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Abstract—Due to its many applications in wireless sensor
networks, localization of a moving target has received increasing
attention. One popular class of localization schemes uses time-
difference-of-arrival (TDOA) of some beacon signal detected
by multiple agents in the network. However, much of the work
on TDOA-based source localization in the literature adopts a
centralized approach, where all measurements are sent to a
reference agent which produces an estimate of the target’s
location. In this work, we use first observability principles
to show that it is impossible to estimate the target’s position
with an insufficient number of TDOA measurements. Then, we
argue that, by averaging the estimates of neighboring agents,
each agent in the network can successfully estimate the source
location if and only if every agent is part of a network that
has a sufficient number of TDOA measurements, even if each
agent has access to an insufficient number of measurements. A
numerical example is provided to illustrate these results.

I. INTRODUCTION

Source localization using measurements from spatially
separated sensors has many applications in wireless sensor
networks (WSNs) [1] [2]. Various algorithms have been
proposed in this area, among which time-difference-of-arrival
(TDOA) localization methods are widely used for accurate
localization of a target. Generally speaking, TDOA algo-
rithms rely on a source emitting a signal periodically, which
is detected by special receivers deployed either at fixed
locations or on mobile robots. If multiple receivers detect
the same signal, it is possible to infer the source’s location
using the detection times at these receivers.

Much of the work on TDOA-based source localization
in the literature adopts a centralized approach, in which a
reference node is chosen and the times of arrival (TOA) of
the emitted signal for all other nodes in the network are
subtracted from the reference node’s TOA, generating TDOA
measurements at the reference node. If the propagation speed
of the signal is known, the TDOA measurements can be
converted to range-difference measurements, which are then
used to estimate the location of the target [3], [4]. This
centralized approach has a long history and is widely used in
aerospace systems [5]. Geometric treatment of the problem
for a stationary source was considered in [6] and [7], where
the authors infer the source location from the geometric
relations imposed by TDOA measurements between a ref-
erence node and all other nodes in the network. If the
source’s location changes with time, dynamic approaches are
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generally used for localization, in which a filter is used to
estimate the source’s location. In [8], the authors employ an
Extended Kalman Filter (EKF) for source localization, while
in [9], the Unscented Kalman Filter and Particle Filtering are
considered to estimate the target’s location.

Due to power and bandwidth constraints in WSNs, central-
ized information processing may be infeasible, particularly
for a large-scale and unreliable network. Moreover, some
sensors cannot transmit their measurements to the reference
node due to their limited communication ranges. These draw-
backs motivated the investigation of distributed strategies for
TDOA localization. In [10], distributed source localization in
multihop networks was considered. A connected dominating
set of nodes work as the network backbone to collect the
measurements, and a leader node of that set is selected
to estimate the target’s location, essentially acting as a
centralized estimator of the target’s position. In [1], the
authors alleviate the need for a common reference node
by employing a network of paired sensors where all such
pairs can communicate with one another. As we discuss
later in Section III, this approach can be considered as semi-
centralized, as each pair is required to have sufficient TDOA
measurements to estimate the target’s location independently.

In this work, we use a structural observability approach to
investigate the network topology conditions for distributed
localization of a moving target. We show that source local-
ization is not possible (centrally, and therefore distributively)
when the number of TDOA measurement is insufficient.
Then, we demonstrate that it is possible to successfully
estimate the target’s position in a distributed manner if every
agent is part of a network that collectively has a sufficient
number of TDOA measurements, even if each agent has an
insufficient number of measurements.

Our work revolves around distributed observability in
WSNss; in particular, the notion of structural observability of
systems is exploited. Structural analysis deals with system
properties that do not depend on the numerical values of
the parameters, but only on the underlying structure (zeros
and non-zeros) of the system [11] [12] [13]. It turns out
that if a structural property holds for one possible choice of
non-zero elements as free parameters, it is true for almost
all choices of non-zero elements and, therefore, is called a
generic property of the system. Furthermore, it can be shown
that those particular (non-admissible) choices for which the
generic property does not hold, lie on some algebraic variety
with zero Lebesgue measure [14]. This work is similar to
[12] and [15] in that it employs structural analysis on the
system matrices. However, the results reported in [12] and
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[15] cannot be used here, as the nonzero parameters of
our system matrices after discretization of dynamics and
linearizion of measurements lie on that algebraic variety.
This is because the aforementioned work treats all non-
zero elements as free parameters, which in turn disguises
the importance of the number of TDOA measurements. In
Section III, we discuss the relationship between the number
of TDOA measurements and the observability of the system.

The remainder of this paper is organized as follows.
In Section II we present the target movement model and
the TDOA measurement model. Section III provides the
main results of this paper on distributed estimation, while a
numerical simulation example is given in Section IV. Finally,
Section V provides concluding remarks and future research
directions.

II. PROBLEM SETUP

We consider a moving target in the 3D space with
p(t) = [p"(t) p¥(t) p*(t)] denoting its coordinates at
time ¢. The target moves randomly in space according to the
following model

pt)| _ |0 Is| |p(t) 0

o 1 R ARG
where I3 is the 3 x 3 identity matrix and w(t) € R? is
the process noise which is assumed to be zero-mean white
Gaussian noise with covariance matrix (). The target emits
a signal periodically that gets detected by a group of N
agents, or nodes, at different times depending on each agent’s
relative distance to the target.

At each detection, agent ¢ records the signal’s time-of-
arrival (TOA) and acquires the TOAs of all other agents that
can communicate their information to agent ¢. We call the
set of agents that can send their information to agent ¢ as
neighbors of agent i, and denote them with A/;. Each agent
then subtracts the TOAs of its neighbors from its own TOA,
generating a list of time-difference-of-arrival (TDOA) mea-
surements. Assuming that the propagation speed of the signal
is known, these TDOA measurements can be converted to a
list of range differences, and the measurements available for
each agent can be represented by

yi(kT) = hi(kT) + v;(ET) 2)
where
hi1(x(t))
hi(x(t)) = : 3)
hi ) (2(1))
with

hij(2(t)) = [lp(t) = (DI = lp(t) = pis (O )

Here, T is the period at which the signal is emitted, v;(t) €
RWil is the measurement noise, assumed to be zero-mean
white Gaussian noise with covariance matrix R;, p;(t) is the
position of agent ¢, and p; ;(¢) is the position of the j-th
neighbor of agent 3.

Denoting the target’s state as z(t) = [p(t) p(t)]T, and
descritizing the model in (1) with sampling time 7', with
slight abuse of notation, we can write the discrete-time model
of the target as

z(k+1) = Az(k) + Bw(k) ®)

where
e -
1 00T 0 0 oo 0
0100 T 0 o Z o
1001 0 0 T o o
A=looo 1 0 ol B=lp o 3
000 0 1 O 0O T 0
000 0 0 1 0o 0 T
i (6)

are obtained by discretization of the system matrices shown
in (1).

The time-varying measurement matrix H;(k) can be ob-
tained from (2), where

6hi=1(k}) 6hi)1(k}) ahiyl(k})
ap (k) ap () oy 0 00
Hi(k) = : : : o
Ohin; (k) Ohiny (k) Ohy n, (k)
op7 (k) Dpv () oy 0 0 0(7)
and
Ohij(k) _ p"(k) —pi(k) p* (k) —pi (k) ®
o= (k) |p(k) —pi(R)ll  llp(k) — pij(R)]]
Ohus(K) _ p(k) —pbk) PR —pLR)
opv(k)  lp(k) —ps(R)|l (k) — pi ()]l
Oh;;(k)  p*(k)—pi(k)  p*(k)—pj;(k) (10)
|

III. DISTRIBUTED ESTIMATION

The goal is for every agent to estimate the target’s position
without requiring a central node to collect all measurements
and propagate an estimate to all agents in the network. To
that end, we discuss two distributed estimation schemes.

A. Semi-centralized estimation

In this approach, each agent runs its own filter using
its own TDOA measurements. Here, agents exchange only
the TOA values to generate TDOA measurements, along
with their respective positions, without exchanging any other
pieces of information. Each node implements an Extended
Kalman Filter (EKF) to estimate the system’s state

Az (k =1k —1)
Z;(klk —1)

+K; (k) [yi(k) — hi(2;(k|k — 1))](12)
where Z,(k|j) is the i-th node’s estimate of the state at time

k after the j-th measurement has been processed, and K; (k)
is its filtering gain, which is computed according to

Ki(k) = Pi(k|k — 1)H;(k)"
x [H;(k)Pi(klk — 1) Hy(k)T + R;]~

Gkl —1) =
Ti(klk) =

(1)

1 (13)
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Fig. 1. Network of 3 agents monitoring the target with agent 1 as the
reference node.

and

Pi(klk—1) = APk — 1]k —1)A" + BQB” (14)

Pi(klk) = [I - Ki(k)Hi(k)] Pi(k|k — 1)
[ — K(k)Hi(k)]"
+Ki (k)R K (k)T (15)

where P;(k|j) is the i-th agent’s error covariance matrix
at time k after the j-th measurement has been processed.
It is assumed that the agents can effectively exchange and
process these pieces of information between consecutive
signal emissions.

It is well-known (see [16] and [17]) that the estimation
error for agent 7 under this scheme

Ti(k +1) = A — Ki(k)Hi(k))Zi(k) +ni(k) ~ (16)

is stable if and only if the pair (A, H;(k)) is observable,
where 7;(k) £ x(k) — #;(k|k) is the estimation error for
agent 7 and the vector 7);(k) collects the terms independent
of Z;(k). In the following, we will show that the pair
(A, H;(k)) is unobservable when agent ¢ has less than 3
TDOA measurements. To avoid clutter, we will consider only
agent 1 of the network, and drop the ¢ subscript from the
following analysis.

As discussed earlier, if a structural property is true for
one admissible choice of non-zero elements, it is true for
almost all choices of non-zero elements. Additionally, it
can be shown that the choices of parameters for which
the generic property does not hold, lie on a hypersurface
(see Definition 3.1) in the free parameter space with zero
Lebesgue measure [14]. Due to the fixed structure of our
system matrix A in (6) and the time-varying measurement
matrix H (k) in (7), it is beneficial to utilize structural
analysis when examining the observability of our system. In
the following, we employ a structural approach to establish
the minimum number of TDOA measurements needed to
render the process generically observable.

Definition 3.1: Let f = f(x1,...,x,) be a polynomial in
the n variables xz1,...,z, with coefficients in R, then the
point £ = (Z1,...,T,) in R™ is said to be a zero of f if
f(&1,...,%,) = 0. The set of zeros of f is called the locus
of f. A subset V of R™ is called a hypersurface in R"™ if it
is the locus of a nonconstant polynomial.

First, we consider the case where agent 1 only has two
neighbors and, therefore, only two TDOA measurements as
shown in Figure 1. The measurement matrix H (k), in this
case, admits the following structure

A A2 A3 0 0 0

HA_)\4)\5)\6000

7)

Fig. 2. Network of 4 agents monitoring the target with agent 1 as the
reference node.

The system is said to be generically observable if the pair
(A, Hy) is observable for almost all values of T', A1, ..., Ag.
In other words, the system is generically observable if and
only if the observability matrix O is full rank for almost all
values of T', A1, ..., Ag, Where

H)
HyA
H A2
H\ A3
H),A*
H), AP

(18)

It is well known that rank(Q©) < 6 if and only if all 6 x 6
minors of O are zero [14]. Using a program capable of
processing symbolic math, such as Wolfram Mathematica
and its command Minors, we can easily verify that all
6 x 6 minors of O in (18) are zero, regardless of the values
of T, \1,..., ¢ This implies that the process in (5) with
measurement matrix (7) is unobservable when the node has
two or less TDOA measurements'.

Now we consider the case where agent 1 has three neigh-
bors and, therefore, three TDOA measurements as shown in
Figure 2. The measurement matrix H (k), in this case, admits
the following structure

A A2 A3 0 0 O
Hy=1X X X 0 0 0 19)
A A A 0 0 O

Checking all 6 x 6 minors of O, we observe that some
minors of O are not identically zero and are all of the form

aT3 (A3 (AsA7 — Agdg) + Ao (Aadg — AgA7)

2
A1 (A6As — Ashg))? 20

for some o € R. Therefore, we conclude that rank(Q) =
6 for almost all values of T and Aq,..., A9, and that the
pair (A, H(k)) is generically observable if the agent has a
minimum of 3 TDOA measurements2. Furthermore, the set
of values that render the pair unobservable is a hypersurface
in the free parameter space where the expression in (20) is
zero. Interestingly, this means that the process is generically
observable except when:

o The sampling time used for discretization of the system
in (5) is 0.

1If the node has only one TDOA measurements, and therefore only one
neighbor, then there is only one 6 x 6 minor of O and it is det(O).

21f the node has more than 3 TDOA measurements, it can be verified that
rank(O) = 6 if rank(H ) > 3.
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o All of the points which satisfy

A1 Ao A3
det A A5 g =0
A7 As Ao

i.e., when the 3 TDOA measurements are linearly
dependent.

For all agents in the network to be able to esti-
mate the target’s position, we would require that all such
pairs (A, Hi(k)),(A, Ha(k)),...,(A, Hy(k)) to be observ-
able, i.e., we would require the pair (Iy ® A, Dg) to be
observable, where ® denotes the Kronecker product, and
Hq(k) 0
Dy (k) = 1)
0 Hy (k)

Under this formulation, each agent can estimate the target’s
location when it has a minimum of 3 TDOA measurements,
corresponding to each agent having a minimum of 3 neigh-
bors. For that reason, we refer to this approach as semi-
centralized, as each agent needs to be heavily connected such
that the system is observable using its own measurements.
Next, we discuss how the number of required communication
links can be reduced, and argue that it is possible to estimate
the target’s location without the need for heavily connecting
each agent.

B. Estimate exchange and distributed estimation

We begin this discussion by investigating the network-
wide estimation error from all agents under the semi-
centralized approach in the previous subsection. Let
iklk) = [21(kk)T #n(kk)T]" denote the
network-wide estimate of the network-wide state z(k) =
[x(k)T x(k‘)T]T = 1y ® z(k), where 15 € RY is
the column vector whose entries are all 1. The dynamics of
this network-wide state can be derived as follows

z(k+1) =1y ® (Az(k) + Bw(k))

=(In® A)z(k) + (In @ B)w(k) (22)

with w(k) = 1y ® w(k) representing the network-wide
process noise. Denoting the i-th agent’s estimation error by
Z;(k) & x(k) — &;(k|k), and the network-wide estimation
error Z(k) £ [21(k)T QEN(k)T}T, the dynamics of
(k) are given by

Z(k+1)=(Un®A) (Isn — K(k)Dy(k)) Z(k)
+n(k)

where K (k) is a block-diagonal matrix of the filtering gains
Ky(k)...Ky(k), and the vector n(k) collects the terms
independent of Z (k). This network-wide estimation error, as
discussed in the previous subsection, can be stabilized if and
only if the pair (Iy ® A, D (k)) is generically observable,
where each agent needs to have a sufficient number of
neighbors to estimate the process using only its own TDOA
measurements.

(23)

Now, let us reconsider the dynamical system in (22), and
noting that for a stochastic matrix W € RN*N Wiy = 1y,
we can rewrite (22) as

z(k+1) =1y ® (Az(k) + Bw(k))
=Winy ® A:c(k) + 1y ® Bw(k)
=W A)z(k) + (In @ Blw(k)

For the dynamical system in (24), a filter can be designed
with estimation error dynamics that can be expressed as

Z(k+1)=(W® A) (Ien — Ke(k)Dp (k) Z(k)
+ n(k)

where K.(k) is the filter gain, which can stabilize the
error dynamics if and only if the pair (W ® A, Dy(k)) is
generically observable. In the following, we will show that
it is possible to obtain a network-wide estimation error with
dynamics similar to (25) by averaging the estimates among
neighboring agents.

Let W € RNXN be a stochastic matrix with entries
w;; > 0 if i = j or if agents ¢ and j can exchange
information; otherwise w;; = 0. We assume here that the
communication links are bidirectional, and that if agent j can
send its information to agent ¢, then the reverse is also true
and w;;,w;; > 0. Every agent in the network implements
a filtering scheme similar to the semi-centralized case, but
followed by updating its estimate by averaging the estimates
from neighbors and itself. The filter implemented by each
agent in the network is then given by

(24)

(25)

Ziklk—1) = Azi(k—1) (26)
Ti(klk) = &;(kl[k—1)
+K;(k) [yi(k) — hi(@:(k|k — 1))]27)
N
zi(k) = Zwijg:»j(km) (28)

Denoting &;(k|k — 1) by #;(k), and substituting (28) and
(27) into (26), a one-step formulation of agent i’s estimate
can be expressed as

N
Bi(k+1) =) wi {A@j(k)ju
j=1

(29)
AR 1) (350) ~ 500 )|
The ¢-th agent’s estimation error is then given by
N
Fi(k+1) =Y wi; [A(I - K;(k)H;(k))Z;(k) 30)
j=1

+ n;(k)]
Denoting the network-wide estimation error by Z(k) =
[#1(k)T #n(k)T]", then
(k+1) =(W®A) ey — K(k)Dn(k)) (k)

31
(k) (€2
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which is similar to (25), except that here the gain matrix
K (k) is restricted to be block-diagonal. As explained in
[12], computing such a constrained gain is possible via an
iterative cone-complementarity optimization algorithm if the
pair (W®A, D) is observable; see [18] and [19] for details.

Following the previous discussion, we call the system
observable in a distributed sense when the pair (W®A, D)
is observable. We now investigate the conditions on the
matrix W and, therefore, the topology of the undirected
communication graph among agents, that would render the
pair (W ® A, Dp) observable. We first note the following
property regarding the powers of the matrix W from [20].

Lemma 3.1: Let [W!];; denote the (i,j) element of the
matrix W'. Then, [W!];; > 0 if there is a path between
agents ¢ and j of length less than or equal to /; otherwise
(Wi = 0.

The pair (W ® A, Dyy) is said to be observable if and only
if rank(O) = 6N. Here,

DH(]C) DH(k')
Dy (k)(W ® A) Dy (k)(W ® A)
0= | D)W © A2 | _ | Da(R)(W2© A%)| (33

Du) W AP| | Dultk)(wr o 4r)

where p = 6N — 1. Equivalently, denoting O; as the block
column representing agent ¢’s subsystem, we can write O =
[ O1|... | On |. From the structure of Dy, it is easy to
see that rank(O) = ZZIL rank(O;).

To keep the analysis simple, we will first consider a
network with only 4 agent (N = 4), and then extend the
results for a network with more than 4 agents.

Theorem 3.1: For a network of 4 agents (i.e., N = 4), the
system is generically observable in a distributed sense if and
only if the undirected communication graph is connected.

Proof: Since it is always possible to renumber the
agents, we will only consider the subsystem corresponding
to agent 1, and write

(W1 Hi(k)A

: (33)
W]y Ha(k)A

[W23] N Hl (k)AZS

237 23
[(W23] | Hy(k)A% ]

This agent can be connected to the network in 4 possible
ways that are shown in Fig. 33. We will now examine each

3The graphs shown in Fig. 3 represent the minimum number of links
required for each graph to be connected and it is possible to add more
edges among agents in these graphs. However, adding more links will only
help in terms of observability.

(a) (b)

N\
AN
N\
AN

. g PAN (@) y

Fig. 3. The 4 possible configurations for node 1 to be connected to the
network using the minimum number of edges.

case individually and show that rank(O;) = 6 for all 4 cases.

Case (a): This case is the easiest to examine, as agent
1 has a sufficient number of neighbors. The measurement
matrix H;(k) has the following structure

/\1 /\2 )\3 0 0 O
Hi(MN=1{M Xs X 0 0 0 (34)
A A XA 0 0 O

and from the discussion on semi-centralized approach, the
pair (A, Hq1())) is generically observable. Recalling that

C cAF
CA CAk+1
rank = rank
CA'n—l CAk;nfl
it immediately follows that rank(O;) = 6, since
[W]u Hl()‘)A
(W2 1 Hi(h) A2
rank (O;) = rank . =6

(W] " Hi(MAT

for almost all values of 1" and .
Case (b): The structure of H;(k) fori=1,...,4 is

Hi(A)=[A X2 A3 0 0 0

“A1 =X —X3 0 0 0
HyN)=|X X X 0 0 0

A7 Ag A 0 0 O
Hs(\)=[-X1 —Xs —X¢ 0 0 0]
HiA) =[-X —=Xs —Xg 0 0 0

We first note that the pair

Hi(N)

A

(4 0]

is generically observable, which can be shown following

the same analysis in the discussion for the semi-centralized
approach. This in turn, ensures that rank(O;) = 6.

2901



Case (c): The structure of H;(k) fori=1,...,4 follows

A X X3 0000
HI(A)_{M Xs X6 00 0]
Hy(A\)=[-A\1 —X2 —X3 0 0 0

(A =X =X 0 0 0
H3(A)_{A7 s A 00 0]
HiA\)=[-A =Xs =X 0 0 0

Following procedures similar to those presented in the
semi-centralized approach discussion, it can be shown that
the pair

Hi())
A, | H3(A)
Hy(M)
is generically observable, and rank((®;) = 6 for almost all

values of T and .
Case (d): The structure of H;(k) fori=1,...,4 is as

Hi(A)=[A A A3 0 0 0

M =X =X 0 000
HQ(A)_{M s A 0 0 0]
M =Xx =X 0 0 0
H3(A)_{/\7 s X 00 0]
H4(/\):[—/\7 _)\8 —)\9 0 0 O]

Once again, it can be shown that the pair

Hi(N)
A, | H3(\)
Hy(N)

is generically observable, and rank(O;) = 6 for almost all
values of 7" and .

Since it is always possible to renumber the agents, the
pair (W ® A, Dy (k)) is generically observable if and only
if every agent is connected to the network of 4 agents
in one of the possible configurations shown in Figure 3.
Or, equivalently, for a network of 4 agents, the system is
generically observable in a distributed sense if and only if
the network is connected. ]

Corollary 3.1: For a networks with more than 4 agents,
ie. N > 4, the system is generically observable in a
distributed sense if and only if every agent is part of a
network that collectively has 3 TDOA measurements.

Proof: If part: If agent i is part of a network that
collectively has 3 TDOA measurements, then by similar
arguments to those in Theorem 3.1, rank(QO;) = 6 for almost
all values of 7" and A. It immediately follows that if all
agents in the network are part of network with 3 TDOA
measurements, then rank(Q) = 6N for almost all values of
T and .

Only if part: If agent ¢ is not part of a network that
collectively has 3 TDOA measurements, then the agent is
either disconnected from the network, or it is part of a
network with less than 3 TDOA measurements. In the first
case, agent ¢ has no neighbors, and therefore no TDOA

Fig. 4. Network topology showing communication links between 8 agents.

measurements to estimate the process on its own, or to obtain
the estimates of other nodes in the network. In the second
case, the number of TDOA measurements is insufficient,
and the target’s location cannot be estimated even under a
centralized scheme, let alone a distributed one. [ ]

IV. SIMULATION RESULTS

In this section, we simulate the proposed algorithm on
a network of 8 agents estimating the position of a moving
target in a 3D environment. The communication links
between the agents are dictated by the network topology
represented in Fig. 4. Spatially, the agents are located
at (—100,100,50), (—100,-100,—-50), (100,—100,50),
(100, 100, —50), (150,150, —20), (=150, —150, 20),
(150, —150, —20), and (150, 150, 20), respectively. For the
moving target, the initial position is set to (—75, —50, —5)
with sampling period T = 0.25 seconds and process noise
variance of 0.35. Finally, the measurement noise variance
was set to 9, and initial estimates were initialized with
#=0 000 0 0

The simulation environment is shown in Fig. 5, while
Fig. 6 shows the norm of the estimation error of all agents
decreasing as the network estimates the target’s location. The
network topology in Fig. 4 represents a worst case senario
where no agent in the network has a sufficient number of
neighbors to accurately estimate the target’s position inde-
pendently, while maintaining a connected network. Carefully
inspecting the estimation error norms in Fig. 6 yields two
key observations. First, and most importantly, we note that
the distributed estimators successfully localize the moving
target as time goes on. The other interesting observation is
the spike that is apparent around 10s. We note that this spike
is due to the network topology, which prohibits any agent
from accurately localizing the target without exchanging
information with its neighbors. This was verified through
additional simulation, where a complete network (i.e. one
where any two agents can exchange information) does not
exhibit such a spike in error norms.

V. CONCLUSION AND FUTURE WORK

In this paper, we discuss the problem of distributed lo-
calization of a moving target by a network of agents using
TDOA measurements form first observability principles. We
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Fig. 5. Simulation of the proposed method with a network of 8 agents. The
circle represents the location of the target, while the squares represent the
positions of each agent. The straight thin lines between squares represent
the communication links among agents. Plotted data show the path taken
by the target over time, along with each agent’s estimate of the target’s
location.
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Fig. 6. Norm of estimation error for each agent in the network.

show that it is indeed possible to estimate the target’s position
by every agent in the network if every agent is connected to a
network with a minimum of 3 TDOA measurements. While
this work focuses on the case of fixed sensor locations, it
is desirable to consider the case where the sensors will be
mobile robots. Therefore, future work will expand analysis to
the cases of intermittent observations and switching network
topologies along with the development of a cooperative
control law in order to localize and track a moving target.
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