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Abstract. With the rapid development of Wireless Sensor Network-
s (WSNs), the amount of sensory data manifests an explosive growth.
Currently, the sensory data generated by some WSNs is more than ter-
abytes or petabytes, which has already exceeded the computation and
transmission abilities of a WSN. Fortunately, the volume of valuable data
for a given query is usually small. For a given query @, the dataset which
is highly related to it is called the relative kernel dataset K% of Q. In this
paper, we study the problem of retrieving relative kernel dataset from big
sensory data for continuous queries. The theoretical analysis and simu-
lation results show that our proposed algorithms have high performance
in term of accuracy and resource consumption.

Keywords: Wireless sensor networks - Big sensory data - Relative ker-
nel dataset.

1 Introduction

The Wireless Sensor Networks (WSNs) provide an efficient way to observe the
complicated physical world. Benefiting from the wireless telecommunications,
embedded systems and sensing techniques, the WSNs have rapidly developed
and are widely used. According to the annual report of Gartner, 20.8 billion
connected things will be in use worldwide in 2020 [1]. Besides, it is estimated
that more than 250 things will connect each second by 2020, and more than 50
billion things will be connected to the Internet by 2020 [2]. Such large scale of
WSNs causes the explosive growth of sensory data.

As an important instance of Big Data, Big Sensory Data also has four V’s
characters. (1) Volume. The amount of sensory data in some WSNs has already
exceeded terabyte or petabyte [1,2], so that the volume of Big Sensory Data is
extremely huge. (2) Variety. As the applications of WSNs are becoming more
and more complex, different types of sensors are applied in one WSN, so that
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the big sensory dataset contains a huge variety of sensory data. (3) Velocity.
In consequence of the high sampling frequency of the large amount of sensors in
a WSN, the generating velocity of big sensory data is quite fast. (4) Value. The
existence of noises and redundancies in big sensory data diminishes its quality.
Although the total value brought by the big sensory data is high, the value-scale
ratio is quite low.

The above properties bring many challenges for data processing in WSN,
and make the existing sensory data acquisition, routing [3-6], data collection [7—
9] and data computation [10,11] techniques no longer applicable. Taking the
Volume property as an example, the current amount of data has already exceeded
the transmission and computation ability of WSNs. Therefore, a series of new in-
network processing algorithms with much lighter transmission and computation
overloads should be considered.

Fortunately, the volume of valuable data for a given query @ is usually small
although the volume of all sensory data in the WSN is quite huge. As the function
of a WSN becomes complex, a WSN containing with n different types of sensors
can support a variety of queries. Therefore, a given query @ is usually highly
related to the sensory data generated by only k types of sensors, where k < n.
The sensory data generated by that k types of sensors is denoted as the relative
kernel dataset K@ of Q.

Most WSNs support continuous queries since the function of the WSNs is
to monitor the physical world in real time. Therefore, continuous queries are
frequent in a WSN. The energy consumption of the WSNs can be reduced a lot
if the energy consumption for processing the continuous queries is reduced. Pro-
cessing continuous queries with the relative kernel datasets are energy efficient
in both communication and computation in consequence of their quite smaller
amount of sensory data compared with the raw big sensory data.

Although there exists some data reduction algorithms for reducing the amoun-
t of sensory data, they are not suitable for processing a given continuous query
energy efficiently. Firstly, the simplest data reduction methods are based on
sampling [12, 13]. However, the sampling methods are only suitable for simple
statistic queries. For other queries, the valuable data of the given query may not
be sampled due to the limitation of sampling frequency. On the other hand, the
sampled data may not be necessary for the given query. Secondly, the compressed
sensing technique is another classical method for in-network data reduction [14,
15]. However, the compressed sensing technique only considers the correlations
between sensory data while ignoring the correlation between the sensory data
and the given query. Then, the data reduction for a given query is not enough.
Thirdly, to the best of our knowledge, the work proposed by Cheng et. al. is the
only one that discussed the big sensory data processing problem up to now [16,
17]. However, the dominant dataset defined in [16] is completely irrelevant to
the given query. That is, all queries in the WSN share one dominant dataset,
which is not energy efficient enough for a given query.

Due to the above reasons, we investigate the relative kernel dataset retriev-
ing problem for continuous queries in this paper. Two algorithms, the Relative
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Kernel Dataset Retrieving (RKDR) Algorithm and the Piecewise Linear Fitting
Based Relative Kernel Dataset Retrieving (PLF-RKDR) Algorithm, are pro-
posed to solve this problem. The RKDR algorithm retrieves the relative kernel
dataset for a given query by the linear correlation analysis. Then a method for
answering the query by the relative kernel dataset is given. The PLF-RKDR
algorithm improves the accuracy of the retrieved relative kernel dataset for a
given query by applying the piecewise linear fitting to retrieve the relative k-
ernel dataset for a given query. Besides, we also provide a method to answer
the query approximately by the retrieved relative kernel dataset. The major
contributions of this paper are as follows.

1. The formal definition of the relative kernel dataset for a given query is
firstly proposed, considering the redundancies between different types of sensory
data and the correlations between sensory data and the given query.

2. Two approximate algorithms, the RKDR algorithm and the PLF-RKDR
algorithm, are proposed to retrieve the relative kernel dataset for a given query.

3. Extensive simulations on both simulation datasets and real datasets are
carried out to verify the accuracies of the algorithms.

The rest of the paper is organized as follows. Section 2 provides the problem
definition. Section 3 proposes the relative kernel dataset retrieving algorithm for
a given query ) and provides a method to estimate the result of @ by the sensory
data in that relative kernel dataset. Section 4 analyzes the performance of the
proposed algorithms. Section 5 shows the simulation results. Section 6 discusses
the related work. Finally, section 7 concludes the whole paper.

2 Problem Definition

2.1 The Wireless Sensor Networks Model

A wireless sensor work has n categories of sensors, which generates n type-
s of sensory data from the monitored environment. These n types of sensory
data are described as n attributes of the monitored environment, denoted as
X1,%2, - ,Ty. The attribute set is denoted as A = {1, 22, -+ ,x,}. For each
given query @ from users, the WSN returns a query result y¢g according to the
sensory data. yg is described as the target value of query (). Apparently, the
target value yq is correlated with partial or all n attributes. Taking the atmo-
spheric environmental monitoring WSN as an example, there are a variety of
sensors collecting data of sulfur dioxide concentration, nitrogen dioxide concen-
tration, etc, which are attributes of this WSN. When the user’s query is the air
quality, the WSN returns an air pollution index. In this application, the query
Q is the air quality and the target value yq is the returned air pollution index.

2.2 The Correlation Model

A training set is applied to explore the correlations between n attributes and
the given query Q. A training set contains m training examples {t1,t2,- - ,tm }.
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A training example ¢;(1 < j < m) is presented by the values of n attributes and
the corresponding target value of query @, i.e. {1, -+, Zn;,¥Q;}-

Linear correlation coefficient is a common metric for the correlation analysis,
especially in WSNs. In most applications of WSNs, the sensory data can reflect
the statement of the monitored physical world intuitively. That is, the simple
linear correlation is usually adequate to reflect the relationship between the
sensory data and the query of a WSN. Therefore, we apply linear correlation as
the correlation metric in this paper. For each attribute x;(1 < i < n), the linear
correlation RZQ between z; and ygq is calculated by the following formula,

_ it (@i — 7)) (Yes — 7o)
VI @y =702 (e — TR)

where m is size of the training set, and x;; denotes the the value of attribute x;
in the jth training example t;, y; denotes the target value in ¢;. Besides, Z; is
the average value of attribute x; in the training set, and ¥ is the average value
of target values in the training set. RiQ has a value between 1 and —1, where
1 is total positive linear correlation, 0 is no linear correlation, and —1 is total
negative linear correlation. That is, the greater absolute value of RZQ presents
the stronger linear correlation between attribute x; and query @.

Re

(1)

2.3 Problem Statement

In this paper, we aimed at retrieving the relative kernel dataset K for a given
query @Q of a WSN. The relative kernel dataset K€ is a subset of attribute set
A. The definition of the relative kernel dataset K% is described as follows.

Definition 1. (8-compatible) For any 0 < § < 1, two attributes x; and x; is
B-compatible if |ri;| < B, where r;j is the linear correlation coefficient between
x; and x; defined as the following equation.

_ > et @ik — Ti) (jn — Tj)
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Definition 2. (8-compatible set) For any 0 < 8 < 1, attribute set S C A is a
B-compatible set if any two attributes in S are 5-compatible with each other.

(2)

Tij

Definition 3. (weight of set) For any attribute set S C A, the weight of S,
denoted as w(S), is defined as w(S) =3, g |RY|, where RY is the correlation
coefficient between attribute x; and query Q.

Definition 4. ((k,3)-Relative Kernel Dataset K?) Given the attribute set A,
query @, the compatible parameter 3, and the size of the relative kernel dataset
k. The (k,B)-Relative Kernel Dataset of query Q is a subset of A, denoted as
K, satisfying the following three conditions.

(1) K@ is a B-compatible subset of attribute set A,

(2) the size of K@ is k, and

(3) w(K?) > w(S) for any set attribute set S satisfying the conditions (1)(2).
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The sensory data in (k, 3)-Relative Kernel Dataset K@ is transmitted and
computed each time query @ is issued by users. The smaller k indicates that less
sensory data is transmitted and computed in a WSN, which saves more energy.
However, the approximate result of query @ is estimated by the sensory data in
KC?. Therefore, the smaller k& will make the approximate answer less accurate.

Problem Statement. We formulate the Relative Kernel Dataset Retrieving
(RKDR) problem in a WSN, as follows.

Input:

1. A query Q;

2. A training set with m training examples;

3. The required size of relative kernel dataset k;

4. The compatible parameter f3.

Output:

1. The (k, B)-Relative Kernel Dataset K@ of query Q;

3 Algorithms For the RKDR Problem

In this section, two algorithms, the Relative Kernel Dataset Retrieving (RKDR)
Algorithm and the Piecewise Linear Fitting Based Relative Kernel Dataset Re-
trieving (PLF-RKDR) Algorithm, are proposed to retrieve the relative kernel
dataset K@ for a given query Q. We also provide two approximate methods to
estimate the result of query @Q by the sensory data in K.

Each attribute z; of a WSN can be regarded as a vertex i with weight R? in
a weighted graph G(V, E). If attributes x; and x; are not S-compatible, there is
an edge (i,7) € E. Then, the RKDR problem can be reduced to the Weighted
Maximum Independent Set (WMIS) problem. However, the WMIS problem is
NP-hard. Therefore, we design heuristic algorithms for the RKDR, problem.

3.1 Relative Kernel Dataset Retrieving Algorithm

The RKDR Algorithm retrieves (k, 8)-Relative Kernel Dataset for a given query
@ based on the linear correlation analysis. It contains the following two steps.

Step 1. Calculate the candidate relative kernel dataset X'.

At first, the candidate relative kernel dataset X includes all n attributes.

Step 1.1. Calculate the linear correlation coefficient RZ»Q between each at-
tribute z; in X’ and the target value yg of query @ by Equation(1).

Step 1.2. Calculate the linear correlation coefficient r;; between any two
attributes z; and z; in X by Equation(2). If x; and z; is not S-compatible
(i.e. |ri;| > B), indicating that attributes z; and z; are redundant in X. If
|R?| < |R§’2|, remove x; from X. Otherwise, remove x; from X. This step reduces
the redundancy of the relative kernel dataset.

Step 2. Retrieve (k, 3)-Relative Kernel Dataset K@ from X.

Sort the absolute values of the linear correlation coefficients of all attributes in
X, ie. {|R2||z; € X}, in descending order. The top-k coefficients are {|RZ|,--,|RS |}
and the corresponding k attributes are {z4,, -+ , %4, }. Therefore, K@ = {z4,, -+ , %4, }-
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After the above two steps, the (k, 8)-Relative Kernel Dataset for query @ is
obtained. The detailed algorithm is shown in Algorithm 1.

Then once the query @ is issued by users again, we provide an approximate
method to estimate the result of Q by the sensory data in K%. For each attribute
T4, in K9, the linear function f; between x,, and Yo can be calculated by least-
squares method. Then, each linear function f; is assigned a weight according to
RaQZ_. Therefore, F is an approximate function based on each linear function f;
and its weight to approximate the target value yg of query @, shown as follows.

Z )i (3)

31|R |

Algorithm 1: Relative Kernel Dataset Retrieving Algorithm

Input: query Q, a training set {¢1,- -+ , ¢, }; the compatible parameter 3; the required size k
Output: (k, 8)-Relative Kernel Dataset K%

1 X ={z1,22, -, 70}

2 for each arttribute wL in X do

R RQ _ YiLy (24— (y; =)

VEL luu—sz] NOTEOEE

4 for each pair of attributes x; and x; in X do

5 if |r;;| > B then

6 ‘ If |R?\ < \R_$|, remove z; from X ; Otherwise, remove z; from X ;

7 Sort {\R?Ha:1 € X'} in descending order, and the top-k of them are {\R?l SR |R§k |};
8 KQ:{I0,17""IQI€};

o Return K9.

3.2 Piecewise Linear Fitting Based Relative Kernel Dataset
Retrieving Algorithm

In the RKDR algorithm, only linear correlation is considered between each at-
tribute and the target value. When the correlations between x; and yq are
exponential, quadric, logarithmic, or etc, the obtained relative kernel dataset
K® may incur non-negligible error for estimating the result of query @ by <.
Therefore, we improve the RKDR algorithm in this section. Instead of linear
correlation coefficient, the PLF-RKDR algorithm applies the piecewise linear
fitting method to estimate the correlation coefficients between attributes and
the target value of . The PLF-RKDR algorithm has the following two steps.

Step 1. Calculate the candidate relative kernel dataset X.

At first, the candidate relative kernel dataset X includes all n attributes.

Step 1.1. Calculate the correlation coefficient between each attribute z; € X
and the target value y¢g by the piecewise linear fitting.

We applied the method in [18] to recursively retrieve the optimal segment
points in piecewise linear fitting. For attribute x;, the training examples are sort-

ed by the increasing order of x;, denoted as (zi1,¥01), - , (Tim, Yom)- £ (x)

7
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is the linear fitting function of (s, yQs); (Ti(s+1)> YQ(s+1))s " » (Tie; YQe) Ob-
tained by the least-squares method. The error sum of squares of linear fitting
function Fi(s’e) (x) is E(s,e). The optimal segment point (z;;,yq;) satisfies that
Jj=argmin,_,_.(E(s,k)+ E(k,e)). This process is conducted recursively until
E(s,e) — (E(s,j) + E(j,e)) < ~. The detailed algorithm is shown in Algorithm
3, which returns the set of segment points SP;. The size of SP; is denoted as p;.
According to the segment points in SP;, training examples are divided into
p; — 1 subsets. Each subset is denoted as S; = {(zijs,yqjs), - » (Zije, YQj°) },
where 1 < j < p; . The linear correlation coefficient R;; for S; and the linear
function f;; for S; is calculated by the least-squares method. Therefore, the
correlation coefficient RZQ of z; is presented as the weighted average correlation
coefficient of all R;;(1 < j < p;). The piecewise linear function f; is as follows.

firy e <y < Tye

fi= e (4)

e
fipi? Tip;s < Ti < Tip;e

Step 1.2. This step is the same as the Step 1.2 of the RKDR algorithm.

Step 2. Retrieve the relative kernel dataset K% from X.

This step is the same as the Step 2 of the RKDR algorithm in Section 3.1.

Therefore, (k, 3)-Relative Kernel Dataset K for query @ is obtained. The
detailed PLF-KDDR Algorithm is shown in Algorithm 2.

Then once the query @ is issued by users again, we provide an approximate
method to estimate the result of Q by the sensory data in K%. For each attribute
7., in K9, the corresponding piecewise linear function f; is assigned a weight
according to R(? F is a new piecewise linear function combining all piecewise
linear function f;(1 < i < k) with weight R? Therefore, the approximate result
of query @ is obtained by put sensory data in K into the function F.

Algorithm 2: PLF-Relative Kernel Dataset Retrieving Algorithm

Input: query Q, training set {t1,--- ,tm }; compatible parameter j3; required size k;
threshold ~
Output: (k, 8)-Relative Kernel Dataset e

1 X ={z1,22, - ,Tn};
2 for each arttribute xz; in X do
3 Sort training examples by increasing order of x;, i.e. (zi1,¥Q1): " , (Tim,YQm);
a SP; = {1, m}ULS-PLF (1, m, 00,7); pi = |SP;|;
5 (zi1,9Q1)s -+ » (Tim, YQm) are divided into p; — 1 subsets S1, -, Sy, —1;
6 for each subset S;(1 < j < p;) do
Z';E:js (23 —T55) (YQK —Yij)
7 Rij = 57— = ;
VELL o @in—mi? [S1Z s (vor—vi)?
8 Calculate piecewise linear function f;; by the the least-squares method;
L e _.s
9 RzQ = ;7L:1 Rij x ziJmV—Ja:il;
10 for each pair of attributes x; and x; in X do
11 if |r;;| > B then
12 ‘ If |R?\ < \R?L remove x; from X ; Otherwise, remove z; from X ;
13 Sort {|R1QHml € X'} in descending order, and the top-k of them are {\R?l [ |R§k |};

14 Return K@ = {Zays s Tay b
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Algorithm 3: Least-Squares Based Piecewise Linear Fitting (LS-PLF)

Input: Two endpoints s and e, E(s, e), the threshold ~
Output: The set of segment points SP

1 Emin = 00, Jmin = 0;

2 if e —s > 1 then

3 J =argmin, . (E(s, k) + E(k, e));

4 if E(s,e) — (E(s,j) + E(j,e)) > v then
5 SP=SPU{j}

6 LS-PLF(s, j, E(s,7),7);

7 LS-PLF(j, e, E(j, €),7);

8 Return SP.

4 The Performance Analysis

For RKDR Algorithm, the computation complexity of computing linear correla-
tion coefficients is O(mn) for n attributes and m training examples. Besides, the
computation complexity of calculating candidate relative kernel dataset in Step
1 is O(mn?), since there are O(n?) pairs of attributes. In Step 2, the compu-
tation complexity of sorting correlation coefficients is O(nlogn). In conclusion,
the computation complexity for RKDR algorithm is O(mn?).

For PLF-RKDR Algorithm, the worst computation complexity of calculat-
ing optimal segment points for each attribute is O(m?). Then the computation
complexity of Step 1.1 is O(nm?). For Step 1.2, the computation complexity of
calculating candidate relative kernel dataset is O(mn?). In Step 2, the compu-
tation complexity of sorting correlation coefficients is O(nlogn). Therefore, the
computation complexity for PLF-RKDR Algorithm is O(nm?).

5 Simulation Results

This section evaluates the performance of our proposed RKDR algorithm and
PLF-RKDR algorithm by extensive simulations. Simulations on both simulation
dataset and real dataset are carried out.

For simulation dataset, we generate two functions among n = 15 attributes

and the target value, denoted as yg = f1(z1,--- ,x15) and yg = fa(x1, -+, Z15).
Each training example contains fifteen randomly generated values of attributes
x1,---,215 and a target value generated by function f; or fs.

The real dataset is collected from a mobile device when a person held it
making 7 types of motions, which are numbered as motion 1 to 7. For motion
i(1 < i <7), yg is set as 1 when it happens, otherwise, it is set as 0. The
attributes are the X-, Y- and Z-axis of a three-axis accelerometer and a three-
axis gyroscope collected by the mobile device. Each training example contains 6
values of attributes and a target value indicating whether motion ¢ happens.

In the following simulations, the relative error er is applied to evaluate the

’
. Yo —Y .
performance of our algorithms. In fact, er; = |QTQQ\ is the absolute error,
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where yg, is the target value estimated by sensory data in our (k, 3)-Relative
Kernel Dataset K% and yg is the true target value of query Q. However, yq is
unknown or inaccessible in real physical world. Therefore, yq is estimated by yg,
which is the target value estimated by sensory data of all n available attributes.

P
. . . Yo —7Y
That is, the relative error er is defined as er = |QyTQQ|.
Firstly, comparison experiments are carried out to compare the performances

of our RKDR Algorithm and PLF-RKDR, Algorithm. Secondly, only PLF-RKDR
algorithm is evaluated in both simulation dataset and real dataset.

5.1 The Comparison Experiments of RKDR Algorithm and
PLF-RKDR Algorithm

A group of comparison experiments are carried out to compare RKDR, Algorithm
and PLF-RKDR Algorithm on simulation dataset. The simulation dataset is
generated by two functions f; and fs, each with m = 3000 training examples.
Each training example contains n = 15 attributes and a target value of the given
query. We compare the relative error er of our RKDR Algorithm and PLF-
RKDR Algorithm with k increases, where k is the size of the (k,)-Relative
Kernel Dataset. The simulation results are presented in Fig.1. Each data point
presented in Fig.1 is the average of simulation results on 500 times of query.

Fig.1 shows that the relative error of PLF-RKDR Algorithm is much smaller
than that of RKDR Algorithm no matter how much & is. Particularly, the rela-
tive error of RKDR Algorithm is almost twice as much as that of PLF-RKDR
Algorithm when k > 5. Therefore, the performance of PLF-RKDR, Algorithm
is better than RKDR Algorithm. Besides, the relative error of both algorithms
on simulation dataset of f; is much less than that of f5, indicating that linear
correlation coefficient may not be suitable for function fs.

T ol B
0.6 = - |- . X 4
A RKDR. 1, \ £~ PLF-RKDR, f 0.12 A/A\ A PLF-RKDR, f,
w Coo A 1 SN a2

A 0.09 1
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T %oz A ~ T oo0s i
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O oo o0oooon i
hig | 0.1 AA\AA ]
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Fig.1: RKDR vs PLF-RKDR Fig.2: The impact of &  Fig. 3: The impact of m

5.2 The Performance of PLF-RKDR Algorithm on Simulation
Dataset

The first group of simulations investigate the impact of k, the size of t(k, 3)-
Relative Kernel Dataset, on the performance of PLF-RKDR. Algorithm on sim-
ulation dataset. We evaluate the relative error er with the increase of k. The
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simulation results are presented in Fig.2. Each data point presented in Fig.2 is
the average of simulation results on 500 times of query.

Fig.2 presents that the relative error er of PLF-RKDR Algorithm on both
simulation datasets of function f; and fy decreases with k increases. Besides, the
performances on simulation dataset with function f; and function f5 are different
with the same k since different query has different Relative Kernel Dataset. That
explains why we retrieve relative kernel dataset for a given continuous query.
Furthermore, Fig.2 also presents that, the relative error reduces to 0.05 when k
is only half of n, this error is pretty small in practice. That is, the network can
save a half of energy when sacrifices only a few accuracy.

The second group of simulations evaluate the impact of m, the size of training
examples, on the performance of PLF-RKDR Algorithm on simulation dataset.
Different scales of training set is applied, i.e. m is set as 500, 1000, 1500, 2000,
2500 and 3000. The size of (k, §)-Relative Kernel Dataset is set to k = 8.

Fig.3 presents the performance of our PLF-RKDR algorithm on the impact
of m. Each data point presented in Fig.3 is the average of simulation results on
500 times of query. Fig.3 presents that the relative error er decreases slowly with
m increases. It is worth noting that even m is relatively small, the relative error
is still under 0.15 when & is no less than a half of n.

5.3 The Performance of PLF-RKDR Algorithm on Real Dataset

As motioned above, the real dataset contains 6 attributes of X-, Y- and Z-axis
of a three axis accelerometer and a three axis gyroscope. The target value of
motion (1 <7 < 7) is set as 1 when motion ¢ happens, otherwise, it is set as 0.
If the estimated target value is closer to 1, we judge that the motion happens.

The first group of simulations show the motion judgement precisions for each
motion affected by k. The simulation results of m = 4796 training examples are
presented in Fig.4(a). Each data point presented in Fig.4(a) is the average of the
simulation results on 1511 times of query. It shows that the precision for each
motion increases with the increase of k. As the figure shows, 80% of the motions
are correctly judged by our PLF-RKDR, Algorithm.

The second group of simulations study the motion judgement precisions un-
der different sizes of training examples, which are shown in Fig.4(b). The size
of (k,B)-Relative Rernel Dataset is set as k& = 4. Each data point presented
in Fig.4(b) is the average of simulation results on 585 times of query. Fig.4(b)
presents that more than 80% of the motions are correctly judged. It also shows
that there was no significant relationship between the precision and m.

1.00

0.95 08 {/1 N [t 11 —‘ —‘
= 4 c = Motion1
2 090 206 2 Motion2
Qg o.85- © Motion3
£ Qo4 Motion4

0.80 & aMotions

0.2 = Motioné
0.754 EMotion7
0.70 0
0 m=1709 m=1639 m=1569 m=1499 m=1429 m=1359
m
(a) The precision affected by k (b) The precision affected by m

Fig. 4: The Performance of PLF-RKDR, Algorithm in Real Dataset
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6 Related Works

Most of the related works are about principal components analysis in WSN,
which reduces data transmission, and then reduces the energy consumption. The
work in [19] combines the compressive sensing and principal component analysis
to efficiently recover the whole dataset through a small subset of data. Anoth-
er work in [20] designs two distributed consensus-based algorithms to process
principal component analysis in WSN. The authors in [21] propose algorithm
to aggregate data through principal component analysis, which is a powerful
technique for dimensionality reduction. However, these works only focus on re-
trieving principal components for the network and the given query has not been
taken into account yet. Therefore, these methods are not suitable to retrieve
relative kernel dataset from big sensory data for a given query.

The authors provide the centralized and distributed algorithms to retrieve
dominant dataset from big sensory data under the condition that the information
loss rate required by users is guaranteed in [16,17]. However, the dominant
dataset is a general one for all queries instead of a specific one for a given
query. This work cannot retrieve relative kernel dataset for a given query.

7 Conclusion

This paper studies retrieving relative kernel dataset for continuous queries from
big sensory data in WSNs. The RKDR Algorithm and PLF-RKDR Algorithm
are proposed to retrieve (k,3)-Relative Kernel Dataset K% for a given query
Q@. Then we provide methods to estimate the approximate result of query @ by
sensory data in K9. Extensive simulations are conducted, which demonstrate
that (k, 3)-Relative Kernel Dataset K@ retrieved by our algorithm can estimate
the result of query @ with high accuracy.
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