executed in simulation mode transparently. Thus

not only can students achieve the learning objectives in [18]

(and can be provided with predefined simulation scenarios as

already implemented MPI applications if so desired), but they

can also learn how to use MPI and can debug their MPI code

in simulation mode.

Another recent work, Paralab teachware, is presented

in [25], which uses the Paralab system [26] to teach parallel

computing concepts and algorithms using simulation. Paralab

itself is available for Windows and, based on what can be

learned in [26], implements idealized simulation models that

may not be representative of real-world HPC platforms. For

instance, network simulation seems to be based on a “latency

plus data size divided by bandwidth” model. While simple

models can have pedagogic value as they make understanding

performance trends easier, these models can be far from the

realities of HPC platforms. By contrast, in this work we use

SMPI, which implements sophisticated validated simulation





to non-data-dependent applications, i.e., for applications in

which branching does not depend on application data. In

summary, SMPI makes it possible to simulate small-scale

executions of any MPI application for validation/debugging

purposes, but also possible to simulate large-scale executions

of data-independent applications (at the expense of applica-

tion output correctness) for performance/scalability analysis

purposes, all on a single machine.

SMPI implements the MPI-2 standard and a portion of

the MPI-3 standard. An important performance consideration

when using an implementation of the MPI standard is the

algorithms used for collective communication operations. This

is because production MPI applications use these operations

extensively, and their performance often determines overall

parallel efficiency. The design space for collective communi-

cation algorithms is large, and thus many algorithms exist,

exhibiting different performance characteristics depending on

the network topology, the message size, and the number of

communicating processes [28]. MPI implementations thus of-

ten select at runtime which algorithm to employ, which leads to

relatively complex collective communication implementations.

For instance, in OpenMPI, the MPI_Allreduce operation

amounts to about 2,300 lines of code. It is necessary for an ac-

curate MPI simulation framework to capture such complexity.

To this end, SMPI implements all the collective algorithms

and selection logic of both OpenMPI and MPICH [29] as

well as a few other collective algorithms and selectors from

Star-MPI [28], the Intel vendor implementation of MPI, and

MVAPICH2 [30]. Overall, SMPI currently provides more than

120 different collective communication algorithms. Users can

activate these implementations via command-line arguments

passed to smpirun, which makes it straightforward to com-

pare collective communication implementations for arbitrary

application and platform scenarios.

To date, SMPI has been validated for representative ap-

plications and benchmarks [19], and used to simulate large-

scale MPI application executions on a single machine [31].

SMPI has also been used to successfully simulate 51 unmod-

ified MPI applications included in standard HPC application

benchmarks/suites (ECP Proxy Applications, CORAL, Trin-

ity, PRACE CodeVault, HPL, and Meteo-France), which are

included as part of SMPI’s nightly integration testing [32].

Given the above capabilities and accomplishments, SMPI

provides a compelling foundation for addressing the chal-

lenges outlined in Section I in the context of distributed-

memory parallel computing and MPI programming education.

IV. SMPI COURSEWARE

A. Objectives and Availability

The HPC community has developed sets of learning ob-

jectives as well as entire curricula to meet these objectives.

The goal of SMPI CourseWare is not to define or provide a

curriculum. Rather, its goal is to provide ready-to-use assign-

ments through which students can achieve learning objectives

in the context of distributed-memory parallel computing and

MPI programming. Capitalizing on the capabilities of SMPI

(see Section III), these assignments can be integrated into an

HPC course without any need for an HPC platform. These

assignments can and have been used with several modalities.

These include in-class sessions during which instructors and

teaching assistants provide instructional scaffolding, students

working in groups outside of the classroom, or students

working individually outside of the classroom.

To date, SMPI Courseware is simply available as a Web

site [33]. Instructors can either point their students to that

site, or download and modify assignments as they wish. A

first section of the site provides instructions on how to install

and test SMPI. In the near future, this site will also provide

pre-installed Docker containers with all necessary software

and assignment files. Currently no mechanisms is available

for retrieving assignment solutions, but they can be requested

directly via e-mail to henric@hawaii.edu.

B. Sample Assignments and Usefulness of Simulation

In this section we showcase four of the assignments pro-

vided in SMPI Courseware. While we hope that these assign-

ments have some pedagogic merit, our main focus here is to

explain how, in the context of these assignments, simulation

with SMPI enhances the student learning experience. In several

cases, the use of simulation unlocks learning opportunities

that would remain out of reach otherwise. We refer readers

interested in the details of the assignments to the SMPI

Courseware site [33]. In what follows we also report on our

own experience using SMPI in our courses. No formal user

studies have been conducted to date. But we believe that what

we observed in the classroom, although for now anecdotal, is

nevertheless enlightening.

1) Parallel Julia set computation: SMPI Courseware pro-

vides an introductory assignment in which students implement

a parallel Julia set computation. The learning objectives in-

clude (i) to understand the principle of SPMD (Single Program

Multiple Data) programming; (ii) to understand and imple-

ment the concept of data distribution in distributed memory

programming; (iii) to understand and implement some pro-

cess communication/synchronization feature; (iv) to achieve

mastery of essential MPI calls.

The first (optional) step of the assignment is to implement a

sequential program that generates a jpeg image of a Julia set

with dimensions provided as command-line arguments. The

rest of the assignment consists in parallelizing this program

in a sequence of baby steps. Students are led to discover

the concepts of partitioning the work across MPI ranks in an

SPMD fashion.

In this assignment, students must understand and implement

the notion of data distribution across MPI ranks. As expected,

the assignment imposes the constraint that if the Julia set

consists of n pixels, then each process in a p-process execution

can allocate memory for no more than ⌈n/p⌉ pixels. As a

result, students are exposed to the (initially quite difficult)

notions of local indices and global indices: computing a pixel

in the Julia set is based on the pixel’s coordinates in the global

image, but these pixels must be stored in a local array using



some local indexing scheme. Students first use a 1-D strip data

distribution and then a 2-D block distribution. This is likely

the most challenging learning objective in this assignment. In

fact, the rationale for having the program compute a Julia set is

that students can detect and understand data distribution bugs

quickly by visually inspecting the output image. As part of this

assignment, therefore, the students must generate the output

image. This requires that students use some communication

in their MPI program since pixels blocks must be written in

the right order to a single file. Students are free to implement

some token-passing scheme in which each process writes its

“piece” of the image to the file, or have a master process do all

the writing after receiving image pieces from other processes.

This assignment places very little emphasis on performance

(beyond common-sense “it goes faster with more processors”

or “it goes faster with faster processors” observations), and

students mostly focus on producing correct programs.

Even for this introductory assignment, the use of SMPI

affords some pedagogical advantages. First, students can hit

the deck running without having to learn all the logistics

of using an HPC resource. Learning these logistics can be

completely decoupled from learning parallel computing and

MPI programming concepts (it can come later in the course if

desired, or not be part of the course at all). Furthermore, even

if acquired by the students, these logistics tend to lengthen the

implement-test-debug cycle, which is particularly frustrating

for an introductory assignment. For this particular assignment

for instance, the image of the Julia file is created on the

student’s own laptop. It thus can be opened in some image

viewer that automatically updates the image when it changes,

i.e., each time the MPI program execution is simulated. This

is to be contrasted with having students view the image on a

remote HPC platform (often requires, e.g., multiple scp hops,

ssh X forwarding). In our experience, these seemingly small

details can end up getting in the way of the initial learning

experience, requiring extra time and effort. Furthermore, “tech-

nical difficulties” do occur on HPC platforms in spite of the

instructor’s best effort, especially for a large class size.

A consequence of the above is that it is possible to hold an

effective, efficient, and relatively short in-class development

session in which students perform the full assignment under

the guidance of the instructor. This makes it possible to address

the inevitable initial difficulties with MPI programming in

the classroom, focusing 100% on MPI programming issues.

This is by contrast with our experience using real-world HPC

platforms at the introductory level, in which attempts at hold-

ing such sessions are hindered by the logistics of using these

platforms. One option that is sometimes used for introductory

assignment is to have each student run MPI on their laptop

in class (using a hostfile with only localhost entries).

But in this case no performance benefit due to parallelism

can be observed beyond the number of cores, which we

have found to be an underwhelming first parallel computing

experience for the students. With SMPI, instead, students are

able to experiment right away with using arbitrary numbers of

hosts, and witness the performance benefits. As a result, we

have observed that well-prepared students who go through the

assignment relatively quickly are able to discover on their own

several parallel computing principles simply by modifying

platform descriptions and execution conditions. For instance,

in the last instance of the graduate-level “Principles of High

Performance Computing” course at the University of Hawai‘i

at Mānoa (UHM), during the 1h15min in-class development

session in which students go through this assignment with help

from the instructor, several students were able to independently

discover the fundamental notions of weak scaling and strong

scaling. We contend that such invaluable independent learning

would have been difficult to achieve if an actual HPC platform

had been used for this session.

2) Physical topologies and communication patterns: One

assignment in SMPI Courseware has students implement sev-

eral versions of a broadcast. The learning objectives include:

(i) to be proficient with a large subset of the MPI API for point-

to-point communication; (ii) to be able to implement mod-

erately complex communication patterns efficiently; (iii) to

experience and understand the effect of network topology on

communication patterns; (iv) to experience and understand

the trade-offs between message size, network bandwidth, and

network latency; (iv) to be able to conduct experimental

performance comparisons of competing implementations and

draw sensible conclusions; and (v) to become aware of the

large size of the design space for collective communication

operations and of the challenges involved.

After implementing a naive broadcast in which a message

is sent by one process to n other processes via n MPI_Send

calls, the students implement a broadcast first using a ring

communication pattern, and then using a binary tree communi-

cation pattern. This assignment, if done entirely, is challenging

as many students are not necessarily used to thinking about,

let alone implementing, communication patterns. Throughout

the assignment students compare their implementations with

each other, and with MPI_Bcast as provided by several

implementations of the MPI standard. They perform these

comparisons using various network topologies, varying mes-

sage size, and varying network bandwidth and latency values.

They thus get to experience relevant performance effects

(e.g., for small messages and/or high bandwidth the broadcast

is latency-bound, if the communication pattern matches the

physical topology then the broadcast is more efficient).

The obvious way in which simulation makes this assignment

effective, or even possible, is that the HPC platform, and

more specifically its network topology, is entirely simulated.

As a result, it is possible to provide students with many

network topology configurations. These configurations can

be hypothetical and used for confirming expectations (e.g.,

the ring, resp. tree, broadcast perform well on a platform

whose physical topology is an actual ring, resp. tree), or can

be representative of actual network topologies used in HPC

platforms (e.g., a single switch, a shared backplane, a fat-tree

structure, a k-ary n-cube). Also, thanks to simulation, stu-

dents can tweak platform descriptions to test hypotheses. For

instance, it is possible to vary network latencies to understand



0

25

50

75

0.00 0.05 0.10 0.15

Time

R
a
n
k

State MPI_Finalize MPI_Recv MPI_Send

(a)

0

25

50

75

0.05 0.10

Time

R
a
n
k

State MPI_Finalize MPI_Recv MPI_Send

(b)

0

25

50

75

0.0 0.1 0.2 0.3

Time

R
a
n
k

State MPI_Finalize MPI_Recv MPI_Send

(c)

Fig. 2. Execution Gantt charts of 11 consecutive 92-process binomial tree broadcasts of 400,000-byte messages implemented using MPI point-to-point
communication primitives and with different broadcast roots. (a) Execution on six 16-core nodes (2.40GHz cores) connected via 10Gbps Ethernet in the
Paravance cluster of the Grid’5000 testbed [34] using OpenMPI 2.0.2; (b) Execution on one 4-core laptop computer (1.30GHz cores) using OpenMPI 2.1.1;
and (c) Execution on 92 nodes of the Griffon cluster of the Grid’5000 testbed as simulated using SMPI. Time spent in MPI_Send, MPI_Recv, and
MPI_Finalize are indicated with different colors, and black arrows match sends to their respective receives.

the impact of latency as message size varies. The scale of

the platform can also be changed at will to explore scalability

limits of the implementations. Finally, because SMPI provides

many implementations of collective operations from popular

implementations of the MPI standard (see Section III), students

can experiment with all these implementations. This allows

students to see first-hand that these implementations are not

all equal, and that some of them work better than others

in some regimes. This brings home the message that the

design space for collective communication algorithms and

their implementations is large.

All the above would be at best very difficult if teaching with

real-world HPC platforms (i.e., changing network topologies is

not possible, installing several MPI versions on a production

platform is typically problematic, scale is limited). Instead,

simulation makes it possible to provide students with a wide

range of relevant scenarios, makes it possible for students

to design their own scenarios, and in the end makes the

learning objectives easier to achieve because the entire gamut

of relevant effects can still be experienced hands-on.

3) Pipelined and asynchronous communication: One sober-

ing (by design) conclusion from the assignment above is that

popular MPI distributions provide broadcast implementations

that are orders of magnitude faster that the implementations

developed by the students. Another part of that assignment

is thus focused on boosting broadcast performance. The ad-

ditional learning objectives include: (i) to understand how

splitting a message into chunks can increase throughput; (ii) to

understand how asynchronous communication can increase

throughput; (iii) to be able to enhance a communication pattern

and implement a version of it that achieves high throughput

using message splitting and asynchronous communication;

and (iv) to be suitably impressed by the performance of

production broadcast implementations provided by various

MPI implementations.

In this phase of the assignment the students enhance their

implementations by first splitting the message into chunks.

Via experiments they draw conclusions about the best chunk

size to use. They then use asynchronous communications

to increase throughput further by overlapping sending and

receiving operations. This is typically a challenging part of

the assignment, as many students find it difficult to use

asynchronous communication primitives in a way that actually

achieves increase in throughput as well as correctness. In this

assignment, student can also witness first-hand how impres-

sive some production MPI_Bcast implementations can be

performance-wise. For instance, once they have developed

a ring-based broadcast that splits the message into chunks

and uses asynchronous communication to benefit from com-

munication pipelining, students experimentally determine the

best chunk size to use for a given message size, a given

total number of processes, and a physical platform that is

an actual ring. In this case, their naive implementation does

outperform the best MPI_Bcast implementations, but this

improvement is typically marginal. And yet, the MPI_Bcast

implementations do not know the topology structure and do

not get to pick a good chunk size based on experiments.

Furthermore, when changing the topology, the number of

processes, and the message size, students then see that their

own implementation can be outperformed by the adaptive

MPI_Bcast implementations by orders of magnitude. In the

graduate-level “Principles of High Performance Computing”

at UHM, this assignment provides the motivation to explore

what algorithmic and implementation techniques are used by

these “Swiss army knife” MPI_Bcast implementations, often

resulting in some students extending this assignment into their

capstone course project, all in simulation with SMPI.

Most of the considerations in Section IV-B2 on why sim-

ulation is key to achieving learning objectives apply for the

above learning objectives as well. Another consideration here,

however, is that simulated executions are “clean”. In other

terms, they are reproducible and well-structured because they



do not suffer from idiosyncratic effects seen in real-world

platforms [11]–[14]. Therefore, it is possible to observe clearly

performance effects of variations in algorithms, implementa-

tions, and platform configurations. As an example, consider

Figure 2, which depicts Gantt charts of 2 real-world executions

of an MPI program that performs a sequence of 92-process

binomial tree broadcasts, on 92 cores of a real-world cluster

and on 4 cores of a single laptop computer, and one simulated

execution of the same program on a specification of another

real-world cluster. As seen in the figure, while the simulated

execution shows clear, expected patterns, the real-world ex-

ecutions experience software/hardware effects that make the

pattern more chaotic and difficult to understand. Furthermore,

not shown on the figure, there are differences between multiple

runs of the same program on the same platform. We include

the results on a single laptop since this is one option when

teaching an HPC course without giving access to an actual

HPC platform and have student instead run MPI programs

on their own computers. Even on a single computer, due to

time-sharing of cores, the patterns are also complex and non-

deterministic. Understanding the effects the impact real-world

executions is interesting from a research and development

perspective. But they impede learning for novice students by

obfuscating fundamental principles. Finally, another problem

with these platform effect is that even if an instructor verifies

that some learning objective is easily achievable on a specific

platform used for a course, in spite of platform effects, there

is no guarantee their the same holds on other platforms. This

makes it difficult to share assignments among instructors and

institutions, and places a large burden on the instructor if the

platform changes from one course instance to the next.

4) Scalability studies: SMPI Courseware provides an as-

signment in which students study the performance of a matrix

multiplication application. The learning objectives include:

(i) to be able to determine an application’s performance bottle-

neck; (ii) to understand both strong and weak scaling concepts

and be able to perform an experimental scalability study;

(iii) to be able to develop algorithmic and implementation

techniques for pushing scalability further.

Student actually implement the matrix multiplication im-

plementation in another assignment (they can of course be

provided with the implementation directly for this assignment,

if so desired). That implementation is based on an outer prod-

uct algorithm and uses a 2-D (non-cyclic) block distribution.

The algorithm entails performing multicasts between rows and

columns of processes, which are logically arranged in a 2-

D grid. This is done by creating MPI communicators and

performing broadcasts within these communicators. In terms

of learning objectives, that assignment is a step up from the

assignment described in SectionIV-B1.

In this assignment students first instrument their MPI

program to measure communication and computation times

separately. They then perform various scalability studies by

keeping the matrix sizes fixed and increasing the number of

processors, and by keeping the number of processors fixed and

increasing the matrix sizes. They also experiment with various

platform configurations that are more or less network-bound.

Throughout, students draw conclusions regarding the weak and

strong scaling properties of the program. Given the O(n3)
computation and O(n2) data features of matrix multiplication,

students can observe good strong scaling behavior but poor

weak scaling behavior in several relevant scenarios (e.g., slow

network, poor broadcast implementations).

The benefit of using simulation for the above is that large-

scale executions can be simulated on each student’s laptop.

This is because, as explained in Section III, SMPI provides

techniques to reduce the CPU and RAM footprints of MPI

applications. These techniques compromise the output of the

simulated application (i.e., the computed matrix product is

erroneous) but preserve the performance behavior when the

application execution is non-data-dependent, which is the case

for a matrix multiplication. As a result, students can push

their scalability studies up to large scales, well beyond scales

that could be achieved on HPC platforms used for teaching

purposes in the majority of institutions.

V. CONCLUSION

Teaching HPC topics on a real-world HPC platform comes

with many logistical and pedagogical challenges. In this work

we have described SMPI Courseware, a set of ready-to-use

assignments that target part of the HPC curriculum, namely

distributed-memory parallel computing and MPI program-

ming, and uses simulation to enhance the learning experience.

More specifically, using SMPI, SimGrid’s MPI application

simulator, it is possible to have students implement MPI

programs and run them unmodified in simulation mode for

arbitrary platform configurations on their own computers. We

have illustrated the pedagogic benefits of these capabilities by

describing the content of and our experience with some of the

assignments included in SMPI Courseware. SMPI Courseware

has already been used in university courses, namely in several

instance of the “Principles of High Performance Computing”

graduate course at the University of Hawai‘i at Manoa (USA)

and of the “Parallel Systems” graduate course at the University

of Grenoble (France). In some instances in-simulation assign-

ments were used in addition to assignments on a real-world

HPC platform, while in other instances all assignments in the

course were in simulation. Although no formal user studies

have been conducted, feedback in the classroom has been

overwhelmingly positive. Simple questionnaires revealed that

students did not find it frustrating to perform assignments in a

“fake” environment. No student has complained that, instead

of experiencing actual execution times first-hand, they merely

see in the simulation output what the execution time would

have been in the real-world. In those courses in which students

used both real-world and simulated HPC platforms, students

felt they learned a lot in simulation because they could tweak

experimental conditions at will to explore ideas. Students also

acknowledged that although the typical frustrations with real-

world platforms (e.g., being “stuck” in the batch queue for a

log time, being subjected to announced but regular platform

down times, being forced to carefully plan job submissions)



are valuable experiences, they do get in the way of learning if

encountered for every assignment. A clear future direction for

this work is to perform a thorough pedagogic evaluation in the

classroom to obtain evidence-based qualitative and quantitative

measures of the merit of using our approach for teaching

parallel computing and MPI programming.

To date, SMPI Courseware contains seven assignments,

most of which have already been used in university courses.

While current assignments hit fundamental MPI programming

and parallel computing learning objectives, many more assign-

ments can be designed that capitalize on SMPI for the same or

other learning objectives. For instance, current assignments do

not include any master-worker or stencil applications, and only

have students use the most basic collective communication

operations. There are also several ways in which to further

capitalize on simulation to achieve learning objectives that

are often out of reach in traditional non-simulation-based

courses. For instance, one important topic is heterogeneous

computing. Many parallel algorithms for heterogeneous ar-

chitectures are known, and in a traditional course one often

merely describes their principles without students gaining any

hands-on experience. With SMPI it is straightforward to have

students experiment with arbitrarily heterogeneous (simulated)

platform configurations. More generally, many compelling

assignments are proposed/used in the HPC education com-

munity that could be part of SMPI Courseware (e.g., those

presented at the eduPar and eduHPC workshop series, those

available in popular HPC training opportunities such as Blue

Waters and XSEDE). Developing in-simulation versions of

such assignments would be straightforward in many cases and

SMPI Courseware welcomes contributors. Although currently

modest in size and scope, with both our own and outside

contributions SMPI Courseware has the potential to become

an invaluable resource for many HPC curricula world-wide.

A broader future direction is to use simulation for HPC

education beyond the scope of MPI programming and tradi-

tional parallel computing. For instance, we are involved in

a simulation project focused on scientific workflows [35].

In a nutshell, this project uses SimGrid as a foundation to

develop a simulation framework for quickly prototyping and

simulating the execution of Workflow Management Systems.

We are currently developing a set of pedagogic modules

with reusable in-simulation assignments that target learning

objectives centered around fundamental distributed computing

principles (data locality, load balancing, resource management

and scheduling, fault-tolerance). The use of simulation in

this context is if anything even more compelling than in the

context of distributed-memory parallel computing and MPI

programming. Ultimately, we aim at developing a large ped-

agogic corpus that provides a wealth of reusable assignments

that can be integrated across the HPC curriculum for both

undergraduate and graduate courses.

ACKNOWLEDGMENTS

Some of the experiments in this work were carried out

on the Grid’5000 experimental testbed, supported by a sci-

entific interest group hosted by Inria and including CNRS,

RENATER, and other Universities and organizations (see

https://www.grid5000.fr). Part of this work was supported

through the HAC SPECIS Inria Project Laboratory. Part of

this work was supported by NSF under contracts #1642369

and #1642335, and by CNRS under grant #PICS07239.

REFERENCES

[1] M. Ludin, A. Weeden, J. Houchins, S. Thompson, C. Peck, I. Babic,
K. Muterspaw, and E. Sergienko, “LittleFe: The high performance com-
puting education appliance,” in Proc. of the International Conference on

Cluster Computing, 2013.

[2] S. Holt, A. Meaux, J. Roth, and D. Toth, “Making the One Cluster Per
Student Method of Teaching Parallel Computing Financially Practical,”
Journal of Computing Sciences in Colleges, vol. 33, no. 4, pp. 106–113,
2018.

[3] R. Brown, J. Adams, S. Matthews, and E. Shoop, “Teaching Parallel and
Distributed Computing with MPI on Raspberry Pi Clusters,” in Proc. of

the 49th ACM Technical Symposium on Computer Science Education,
2018, pp. 1054–1054.

[4] A. M. Pfalzgraf and J. A. Driscoll, “A low-cost computer cluster for
high-performance computing education,” in Proc. of the International

Conference on Electro/Information Technology, 2014, pp. 362–366.

[5] K. Doucet and J. Zhang, “Learning Cluster Computing by Creating a
Raspberry Pi Cluster,” in Proc. of the SouthEast Conference, 2017, pp.
191–194.

[6] O. Abuzaghleh, K. Goldschmidt, Y. Elleithy, and J. Lee, “Implement-
ing an Affordable High-performance Computing for Teaching-oriented
Computer Science Curriculum,” ACM Transactions on Computing Edu-

cation, vol. 13, no. 1, pp. 3:1–3:14, 2013.

[7] C. Ivica, J. T. Riley, and C. Shubert, “StarHPC – Teaching parallel
programming within elastic compute cloud,” in Proc. if the 31st Inter-

national Conference on Information Technology Interfaces, 2009, pp.
353–356.

[8] P. Marshall, M. Oberg, N. Rini, T. Voran, and M. Woitaszek, “Virtual
Clusters for Hands-on Linux Cluster Construction Education,” in Proc.

of the 11th LCI International Conference on High-Performance Clus-

tered Computing, 2010.

[9] N. A. Robison and T. J. Hacker, “Comparison of VM Deployment
Methods for HPC Education,” in Proc. of the 1st Annual Conference

on Research in Information Technology, 2012, pp. 43–48.

[10] D. Johnson, S. Mason, and B. Hartpence, “Designing, Constructing
and Implementing a Low-Cost Virtualization Cluster for Education,”
in Proc. of International Multi-Conference on Society, Cybernetics and

Informatics, 2013.

[11] S. Hunold and A. Carpen-Amarie, “Reproducible MPI Benchmarking Is
Still Not As Easy As You Think,” IEEE Transactions on Parallel and

Distributed Systems, vol. 27, no. 12, pp. 3617–3630, 2016.

[12] A. Bhatele, K. Mohror, S. H. Langer, and K. E. Isaacs, “There Goes
the Neighborhood: Performance Degradation Due to Nearby Jobs,”
in Proceedings of the International Conference on High Performance

Computing, Networking, Storage and Analysis, 2013, pp. 1–41:12.

[13] Y. Inadomi, T. Patki, K. Inoue, M. Aoyagi, B. Rountree, M. Schulz,
D. Lowenthal, Y. Wada, K. Fukazawa, M. Ueda, M. Kondo, and
I. Miyoshi, “Analyzing and Mitigating the Impact of Manufacturing
Variability in Power-constrained Supercomputing,” in Proc. of the In-

ternational Conference for High Performance Computing, Networking,

Storage and Analysis, 2015, pp. 1–78:12.

[14] O. Tuncer, E. Ates, Y. Zhang, A. Turk, J. Brandt, V. J. Leung,
M. Egele, and A. K. Coskun, “Diagnosing Performance Variations in
HPC Applications Using Machine Learning,” in Proc. of International

Supercomputing Conference, 2017, pp. 355–373.

[15] E. Luque, R. Suppi, and J. Sorribes, “A Quantitative Approach for
Teaching Parallel Computing,” in Proc. of the 23rd SIGCSE Technical

Symposium on Computer Science Education, 1992, pp. 286–298.

[16] J. Hartman and D. Sanders, “Teaching parallel processing using free
resources,” in Proc. 26th IEEE Frontiers in Education Conference, vol. 3,
1996, pp. 1483–1486.

[17] A. N. Pears, “Using the DiST Simulator to Teach Parallel Computing
Concepts,” in Proc. of the 1st International Forum on Parallel Comput-

ing Curricula, 1995.



[18] G. Zarza, D. Lugones, D. Franco, and E. Luque, “An Innovative
Teaching Strategy to Understand High-Performance Systems through
Performance Evaluation,” in Proc. of International Comference on

Computational Science, 2012.
[19] A. Degomme, A. Legrand, G. Markomanolis, M. Quinson, M. Stillwell,

and F. Suter, “Simulating MPI applications: the SMPI approach,” IEEE

Transactions on Parallel and Distributed Systems, vol. 28, pp. 2387–
2400, 2017.

[20] H. Casanova, A. Giersch, A. Legrand, M. Quinson, and F. Suter, “Ver-
satile, Scalable, and Accurate Simulation of Distributed Applications
and Platforms,” Journal of Parallel and Distributed Computing, vol. 74,
no. 10, pp. 2899–2917, 2014.

[21] “The SimGrid Project,” Available at http://simgrid.org/, 2018.
[22] B. Lester, The Art of Parallel Programming. Prentice Hall, 1993.
[23] “Riverbed Modeler,” Available at https://www.riverbed.com/fr/products/

steelcentral/steelcentral-riverbed-modeler.html, 2018.
[24] P. Velho, L. Mello Schnorr, H. Casanova, and A. Legrand, “On the

Validity of Flow-level TCP Network Models for Grid and Cloud
Simulations,” ACM Transactions on Modeling and Computer Simulation,
vol. 23, no. 4, 2013.

[25] A. Kozinov, E.and Shtanyuk, “Learning Parallel Computations with
ParaLab,” in Proc. of the 1st Ural Workshop on Parallel, Distributed,

and Cloud Computing for Young Scientists, 2015, pp. 11–20.
[26] V. Gergel and A. Labutina, “ParaLab System for Investigating the

Parallel Algorithms,” in Proc. of the Russia-Taiwan Symposium on

Methods and Tools of Parallel Processing, 2010, pp. 95–104.
[27] L. Bobelin, A. Legrand, D. A. G. Márquez, P. Navarro, M. Quinson,

F. Suter, and C. Thiery, “Scalable Multi-Purpose Network Representation
for Large Scale Distributed System Simulation,” in Proceedings of the

12th IEEE/ACM International Symposium on Cluster, Cloud and Grid

Computing (CCGrid), Ottawa, Canada, May 2012, pp. 220–227.
[28] A. Faraj, X. Yuan, and D. Lowenthal, “STAR-MPI: self tuned adaptive

routines for MPI collective operations,” in Proc. of the 20th ACM Intl.

Conf. on Supercomputing, 2006, pp. 199–208.
[29] R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization of Collective

Communication Operations in MPICH,” International Journal of High

Performance Computing Applications, vol. 19, no. 1, pp. 49–66, 2005.
[30] D.-K. Panda, K. Tomko, K. Schulz, and M. A., “The MVAPICH Project:

Evolution and Sustainability of an Open Source Production Quality MPI
Library for HPC,” in Proc. of the Workshop on Sustainable Software for

Science: Practice and Experiences, 2013.
[31] T. Cornebize, “Capacity Planning of Supercomputers: Simulating

MPI Applications at Scale,” Master’s thesis, Grenoble INP ;
Université Grenoble - Alpes, 2017. [Online]. Available: https:
//hal.inria.fr/hal-01544827

[32] “SMPI Integration Testing of MPI Proxy applications,” https://github.
com/simgrid/SMPI-proxy-apps, 2018.

[33] “SMPI Courseware,” https : / / simgrid . github. io / SMPI CourseWare/,
2018.

[34] “Grid’5000 Testbed,” www.grid5000.fr, 2018.
[35] “The WRENCH Project,” http://wrench-project.org, 2018.


