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Abstract— Due to its many applications in wireless sensor
networks, localization of a moving target has received increasing
attention. One popular class of localization schemes uses time-
difference-of-arrival (TDOA) of some beacon signal detected
by multiple agents in the network. However, much of the work
on TDOA-based source localization in the literature adopts a
centralized approach, where all measurements are sent to a
reference agent which produces an estimate of the target’s
location. In this work, we use first observability principles
to show that it is impossible to estimate the target’s position
with an insufficient number of TDOA measurements. Then, we
argue that, by averaging the estimates of neighboring agents,
each agent in the network can successfully estimate the source
location if and only if every agent is part of a network that
has a sufficient number of TDOA measurements, even if each
agent has access to an insufficient number of measurements. A
numerical example is provided to illustrate these results.

I. INTRODUCTION

Source localization using measurements from spatially

separated sensors has many applications in wireless sensor

networks (WSNs) [1] [2]. Various algorithms have been

proposed in this area, among which time-difference-of-arrival

(TDOA) localization methods are widely used for accurate

localization of a target. Generally speaking, TDOA algo-

rithms rely on a source emitting a signal periodically, which

is detected by special receivers deployed either at fixed

locations or on mobile robots. If multiple receivers detect

the same signal, it is possible to infer the source’s location

using the detection times at these receivers.

Much of the work on TDOA-based source localization

in the literature adopts a centralized approach, in which a

reference node is chosen and the times of arrival (TOA) of

the emitted signal for all other nodes in the network are

subtracted from the reference node’s TOA, generating TDOA

measurements at the reference node. If the propagation speed

of the signal is known, the TDOA measurements can be

converted to range-difference measurements, which are then

used to estimate the location of the target [3], [4]. This

centralized approach has a long history and is widely used in

aerospace systems [5]. Geometric treatment of the problem

for a stationary source was considered in [6] and [7], where

the authors infer the source location from the geometric

relations imposed by TDOA measurements between a ref-

erence node and all other nodes in the network. If the

source’s location changes with time, dynamic approaches are
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generally used for localization, in which a filter is used to

estimate the source’s location. In [8], the authors employ an

Extended Kalman Filter (EKF) for source localization, while

in [9], the Unscented Kalman Filter and Particle Filtering are

considered to estimate the target’s location.

Due to power and bandwidth constraints in WSNs, central-

ized information processing may be infeasible, particularly

for a large-scale and unreliable network. Moreover, some

sensors cannot transmit their measurements to the reference

node due to their limited communication ranges. These draw-

backs motivated the investigation of distributed strategies for

TDOA localization. In [10], distributed source localization in

multihop networks was considered. A connected dominating

set of nodes work as the network backbone to collect the

measurements, and a leader node of that set is selected

to estimate the target’s location, essentially acting as a

centralized estimator of the target’s position. In [1], the

authors alleviate the need for a common reference node

by employing a network of paired sensors where all such

pairs can communicate with one another. As we discuss

later in Section III, this approach can be considered as semi-

centralized, as each pair is required to have sufficient TDOA

measurements to estimate the target’s location independently.

In this work, we use a structural observability approach to

investigate the network topology conditions for distributed

localization of a moving target. We show that source local-

ization is not possible (centrally, and therefore distributively)

when the number of TDOA measurement is insufficient.

Then, we demonstrate that it is possible to successfully

estimate the target’s position in a distributed manner if every

agent is part of a network that collectively has a sufficient

number of TDOA measurements, even if each agent has an

insufficient number of measurements.

Our work revolves around distributed observability in

WSNs; in particular, the notion of structural observability of

systems is exploited. Structural analysis deals with system

properties that do not depend on the numerical values of

the parameters, but only on the underlying structure (zeros

and non-zeros) of the system [11] [12] [13]. It turns out

that if a structural property holds for one possible choice of

non-zero elements as free parameters, it is true for almost

all choices of non-zero elements and, therefore, is called a

generic property of the system. Furthermore, it can be shown

that those particular (non-admissible) choices for which the

generic property does not hold, lie on some algebraic variety

with zero Lebesgue measure [14]. This work is similar to

[12] and [15] in that it employs structural analysis on the

system matrices. However, the results reported in [12] and

2018 Annual American Control Conference (ACC)
June 27–29, 2018. Wisconsin Center, Milwaukee, USA

978-1-5386-5427-9/$31.00 ©2018 AACC 2897



[15] cannot be used here, as the nonzero parameters of

our system matrices after discretization of dynamics and

linearizion of measurements lie on that algebraic variety.

This is because the aforementioned work treats all non-

zero elements as free parameters, which in turn disguises

the importance of the number of TDOA measurements. In

Section III, we discuss the relationship between the number

of TDOA measurements and the observability of the system.

The remainder of this paper is organized as follows.

In Section II we present the target movement model and

the TDOA measurement model. Section III provides the

main results of this paper on distributed estimation, while a

numerical simulation example is given in Section IV. Finally,

Section V provides concluding remarks and future research

directions.

II. PROBLEM SETUP

We consider a moving target in the 3D space with

p(t) =
[

px(t) py(t) pz(t)
]T

denoting its coordinates at

time t. The target moves randomly in space according to the

following model
[

ṗ(t)
p̈(t)

]

=

[

0 I3
0 0

] [

p(t)
ṗ(t)

]

+

[

0
I3

]

w(t) (1)

where I3 is the 3 × 3 identity matrix and w(t) ∈ R
3 is

the process noise which is assumed to be zero-mean white

Gaussian noise with covariance matrix Q. The target emits

a signal periodically that gets detected by a group of N

agents, or nodes, at different times depending on each agent’s

relative distance to the target.

At each detection, agent i records the signal’s time-of-

arrival (TOA) and acquires the TOAs of all other agents that

can communicate their information to agent i. We call the

set of agents that can send their information to agent i as

neighbors of agent i, and denote them with Ni. Each agent

then subtracts the TOAs of its neighbors from its own TOA,

generating a list of time-difference-of-arrival (TDOA) mea-

surements. Assuming that the propagation speed of the signal

is known, these TDOA measurements can be converted to a

list of range differences, and the measurements available for

each agent can be represented by

yi(kT ) = hi(kT ) + vi(kT ) (2)

where

hi(x(t)) =







hi,1(x(t))
...

hi,|Ni|(x(t))






(3)

with

hi,j(x(t)) = ‖p(t)− pi(t)‖ − ‖p(t)− pi,j(t)‖ (4)

Here, T is the period at which the signal is emitted, vi(t) ∈
R

|Ni| is the measurement noise, assumed to be zero-mean

white Gaussian noise with covariance matrix Ri, pi(t) is the

position of agent i, and pi,j(t) is the position of the j-th

neighbor of agent i.

Denoting the target’s state as x(t) =
[

p(t) ṗ(t)
]T

, and

descritizing the model in (1) with sampling time T , with

slight abuse of notation, we can write the discrete-time model

of the target as

x(k + 1) = Ax(k) +Bw(k) (5)

where

A =

















1 0 0 T 0 0
0 1 0 0 T 0
0 0 1 0 0 T

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

















, B =



















T 2

2 0 0

0 T 2

2 0

0 0 T 2

2
T 0 0
0 T 0
0 0 T



















(6)

are obtained by discretization of the system matrices shown

in (1).

The time-varying measurement matrix Hi(k) can be ob-

tained from (2), where

Hi(k) =









∂hi,1(k)
∂px(k)

∂hi,1(k)
∂py(k)

∂hi,1(k)
∂pz(k) 0 0 0

...
...

...
...

...
...

∂hi,|Ni|
(k)

∂px(k)

∂hi,|Ni|
(k)

∂py(k)

∂hi,|Ni|
(k)

∂pz(k) 0 0 0









(7)

and

∂hi,j(k)

∂px(k)
=

px(k)− pxi (k)

‖p(k)− pi(k)‖
−

px(k)− pxi,j(k)

‖p(k)− pi,j(k)‖
(8)

∂hi,j(k)

∂py(k)
=

py(k)− p
y
i (k)

‖p(k)− pi(k)‖
−

py(k)− p
y
i,j(k)

‖p(k)− pi,j(k)‖
(9)

∂hi,j(k)

∂pz(k)
=

pz(k)− pzi (k)

‖p(k)− pi(k)‖
−

pz(k)− pzi,j(k)

‖p(k)− pi,j(k)‖
(10)

III. DISTRIBUTED ESTIMATION

The goal is for every agent to estimate the target’s position

without requiring a central node to collect all measurements

and propagate an estimate to all agents in the network. To

that end, we discuss two distributed estimation schemes.

A. Semi-centralized estimation

In this approach, each agent runs its own filter using

its own TDOA measurements. Here, agents exchange only

the TOA values to generate TDOA measurements, along

with their respective positions, without exchanging any other

pieces of information. Each node implements an Extended

Kalman Filter (EKF) to estimate the system’s state

x̂i(k|k − 1) = Ax̂i(k − 1|k − 1) (11)

x̂i(k|k) = x̂i(k|k − 1)

+Ki(k)
[

yi(k)− hi(x̂i(k|k − 1))
]

(12)

where x̂i(k|j) is the i-th node’s estimate of the state at time

k after the j-th measurement has been processed, and Ki(k)
is its filtering gain, which is computed according to

Ki(k) = Pi(k|k − 1)Hi(k)
T

×
[

Hi(k)Pi(k|k − 1)Hi(k)
T +Ri

]−1 (13)
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• All of the points which satisfy

det









λ1 λ2 λ3

λ4 λ5 λ6

λ7 λ8 λ9







 = 0

i.e., when the 3 TDOA measurements are linearly

dependent.

For all agents in the network to be able to esti-

mate the target’s position, we would require that all such

pairs (A,H1(k)),(A,H2(k)),. . . ,(A,HN (k)) to be observ-

able, i.e., we would require the pair (IN ⊗ A,DH) to be

observable, where ⊗ denotes the Kronecker product, and

DH(k) ,







H1(k) 0
. . .

0 HN (k)






(21)

Under this formulation, each agent can estimate the target’s

location when it has a minimum of 3 TDOA measurements,

corresponding to each agent having a minimum of 3 neigh-

bors. For that reason, we refer to this approach as semi-

centralized, as each agent needs to be heavily connected such

that the system is observable using its own measurements.

Next, we discuss how the number of required communication

links can be reduced, and argue that it is possible to estimate

the target’s location without the need for heavily connecting

each agent.

B. Estimate exchange and distributed estimation

We begin this discussion by investigating the network-

wide estimation error from all agents under the semi-

centralized approach in the previous subsection. Let

x̂(k|k) =
[

x̂1(k|k)
T . . . x̂N (k|k)T

]T
denote the

network-wide estimate of the network-wide state x(k) =
[

x(k)T . . . x(k)T
]T

= 1N ⊗ x(k), where 1N ∈ R
N is

the column vector whose entries are all 1. The dynamics of

this network-wide state can be derived as follows

x(k + 1) =1N ⊗ (Ax(k) +Bw(k))

= (IN ⊗A)x(k) + (IN ⊗B)w(k) (22)

with w(k) , 1N ⊗ w(k) representing the network-wide

process noise. Denoting the i-th agent’s estimation error by

x̃i(k) , x(k) − x̂i(k|k), and the network-wide estimation

error x̃(k) ,
[

x̃1(k)
T . . . x̃N (k)T

]T
, the dynamics of

x̃(k) are given by

x̃(k + 1) = (IN ⊗A) (I6N −K(k)DH(k)) x̃(k)

+ η(k)
(23)

where K(k) is a block-diagonal matrix of the filtering gains

K1(k) . . .KN (k), and the vector η(k) collects the terms

independent of x̃(k). This network-wide estimation error, as

discussed in the previous subsection, can be stabilized if and

only if the pair (IN ⊗A,DH(k)) is generically observable,

where each agent needs to have a sufficient number of

neighbors to estimate the process using only its own TDOA

measurements.

Now, let us reconsider the dynamical system in (22), and

noting that for a stochastic matrix W ∈ R
N×N , W1N = 1N ,

we can rewrite (22) as

x(k + 1) =1N ⊗ (Ax(k) +Bw(k))

=W1N ⊗Ax(k) + 1N ⊗Bw(k)

= (W ⊗A)x(k) + (IN ⊗B)w(k) (24)

For the dynamical system in (24), a filter can be designed

with estimation error dynamics that can be expressed as

x̃(k + 1) = (W ⊗A) (I6N −Kc(k)DH(k)) x̃(k)

+ η(k)
(25)

where Kc(k) is the filter gain, which can stabilize the

error dynamics if and only if the pair (W ⊗ A,DH(k)) is

generically observable. In the following, we will show that

it is possible to obtain a network-wide estimation error with

dynamics similar to (25) by averaging the estimates among

neighboring agents.

Let W ∈ R
N×N be a stochastic matrix with entries

wij > 0 if i = j or if agents i and j can exchange

information; otherwise wij = 0. We assume here that the

communication links are bidirectional, and that if agent j can

send its information to agent i, then the reverse is also true

and wij , wji > 0. Every agent in the network implements

a filtering scheme similar to the semi-centralized case, but

followed by updating its estimate by averaging the estimates

from neighbors and itself. The filter implemented by each

agent in the network is then given by

x̂i(k|k − 1) = Ax̄i(k − 1) (26)

x̂i(k|k) = x̂i(k|k − 1)

+Ki(k)
[

yi(k)− hi(x̂i(k|k − 1))
]

(27)

x̄i(k) =

N
∑

j=1

wij x̂j(k|k) (28)

Denoting x̂i(k|k − 1) by x̂i(k), and substituting (28) and

(27) into (26), a one-step formulation of agent i’s estimate

can be expressed as

x̂i(k + 1) =

N
∑

j=1

wij

[

Ax̂j(k)+

AKj(k)

(

yj(k)− hj(x̂j(k))

)]

(29)

The i-th agent’s estimation error is then given by

x̃i(k + 1) =

N
∑

j=1

wij [A(I −Kj(k)Hj(k))x̃j(k)

+ ηj(k)]

(30)

Denoting the network-wide estimation error by x̃(k) ,
[

x̃1(k)
T . . . x̃N (k)T

]T
, then

x̃(k + 1) = (W ⊗A) (I6N −K(k)DH(k)) x̃(k)

+ η(k)
(31)
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Fig. 5. Simulation of the proposed method with a network of 8 agents. The
circle represents the location of the target, while the squares represent the
positions of each agent. The straight thin lines between squares represent
the communication links among agents. Plotted data show the path taken
by the target over time, along with each agent’s estimate of the target’s
location.

Fig. 6. Norm of estimation error for each agent in the network.

show that it is indeed possible to estimate the target’s position

by every agent in the network if every agent is connected to a

network with a minimum of 3 TDOA measurements. While

this work focuses on the case of fixed sensor locations, it

is desirable to consider the case where the sensors will be

mobile robots. Therefore, future work will expand analysis to

the cases of intermittent observations and switching network

topologies along with the development of a cooperative

control law in order to localize and track a moving target.
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