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Introduction

Collaborative problem solving (CPS) is one of the important 21st century skills that has attracted interest in 
international assessments, national assessments of middle and high school students, colleges, business, and 
the military (Griffin & Care, 2015; Hesse, Care, Buder, Sassenberg & Griffin, 2015; NRC, 2011; OECD, 
2013; Sottilare et al., 2015). CPS is an essential skill in the home, the workforce, and the community be-
cause much of the planning, problem solving, and decision making in the modern world is performed by 
teams. The success of a team can be threatened by a social loafer, an uncooperative unskilled member, or 
a counterproductive alliance, whereas it can be facilitated by a strong team member that draws out different 
perspectives, helps negotiate conflicts, assigns roles, promotes team communication, and guides the team 
to overcome troublesome obstacles (Fiore, Wiltshire, Oglesby, O’Keefe & Salas, 2014; Salas, Cooke &
Rosen, 2008). 

CPS differs from individual problem solving (IPS) in ways that may have both positive and negative con-
sequences. CPS allegedly has advantages over IPS because 1) there is a more effective division of labor,
2) the solutions incorporate information from multiple sources of knowledge, perspectives, and experiences, 
and 3) the quality of solutions is stimulated by ideas of other team members. There are also potential dis-
advantages of CPS to the extent that 1) team members waste time with irrelevant discussion, 2) there is 
diffusion of responsibility in completing tasks, and 3) disagreements among team members occur that par-
alyze progress in solving the problem.

At the international level, CPS was selected by the Organisation for Economic Co-operation and Develop-
ment (OECD) as a new development for the Program for International Student Assessment (PISA) in the
2015 international survey of student skills and knowledge (Graesser, Forsyth & Foltz, 2016; OECD, 2013, 
2015). Fifteen-year-old students from over three dozen countries completed this PISA CPS 2015 assess-
ment in addition to assessments of mathematics, science, literacy, and other proficiencies. One of the goals
of this chapter is to describe how CPS was assessed in PISA CPS 2015.

PISA used computer agents in the 2015 assessment. That is, a single human interacts with one, two, or three 
computer agents as team members rather than other humans. Conversation-based assessments with com-
puter agents are manifested by chat conversations as well as actions of team members (Zapata-Rivera,
Jackson & Katz, 2015). Computer agents are believed to provide control over the social interaction so that 
important assessments can be made with consistency and control, two requirements that communicating 
with fellow humans could not provide. Agents also provide control over logistical and measurement prob-
lems that stem from 1) assembling groups of humans (via computer mediated conversation) in a timely 
manner, 2) the necessity of having multiple teams per student to obtain reliable assessments in different 
circumstances, and 3) extreme measurement error when particular students are paired with other humans 
who do not collaborate well. A second goal of this chapter is to describe how agents can be used to provide 
meaningful assessments of CPS.

Although conversation-based assessments with agents can provide meaningful assessments of CPS, there 
is still an important goal of assessing interactions among humans. That requires an automated analysis of 
natural language and discourse in addition to identifying how particular problem-solving patterns map onto 
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important CPS proficiencies (e.g., establishing shared knowledge, taking initiative, communicating im-
portant information to the group). The third goal of this chapter is to identify some of the automated ap-
proaches that show promise in automated assessments of CPS among humans. These methods could be 
integrated with the Generalized Intelligent Framework for Tutoring (GIFT) in future developments by pig-
gybacking on and expanding existing applications of natural language processing in GIFT.

Related Research

There have been a number of theoretical frameworks for analyzing CPS. Some of the prominent ones in-
clude the Center for Research on Evaluation, Standards, and Student Testing's (CRESST) teamwork pro-
cessing model (O’Neil, Chuang & Baker, 2010), the teamwork models of Salas, Fiore, and colleagues (Fiore 
et al., 2010; Salas, Cooke & Rosen, 2008) and the Assessment and Teaching of 21st Century Skills 
(ATC21S; Griffin & Care, 2015; Hesse et al., 2015). All of these frameworks have both a cognitive dimen-
sion that includes problem solving and other cognitive processes and a collaborative dimension that in-
cludes communication and other social interaction processes. These approaches were incorporated in PISA 
CPS 2015 (Graesser et al., 2016; OECD), the framework under direct focus in this chapter.

The problem-solving dimension in PISA CPS 2015 framework incorporated the same PISA 2012 problem 
solving framework that targeted individual problem solving (Funke, 2010; OECD, 2010; Greiff, Kretzsch-
mar, Müller, Spinath & Martin, 2014). There were four cognitive processes (or competencies) on the prob-
lem-solving dimension:

1) Exploring and understanding. Interpreting the initial information about the problem and any 
information that is uncovered during the course of exploring and interacting with the problem.

2) Representing and formulating. Identifying global approaches to solving the problem, rele-
vant strategies and procedures, and relevant artefacts (e.g., graphs, tables, formulae, symbolic 
representations) to assist in solving the problem.

3) Planning and executing. Constructing and enacting goal structures, plans, steps, and actions 
to solve the problem. The actions can be physical, social, or verbal. 

4) Monitoring and reflecting. Tracking the steps in the plan to reach the goal states, marking 
progress, and reflecting on the quality of the progress or solutions.

There were three processes on the collaborative dimension: 

1) Establishing and maintaining shared understanding. Keeping track of what each other 
knows about the problem (i.e., shared knowledge, common ground; Clark, 1996), the perspec-
tives of team members, and a shared vision of the problem states and activities (Cannon-Bow-
ers & Salas, 2001; Dillenbourg & Traum, 2006). 

2) Taking appropriate actions to solve the problem. Performing actions that follow the appro-
priate steps to achieve a solution. This includes physical actions and communication acts that 
advance the solution to the problem.

3) Establishing and maintaining group organization. Helping organize the group to solve the 
problem by considering the talents and resources of group members during the assignment of 
roles; following the rules of engagement for one’s own roles as well as handing obstacles to 
tasks assigned to other team members.

When the 4 problem-solving processes are crossed with the 3 collaboration processes, there are 12 skills in 
the resulting CPS assessment matrix. Table 1 shows this matrix that was adopted in the PISA CPS 2015 
framework. A satisfactory assessment of CPS would assess the skill levels of students for each of these 12 
cells and these would contribute to a student’s overall CPS proficiency measure.
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Table 1. Copied from OECD (2013). PISA 2015 collaborative problem solving framework.

(1) Establishing and 
maintaining shared un-
derstanding

(2) Taking appropriate 
action to solve the prob-
lem

(3) Establishing and main-
taining team organization

(A) Exploring and 
Understanding 

(A1) Discovering 
perspectives and abilities 
of team members 

(A2) Discovering the type 
of collaborative interaction 
to solve the problem, along 
with goals 

(A3) Understanding roles to 
solve problem 

(B) Representing 
and 
Formulating 

(B1) Building a shared 
representation and negoti-
ating the meaning of the 
problem (common ground) 

(B2) Identifying and de-
scribing tasks to be com-
pleted 

(B3) Describe roles and 
team organization (com-
munication protocol/rules 
of engagement) 

(C) Planning and 
Executing 

(C1) Communicating with 
team members about the 
actions to be/ being per-
formed 

(C2) Enacting plans (C3) Following rules of en-
gagement, (e.g., prompting 
other team members to per-
form their tasks.) 

(D) Monitoring and 
Reflecting 

(D1) Monitoring and re-
pairing the shared under-
standing 

(D2) Monitoring results of 
actions and evaluating suc-
cess in solving the problem 

(D3) Monitoring, providing 
feedback and adapting the 
team organization and roles 

As mentioned, the PISA CPS 2015 assessment had students interact with computer agents rather than other 
humans. The following definition of CPS was articulated in the PISA CPS 2015 framework (OECD, 2013:
Collaborative problem-solving competency is the capacity of an individual to effectively engage in a pro-
cess whereby two or more agents attempt to solve a problem by sharing the understanding and effort re-
quired to come to a solution and pooling their knowledge, skills and efforts to reach that solution. An agent 
could be either a human team member or a computer agent that interacts with the student. The final assess-
ment that was adopted had students interact with one to three computer agents instead of other humans.
Therefore, the overall CPS proficiency measure assessed how well a single human interacted with computer 
agents during the course of problem solving. The computer agents were minimalist agents in a chat facility, 
without text-to-speech, animation, or visual depictions of what they looked like. This was necessary to 
eliminate biases of culture, personality, and emotions, which were beyond the scope of the PISA CPS as-
sessment.

A central advantage of assessments with computer agents is the degree of control over the conversation. 
The discourse contributions of the two agents (A1, A2) and any associated digital media (M) can be coor-
dinated so that each [A1, A2, M] sequential display is functionally a single episodic unit (U) to which the 
human responds through language, action, or silence in a particular human turn (HT). Thus, there is an 
orchestrated finite-state transition network that alternates between episodic units (U) and human turns (HT), 
which is formally isomorphic to a dialogue. This is very different than a collaboration in which many people 
can speak simultaneously and overlap in time (Clark, 1996). Conditional branching can occur in the state-
transition network (STN) so that the computer’s generation of Un+1 at turn n+1 is contingent on the state of 
the human turn HTn at turn n. However, the degree of branching was limited to a small number of states 



278

associated with each human turn (HTn) in PISA CPS 2015; there were 2–4 alternative multiple-choice op-
tions at each turn (i.e., either chat options or alternative actions to be performed). Consequently, the fan out 
of conditional branching was not complex and the turn-taking frequently converged at points of assessment
rather than diverging in many directions. Only one score was associated with each episodic unit and each 
episodic unit was aligned with one and only one of the 12 cells in the CPS assessment matrix.

The design of the PISA CPS 2015 assessment was compatible with the normal psychometric modeling in 
the world of assessment, where multiple-choice tests are ubiquitous. Traditional psychometric assessments 
routinely include a fixed set of items (i.e., episodic units) that all humans experience. Analogously, PISA 
CPS 2015 had a fixed sequence episodic units (U1, U2, … Um) that occurred at specific points as the problem 
was solved and the responses of the human were automatically recorded (as clicks on action options or chat 
options). The conversations were designed so that the conversations would naturally close shortly after the 
human responded to an episodic unit and the subsequent episodic unit was launched (e.g., “Thanks for your 
input, let’s go on”). Assessment scores were collected for each student for the M episodic units that collec-
tively covered each of the 12 cells in the CPS assessment matrix. These scores contributed to overall CPS 
proficiency measures that have not yet been finalized by OECD.

Students encounter a diverse set of situations in PISA CPS 2015 in order to make sure that important con-
ditions are covered in the assessment. Students who respond randomly to the response options would obvi-
ously receive low values on CPS proficiency as well as the collaboration and problem solving dimensions.
A student may be a good team player and be responsive, but not take the initiative when there are problems 
(e.g., an agent who is unresponsive, or a new obstacle in the problem occurs). A student may take some 
initiative when there are breakdowns, but not be able to handle very complex cognitive problems. A student 
who scores high in CPS proficiency takes the initiative in moving the team to achieve group goals during 
difficult times (conflicts, incorrect actions, unresponsive team members) and can also handle complex prob-
lems with many cognitive components that burden working memory and require reasoning. Episodic units 
for all of these situations are needed in order to have an adequate CPS assessment. In contrast, many of 
these situations might not arise when a student interacts with other humans so there would be missing scores
for some of the 12 cells.

Computer agents may be suitable for providing a summative assessment of CPS proficiency that is both 
reliable and valid. Available data have so far supported the validity of the PISA CPS 2015 framework. For 
example, a factor analysis has shown an extremely high correspondence between a human-agent CPS as-
sessment and a human-human assessment in a sample in Germany students (Greiff, personal communica-
tion). Kuo et al. (2016) conducted an assessment in Taiwan that adopted the PISA CPS 2015 assessment 
framework. The study developed an internet-based CPS assessment with conversational agents on five tasks 
to be completed in 100 minutes. There were over 50,000 ninth and tenth grade students who participated 
between October 2014 and February 2015. The problem-solving dimension in the PISA CPS 2015 assess-
ment showed a similar ordering of competencies for the four problem-solving components (A > B > C > 
D) as were found for the PISA 2012 assessments of individual problem solving. Although the complete 
data for PISA CPS 2015 is still being analyzed for over 400,000 students in three to four dozen different 
countries, the reliability of the data in field trials is encouraging.

Discussion 

Although computer agents may be suitable for a summative assessment of CPS proficiency, there are major 
limitations with this approach for teams of humans and formative CPS assessment. Computer-based envi-
ronments for teams (whether they be collaborative learning, problem solving, or work) need automatic 
tracking and analysis of the language, actions, and social interactions of human team members. Computer-
based environments need to adaptively, intelligently, and immediately respond to the team members based 
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on the automated assessments of CPS proficiencies and many other cognitive and noncognitive character-
istics of team members. The agent-based assessment in PISA CPS 2015 does not offer any help in devel-
oping a computer environment for tracking and responding to teams of humans. The latter would be needed 
in GIFT (Sottilare et al, 2017).

The remainder of this chapter identifies some promising ways of automatically tracking the language and 
discourse of humans in team chat interactions. Ideally, we would be able to map particular language and 
conversation patterns onto the cells of CPS assessment matrix. If these patterns could be detected automat-
ically, then there is a principled theoretical foundation for 1) a formative assessment of CPS skills of team 
members and 2) recommendations on how the computer environment should respond to unproductive teams 
or team members.

A community of researchers in the learning sciences and computational linguistics have investigated con-
versations in small groups by analyzing the log files of computer-mediated interactions in chat and discus-
sion forums (Dowell, Graesser & Cai, in press; Foltz & Martin, 2008; Liu, Von Davier, Hao, Kyllonen &
Zapata-Rivera, 2015; Mu, Stegmann, Mayfield, Rosé & Fischer, 2012; Shaffer, Collier & Ruis, in press; 
Tausczik & Pennebaker, 2013; Von Davier & Halpin, 2015). The conversations have been analyzed by a 
variety of automated text analysis tools, such as state-transition networks that track speech acts of team 
players (Morgan, Keshtkar, Duan & Graesser, 2012), latent semantic analysis (Foltz & Martin, 2008; Gor-
man et al., 2003), epistemic network analysis (Shaffer et al., 2009), Coh-Metrix (Graesser, McNamara, et 
al., 2014), and Linguistic Inquiry and Word Count (Pennebaker, Booth & Francis, 2007). These automated 
tools have been applied to conversations in their entirety, to subsets of the conversation at a particular 
window size (e.g., 5 turns in a row), to single conversational turns, to adjacent conversational turns, and to 
turns of specific team members. The conversation profile includes measures of team cohesion, percentage 
of on-topic versus off-topic contributions, amount of new information, characteristics of team members 
(e.g., driver, follower, social loafer), alliances between team members, and presence of specific conversa-
tion patterns. It is beyond the scope of this chapter to describe in detail these automated approaches (see 
Graesser, Dowell, Clewley & Shaffer, submitted), but we do highlight some examples to illustrate the pro-
spects of this approach.

Matches to Expectations

In many applications of team problem solving, there are a set of expectations that need to be covered to 
solve the problem. An expectation is a sentence, clause, proposition, or expression of comparable length, 
as discussed in reports on AutoTutor (Graesser, 2016; Cai, Graesser & Hu, 2015). A solution to a problem 
consists of a set of expectations that hopefully would be covered by the team. The team or team member 
received higher scores to the extent that more expectations are articulated during the chat conversation.
Physical actions are also handled in this way: performance increases as more critical actions are performed.

Advances in computational linguistics and semantics have made impressive gains in the accuracy of se-
mantic matches between one short text (i.e., a sentence or two) and another short text (Rus, Lintean, 
Graesser & McNamara, 2012; Rus & . The accuracy is not always perfect, but it often 
is impressive and on par with human experts who judge the semantic similarity of pairs of short texts. The 
AutoTutor research team has evaluated many semantic matchers over the years in AutoTutor and other 
intelligent tutoring systems (ITSs) with conversational agents (Cai et al., 2011; Graesser, Penumatsa, Ven-
tura, Cai & Hu, 2007; Rus et al., 2012). The semantic matchers automatically compute the semantic simi-
larity between a student’s verbal contribution and an expectation, with a similarity score that varies from 
zero to one. These semantic match algorithms have included keyword overlap scores, word overlap scores 
that place higher weight on lower frequency words in the English language, scores that consider the order 
of words, latent semantic analysis cosine values, comparisons to regular expressions, and procedures that 
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compute semantic logical entailment. As an example, Cai et al. (2011) reported that the correlation of sim-
ilarity scores between AutoTutor and human expert judges was r = 0.667, about the same as between two 
trained judges (r = 0.686). Interestingly syntactic parsers did not prove useful in these analyses because a 
high percentage of the students’ contributions are vague, telegraphic, elliptical, and ungrammatical. At the 
time of this writing, the best automated semantic matcher is the Semantic Similarity (SEMILAR) system 
developed by Rus et al. (2013). SEMILAR won the semantic textual similarity competition at SemEval-
2015, the premier international forum for semantic evaluation. 

Matches to expectations are powerful in assessments of CPS to the extent that the solutions to a problem 
are known ahead of time, as in the case of PISA CPS 2015. Indeed, there could be a set of expectations 
associated with each of the 12 cells in the CPS assessment matrix and these could be scored for each team 
member over the course of the CPS interaction. Unfortunately, this approach does not work when there are 
no expectations in a CPS application. The subsequent approaches can be applied when a problem does not 
have a finite set of associated expectations.

Automated Speech Act Classification and State Transition Networks

The content of each turn is classified into speech acts and each speech act is assigned to a category (Liu et 
al., 2015; Morgan et al., 2012). For example, the speech act categories defined by Rus, Graesser, Moldovan, 
and Niraula (2012) were Statement, Question, Request, Reaction, MetaStatement, Expressive Evaluation, 
and Greeting. Automated speech act classification has achieved a moderate degree of accuracy compared 
with trained human annotators (Olney et al., 2003; Rus et al., 2012; Samei et al., 2014). A chat window of 
five turns appears to be an optimal chat length to analyze the context of particular turns in computer-medi-
ated chat during collaborative learning and CPS (Collier, Ruis & Shaffer, 2016; Samei et al., 2014). This 
amount of context has been explored to improve speech act classification accuracy and to detect multi-turn 
discourse patterns. Another approach is to construct a STN on adjacent speech acts (Morgan et al., 2012). 
An STN computes the probabilities of adjacency pairs in a corpus of chat sequences. Stated more formally, 
it is the transition probability between adjacent speech act categories (SAC) that are indexed by particular 
team participants: [P-SACn P-SACn+1]?

Some measures of CPS can theoretically be derived from the distribution P-SAC node categories and the 
transition probabilities between these node categories. Students who take initiative would have a high pro-
portion of Questions, Requests and Statements, whereas students who are responsive team members (but 
not leaders) would have a relatively high proportion of Reactions. A disruptive team member would have 
a high proportion of negative Expressive Evaluations, whereas a social loafer would have a low number of 
contributions compared with other team members. Regarding the state transitions, responsive team mem-
bers would have a relatively high transition probability between Questions/Requests of others and the par-
ticipant’s Reactions or Statements; these transition probabilities would be low for unresponsive team mem-
bers. Thus, these probabilistic metrics have relevance to many of the cells in the CPS assessment matrix. 
However, available studies have not empirically evaluated the mapping between these automated measures 
and the 12 cells in the CPS assessment matrix.

Latent Semantic Analyses (LSA) and Semantic Comparisons

LSA (Landauer, Foltz & Laham, 1998) is used to analyze the semantic content of the team members’ con-
tributions, a level of language that is not tapped in speech act analyzes. For example, LSA has been used to 
analyze the coherence of teams and characteristics of individual team members (Dowell, 2017; Foltz & 
Martin, 2008; Gorman et al., 2003). Text excerpts can be evaluated on semantic similarity through LSA as 
well as other semantic similarity evaluators that have been described.
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Semantic comparison metrics, such as LSA and SEMILAR (Rus et al., 2013), provide an assessment of 
establishing a shared understanding and building on what each other knows, both of which are theoretically 
important in the process of establishing and maintaining shared understanding component of collaboration 
in PISA CPS 2015. The relevance (R) of a turn’s meaning to the problem being solved is used to compute 
the extent to which a turn is on versus off topic. This is measured as the semantic overlap between each 
turn and the semantic topics in the problem being solved. The givenness (G) and newness (N) of individual 
turns can be computed for individual team members and the team as a whole (Hempelmann et al., 2005; 
Hu et al., 2014). A productive collaborative team member contributes relevant information that is new and 
also builds on other team member’s topic-relevant ideas in a responsive fashion. Scores for R, G, and N 
can be automatically computed by LSA and other semantic evaluators such as SEMILAR, with values that 
vary from near zero to one. For example, a team member who productively leads the conversation would 
have a vector of RGN measures such as (0.9, 0.4, 0.6). Team members who echo ideas of others in a con-
versation would have a (0.9, 0.5, 0.0) vector if they stay on topic, but a (0.0, 0.5, 0.0) vector on off-topic 
talk. A team member with a (0.0, 0.0, 0.9) vector would be in their own irrelevant worlds and not helpful 
to collaboration. These profiles have been confirmed in a recent dissertation by Dowell (2017).

There are many other measures of team members and teams that can be computed from these similarity-
based metrics and transitions between team members (Dowell, 2017). Participation is the relative propor-
tion of a participant’s contributions (turns) out of the total number of group contributions; physical actions 
can be computed in an analogous way to assess the second component of the collaborative dimension (tak-
ing appropriate actions to solve the problem) in PISA CPS 2015. Responsiveness (analogous to G for 
givenness) assesses how responsive a team member’s contributions are to all other group members’ previ-
ous contributions in the conversation. Social impact measures how turn contributions of a team member 
have a semantic similarity to other members’ contributions in future follow-up responses. Team member
cohesion measures how semantically similar a team member’s contributions are to the same member’s
previous conversational turns. That is, is a team member saying the same thing over and over? Communi-
cation density measures how much information in a turn is distinctive to the topic, compared with everyday 
topics of conversation. All of these metrics can be applied to individual team members as well as the team 
as a whole.

Epistemic Network Analysis (ENA)

ENA attempts to assess the complex thinking, discourse, reasoning, and topics addressed in professional 
disciplines and communities (Nash & Shaffer, 2011; Shaffer et al., 2009; Shaffer, Collier & Ruis, in press). 
There is a disciplinary style of thinking and talking that resonates with the expertise of the community of 
stakeholders. In scientific disciplines, for example, the discourse might involve claims with supporting em-
pirical evidence and causal analyses. That is a very different discourse from mathematicians or art histori-
ans.

ENA’s analysis of chat in CPS begins by representing the content as a network structure of connections 
among critical knowledge, skills, values, and epistemic moves in a professional domain. It measures the 
strength of association among these cognitive elements and quantifies changes in the composition and 
strength of those connections over time for individual team members and the entire team. ENA constructs 
a metric space that enables comparison of individual or group networks through 1) difference graphs, which 
visualize the differences in weighted connections between two networks, and 2) summary statistics, which
reflect the weighted structure of connections in the networks. 

It is beyond the scope of this chapter to precisely specify the algorithms that underlie ENA and the process 
of applying ENA to CPS data (Shaffer, Collier & Ruis, in press, for the ENA Toolkit). The initial step 



282

consists of annotating chat turn sequences (i.e., stanzas, sliding turn windows of about length 5) on im-
portant cognitive categories (i.e., expressions of skills, knowledge, identity, values, and epistemic content), 
based on the words expressed in those turns. The next step computes a matrix of co-occurrences of these 
cognitive categories within these turn sequences and statistically reduces the resulting set of co-occurrence 
matrices to a small number of dimensions through singular value decomposition. When there are only two
or three dimensions, it is possible to plot each cognitive category in a 2- or 3-D metric space; the size of the 
cognitive category in the space reflects its relative frequency, whereas the thickness of the links between 
the concept categories reflects the co-occurrence frequency. The resulting network patterns can be com-
pared for different team members, the team as a whole, different phases of CPS interactions, and different 
chat contexts associated with the profession. ENA has been applied to the land science chat corpora (Collier, 
Ruis & Shaffer, 2016) and medical engineering design in teams of 3–5 members along with a mentor.

A discipline-oriented style of thinking and talking would of course be an important characteristic to detect 
and track in team-based ITSs integrated with GIFT. A team member or team as a whole would be regarded 
as having higher domain expertise to the extent that the chat exhibits higher disciplinary talk that can be 
automatically quantified from the qualitative input. There are also some links to the CPS assessment matrix 
of PISA CPS 2015. For example, the discipline thinking parameters are relevant to the problem-solving 
component D (monitoring and reflecting) and the identity concept categories are relevant to collaboration 
component 3 (establishing and maintaining team organization). At this point there has been no systematic 
evaluation of the use of ENA in the scoring of CPS based on the PISA 2015 framework.

Recommendations and Future Research

The most obvious recommendation is to add these automated measures of CPS to GIFT and team-based 
ITSs. The scores, competencies, and measurements at varying grain sizes would be automatically computed 
and stored in the Learner Record Store of GIFT. This chapter identifies some automated quantitative algo-
rithms for detecting and assessing many aspects of CPS from the content of the chat logs. These assessments 
apply to either the entire team or to individual team members as units of analysis. These content-based 
assessments are a generation beyond the traditional sociometric analyses that compute simple metrics, such 
as who talks most, who talks to whom, and how many words. Most of the assessments are also aligned with 
the theoretical framework of a large-scale international assessment, namely PISA CPS 2015. Although this 
is a promising start, the reliability and validity of these automated assessments await future research.

A second major recommendation is to incorporate these CPS assessments in production rules that formulate 
what the adaptive, intelligent tutor does next. For example, the suite of applications in GIFT already has 
the AutoTutor agents that help individuals learn by holding a conversation in natural language (Graesser,
2016; Cai et al., 2015). This could be expanded to include an automated AutoMentor in team contexts when 
GIFT takes on teams. Some simple production rules were proposed in Graesser et al. (submitted):

1) If the team is stuck and not producing contributions on the relevant topic, then the agent says,
“What’s the goal here?” or “Let’s get back on track.”

2) If the team meanders from topic to topic without much coherence, then the agent says, “I’m lost!”
or “What are we doing now?”

3) If the team is saying pretty much the same thing over and over, then the agent says, “So what’s
new?” or “Can we move on?”

4) If a particular team member (Harry) is loafing, the agent says, “What do you think, Harry?”
5) If a particular team member (Sally) is dominating the conversation excessively, the agent says, “I

wonder what other people think about this?”
6) If one or more team members express unprofessional language, the agent says, “Let’s get serious 

now. I don’t have all day.”
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Important next steps are to identify a larger set of production rules for CPS, implement them in GIFT
environments, and evaluate whether they improve collaborative problem-solving performance (Sottilare et 
al., 2017).
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