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Abstract

Nickel is a framework that helps developers design and
verify information flow control systems by systemati-
cally eliminating covert channels inherent in the interface,
which can be exploited to circumvent the enforcement of
information flow policies. Nickel provides a formulation
of noninterference amenable to automated verification,
allowing developers to specify an intended policy of per-
mitted information flows. It invokes the Z3 SMT solver
to verify that both an interface specification and an im-
plementation satisfy noninterference with respect to the
policy; if verification fails, it generates counterexamples
to illustrate covert channels that cause the violation.

Using Nickel, we have designed, implemented, and
verified NiStar, the first OS kernel for decentralized in-
formation flow control that provides (1) a precise specifi-
cation for its interface, (2) a formal proof that the interface
specification is free of covert channels, and (3) a formal
proof that the implementation preserves noninterference.
We have also applied Nickel to verify isolation in a small
OS kernel, NiKOS, and reproduce known covert chan-
nels in the ARINC 653 avionics standard. Our experience
shows that Nickel is effective in identifying and ruling out
covert channels, and that it can verify noninterference for
systems with a low proof burden.

1 Introduction

Operating systems often provide information flow con-
trol mechanisms to improve application security. These
mechanisms enforce policies ranging from strict isola-
tion to more flexible models using labels [12, 60]. By
tracking and mediating data access, they aim to regu-
late the propagation of information among applications
to provide secrecy and integrity guarantees.

Malicious applications can circumvent information
flow control systems by encoding and transferring infor-
mation indirectly, such as through temporary files, pro-
cess names, or CPU and memory usage [47]. Many such
covert channels exist not only in the POSIX interface but
also in specialized information flow control systems (see
§2 for a survey). For example, Krohn et al. [45] have de-
scribed covert channels in Asbestos [15] that allow appli-
cations to leak data at a high bandwidth. Covert channels

in the interface are critical flaws as no secure implementa-
tion of such an interface can exist [44]. Eliminating these
channels at the interface level is thus a key challenge in
the design of information flow control systems.

Even if an interface specification is free of covert chan-
nels, it remains challenging to correctly implement the
system—incorrect or missing checks will invalidate the
guarantees of information flow control. For instance, both
KLEE [6: §5.3] and STACK [78: §6.1] have found such
bugs in HiStar [82]. As another example, the implemen-
tation of Flume [45] relies on the Linux kernel, which is
likely to contain bugs given its complexity [8, 51, 63].

This paper presents Nickel, a framework for system-
atically eliminating covert channels from such systems
through formal verification of noninterference. Nonin-
terference is a general security criterion that has been
extensively studied in prior work [24, 53, 67]. Intuitively,
given two mutually distrustful threads between which in-
formation flow is prohibited, noninterference requires the
output of operations in one thread to be independent of op-
erations in the other thread. This restriction ensures that a
malicious thread can neither infer secrets nor influence the
execution path of another thread via operations defined
in the interface; any violation indicates a covert channel.
However, applying noninterference to reason about an in-
terface requires considering the precise behavior of each
operation as well as the interaction of all pairs of opera-
tions [38, 39], which is non-trivial. Nickel helps automate
this reasoning using an SMT solver such as Z3 [11].

Nickel introduces both a formulation of noninterfer-
ence and new proof strategies that are amenable to auto-
mated verification. It asks developers to specify a con-
cise and intuitive policy that describes permitted flows in
a system, and checks whether a given interface specifi-
cation satisfies noninterference for that policy. Further-
more, it extends our previous work on push-button verifi-
cation [62, 70] to check whether a given implementation
preserves noninterference through refinement. Verifying
both an interface and an implementation this way incurs
a low proof burden (see §8). An additional advantage of
automated reasoning is that Nickel will provide a coun-
terexample when it finds a covert channel in either the
interface or the implementation, which is valuable for
debugging and revising the design.



We have applied Nickel to three systems. The foremost
is NiStar, a new OS kernel with provably secure decen-
tralized information flow control (DIFC) [60]. DIFC is
a flexible mechanism that allows applications to express
powerful policies, but this flexibility makes it challeng-
ing to analyze covert channels and security implications
of DIFC systems [44]. Inspired by HiStar [82], NiStar
provides DIFC support through a small number of kernel
object types. Unlike HiStar, however, NiStar provides a
formal proof that both its interface and implementation
satisfy noninterference, ruling out covert channels in the
design. To the best of our knowledge, NiStar is the first
formally verified DIFC OS kernel.

To demonstrate Nickel’s applicability to a broader set
of systems, we have used Nickel to verify NiKOS, an OS
kernel that mirrors mCertiKOS [10] to enforce process
isolation. We have also applied Nickel to formalize and
analyze the specification of the communication interface
of ARINC 653 [1], an industrial avionics standard. Nickel
was able to reproduce the three covert channels in ARINC
653 previously reported by Zhao et al. [86].

Nickel reasons about sequential (uniprocessor) systems
and provides no guarantees in concurrent settings. It fo-
cuses on eliminating covert channels inherent in the in-
terface; physical effects (e.g., timing, sound, and energy)
that are not captured by the interface specification are be-
yond the scope of this paper. We discuss these limitations
further in §3.5.

In summary, this paper makes three contributions:
(1) a formulation of noninterference and proof strategies
amenable to automated reasoning; (2) the Nickel frame-
work for verifying noninterference for the interface and
implementation of information flow control systems; and
(3) the formal specifications of three systems, including
the first formally verified DIFC OS kernel.

The rest of this paper is organized as follows. §2 sur-
veys common patterns of covert channels in interfaces. §3
formalizes noninterference and introduces theorems for
proving noninterference. §4 gives an overview of the de-
velopment workflow using Nickel. §5 presents guidelines
for interface design. §6 describes the design, implemen-
tation, and verification of DIFC in NiStar. §7 describes
the verification of isolation in NiKOS and ARINC 653.
§8 reports our experience with using Nickel. §9 relates
Nickel to prior work. §10 concludes.

2 Covert channels in interfaces

Nickel’s main goal is to help developers identify and
eliminate covert channels in the interface of an informa-
tion flow control system. This section surveys common
examples of covert channels and shows how to apply non-
interference to understand them.

Consider two threads 77 and T that are prohibited from
communicating as per the information flow policy. What

kinds of interface operations can be exploited by the two
threads to collude and bypass the policy (or equivalently,
allow an adversarial 7, to infer secret information from an
uncooperative 771)? As a simple example, if an operation
introduces shared memory locations that both threads can
read and write, then the two threads can use these mem-
ory locations as covert channels to transfer information.
Unintended covert channels, however, are often subtle
and difficult to spot, as detailed next.

Resource names. Resource names, such as thread iden-
tifiers, page numbers, and port numbers, can be used
to encode information. Consider a system call spawn that
creates new threads with sequential identifiers. Thread 7>
first spawns a thread with an identifier, say, 3; the other
thread 77 then spawns x times, creating threads with iden-
tifiers from 4 to x+3; and thread 7> spawns another thread,
whose identifier will be x + 3 + 1. In doing so, thread 7»
learns the secret x from 77 through the difference of the
identifiers of the two threads it has created [10: §5].

Resource exhaustion. Suppose that the system has a total
of N pages shared by all threads. Thread 7 first allocates
N -1 pages, and encodes a one-bit secret by either allocat-
ing the last page or not. The other thread 7, then tries to
allocate one page and learns the secret based on whether
the allocation succeeds [82: §3]. This covert channel is
effective especially when a resource is limited and can be
easily exhausted.

Statistical information. A thread’s world-readable infor-
mation, such as its name, number of open file descriptors,
and CPU and memory usage, can be used to encode se-
cret data or by adversarial threads to learn secrets [35, 85].
For example, if thread 77’s memory usage is accessible
to another thread 7, through procfs or system calls, T;
could leak a secret x by allocating x pages.

Error handling. Error handling is known to be prone to
information leakage [54], such as the TENEX password-
guessing attack using page faults [48] and the POODLE
attack against TLS [55]. As an example, consider a sys-
tem call for querying the status of a page, which returns
-ENOENT if the given page is free and -EACCES if the page
is in use but not accessible by the calling thread. Thread
T; encodes a one-bit secret by allocating a particular page
or not; the other thread 7, queries the status of that page
and learns the secret based on whether the error code is
—-ENOENT or -EACCES.

Scheduling. Suppose an OS kernel uses a round-robin
scheduler that distributes time slices evenly among
threads. Thread 77 encodes a secret by forking a number
of threads (e.g., a fork bomb), which causes the other
thread 7, to observe the reduction of time allocated for
itself and learn the secret from 77; alternatively, 7> can



continuously ping a remote server, which will learn the
secret from the time between pings [82: §9]. Access to
only logical time suffices for such covert channels.

External devices and services. Suppose the system al-
lows threads to communicate with external devices and
services. Thread 77 can write secret data to the registers
of a device, or encode the secret as the frequency of ac-
cessing a device or even through a service bill [47]; the
other thread 75 can then retrieve the secret at a later time
from the same device or service.

Mutable labels. Many information flow control systems
express security policies by assigning labels to objects.
Label changes complicate such systems and can lead to
covert channels [12]. As an example, consider a system
where each thread can be labeled as either tainted or
untainted. The system enforces a tainting policy: atainted
thread cannot transfer information to an untainted thread
without tainting it. To enforce this policy, the system
raises the label of an untainted thread to tainted when
another tainted thread sends data to it. Suppose thread
T is tainted and thread 75 is untainted. To bypass the
policy, 7, first spawns an untainted helper thread H. T
encodes a one-bit secret by choosing whether to send data
to taint H, which in turn chooses to send data to 7> only
if it is untainted and do nothing otherwise. In this way,
T, learns the secret from 77 by whether it receives data
from H, without becoming tainted itself [44: §3].

2.1 Applying noninterference

Given two threads 77 and 7, that are prohibited from
communicating with each other, noninterference states
that the output of operations in one thread should not
be affected by whether operations in the other thread
occur. Now we will show how to apply noninterference
to uncover covert channels.

Take the spawn system call as an example, which
returns sequential thread identifiers and introduces
a covert channel due to resource names. Figure 1
illustrates this channel. We denote an action of invoking
a system call as a left half-circle spawn and its return
value as a right half-circle 3 . We use different colors to
distinguish system calls from different threads: (Spawnj
in T7; spawng and spawn, in 7>.

We apply noninterference to uncover the covert channel
introduced by spawn in three steps. First, construct a
trace of actions from both threads, for instance, spawng
Spawnj| spawn, . Assume that the corresponding return
values (i.e., outputs) are 3 4 5, as spawn sequentially
allocates identifiers. Second, to examine possible effects
of T} on T5, construct a new trace that purges the actions
from 7 and retains the actions only from 7>, resulting in
spawny spawn, . Third, replay this purged trace to the

system, obtaining a new sequence of outputs 3 4 . This

N spawng 3 @ spawn; 4 @ spawny 5 @

spawng 3 spawn, 4
50 @ sh

Figure 1: The output of spawn, changes from 5 in the original trace (first
row) to 4 in the purged trace (second row), indicating a covert channel.
Circles denote states, arrows denote state transitions, left half-circles
denote actions, and right half-circles denote outputs.

sequence differs from the original output of the same
actions, which is 3 5. The change of output in 7
(in particular, the return value of spawn, ) caused by an
action in 7 violates noninterference, indicating a covert
channel with which 77 may transfer information to 7.
On the other hand, with a version of spawn that does not
introduce a covert channel, the outputs of 75’s actions in
the purged and original traces would be the same.

One can similarly apply noninterference to uncover the
other covert channels described in this section. The chal-
lenge is to find a trace of actions that manifests the covert
channel, and if there are no such channels, to exhaustively
show that no trace violates noninterference. Nickel au-
tomates this task using formal verification techniques, as
we will describe next.

3 Proving noninterference

This section formalizes the notion of noninterference used
in Nickel and presents the main theorems that enable
Nickel to prove noninterference for systems.

First, we address how to specify the intended policy of
an information flow control system. The policy is trusted
as the top-level specification of the system, which will be
used to catch and fix potential covert channels in both the
interface specification and the implementation (§3.1).

Next, we give a formal definition of noninterference
in terms of traces of actions, which precisely captures
whether an interface specification satisfies a given pol-
icy (§3.2).

To prove noninterference for an interface specification,
Nickel introduces an unwinding verification strategy that
requires reasoning only about individual actions, rather
than traces of actions (§3.3). To extend the guarantee of
noninterference to an implementation, Nickel introduces
arestricted form of refinement that preserves noninterfer-
ence (§3.4). Both strategies are amenable to automated
verification using an SMT solver.

We end this section with a discussion of the limitations
of the Nickel approach (§3.5).

3.1 Policy

We model the execution of a system as a state machine in
a standard way [67]. A system M is defined as a tuple



(A, 0, S, init, step, output}), where A is the set of actions,
O is the set of output values, S is the set of states, init
is the initial state, step : § x A — § is the state-transition
function, and output : S x A — O is the output function.

An action transitions the system from state to state. In
the context of an OS, an action can be either a user-space
operation (e.g., memory access), or the handling of a
trap due to system calls, exceptions, or scheduling. Each
action consists of an operation identifier (e.g., the system
call number) and arguments. We write output(s,a) and
step(s, a) to denote the output value (e.g., the return value
of a system call) and the next state, respectively, for the
state s and action a. Actions are considered to be atomic;
for instance, we assume that an OS kernel executes each
trap handler with interrupts disabled on a uniprocessor
system [40, 62].

A trace is a sequence of actions. We use run(s, tr)
to denote the state produced by executing each action in
trace #r starting from state s. The run function is defined
as follows:

N

run(s, €) :

run(s,a o tr) := run(step(s, a),tr).

Here, € denotes the empty trace, and a o tr denotes the
concatenation of action a and trace #r.

Definition 1 (Information Flow Policy). A policy P for
system M is defined as a tuple (D, ~, dom), where D is the
set of domains, ~ € (D x D) is the can-flow-to relation
between two domains, and the function dom: A x S - D
maps an action with a state to a domain.

Intuitively, a domain is an abstract representation of the
exercised authority of an action. A policy associates each
action a performed from state s with a domain, denoted
by dom(a, s); the can-flow-to relation ~ defines permitted
information flows among these domains. The goal of a
policy is to explicitly specify permitted flows and ensure
that any trace of actions, given their specifications, will
not lead to covert channels that enable unintended flows
and violate the policy.

Below we show the policies for two example sys-
tems. We write u~v and u+v to mean (u,v) € ~
and (u,v) ¢ ~, respectively.

Example (Tainting). Consider the label-based system
mentioned in §2: it has a number of threads, where the
label of each thread is either tainted or untainted. The sys-
tem enforces a tainting policy as depicted in Figure 2. The
policy permits information flow from untainted threads
to either untainted or tainted threads, and between two
tainted threads, but it prohibits untainted threads from
directly communicating with tainted ones.

For this policy, we designate {tainted, untainted} as
the set of domains. The can-flow-to relation consists of

Figure 2: The tainting policy: information cannot flow from tainted
threads to untainted threads.

Figure 3: The isolation policy of NiKOS: information cannot flow
between any two of the regular processes pi, p2, ..., Pn—1 (except
through the scheduler pg indirectly).

the following three permitted flows: tainted ~ tainted,
untainted ~ untainted, and untainted ~ tainted. The dom
function returns the label of the thread currently running.
NiStar employs a more sophisticated version of this policy
using DIFC (see §6).

Example (Isolation). Consider a Unix-like kernel with
n processes: a special scheduler process pg, and regular
processes pi, p2, - - ., Pn—1. The system enforces a process
isolation policy as depicted in Figure 3, which permits in-
formation flows from a process to itself, from the sched-
uler to any process, and from any process to the scheduler;
no information flow is permitted between any two regular
processes except indirectly through the scheduler [10].
To specify this isolation policy, we designate the
processes {po, p1, - - -, Pn—1} as the set of domains, where
po is the scheduler. The can-flow-to relation consists
of the permitted flows pg ~ p;, p; ~ po, and p; ~ p;, for
all i € [0,n — 1]. The dom function returns the currently
running process as the domain for system call actions,
and returns the scheduler py as the domain for context
switching actions. NiKOS employs this policy (see §7).

We highlight two features in our policy definition
(Definition 1). First, it allows the can-flow-to relation ~»
to be intransitive [67]. For instance, the isolation policy
permits processes p; and p to communicate through
the scheduler, but prohibits them from communicating
directly with each other. In other words, p; ~ po and
po ~ p2 do not have to imply p; ~ p», though that would
also be accepted by Nickel if it were the intended policy.

This generality enables Nickel to support a broad range
of policies, as practical systems often need downgrading
operations (e.g., intentional declassification and endorse-
ment) [49]. As a simple example, a system may prefer to
have an untrusted application send data to an encryption
program, which in turn is permitted to reach the network,
while the application itself is prohibited from sending



sources(€,u, s) == {u}

sources(a o tr,u, s) = sources(tr,u, step(s,a)) U {

{dom(a,s)}
%]

if v € sources(tr,u, step(s,a)). dom(a,s) ~v

otherwise.

Figure 4: sources(tr, u, s) is the set of domains that are allowed to influence domain u over a trace 7r, starting from state s.

purge(e, u,s) = {e}

(%]
purge(aotr,u,s) ={ao ' | tr e purge(tr,u, step(s,a))} U {

if dom(a, s) € sources(a o tr,u,s)

purge(tr,u,s) otherwise.

Figure 5: purge(rr, u, s) is the set of all sub-traces of #r that retain the actions that are allowed to influence domain w, starting from state .

data directly over the network. Such policies require
intransitive can-flow-to relations [67, 80].

Second, in classical noninterference [24, 67], the dom
function is state-independent (A — D). The definition of
dom used in Nickel is state-dependent (A x S — D). This
extension is necessary for reasoning about many systems
in which the domain (i.e., authority) of an action depends
on the currently running thread or process [56, 68]. As
we will show next, we have developed a definition of
noninterference and theorems for proving noninterference
that accommodate this extension.

3.2 Noninterference

Given a system and a policy for the system, what kind of
action can violate the policy and introduce covert chan-
nels? As described in §2, to check for noninterference,
one can construct a trace of actions, obtain a purged trace
by removing actions from the original trace as per the pol-
icy, and compare the output of the corresponding actions
in both traces—any change of output indicates a covert
channel. Below we give a precise definition of noninter-
ference that captures this intuition, in three steps.

First, suppose that a system has executed a trace 7 to
reach the state § = run(init,#r), and is about to perform
action d next. To construct a purged trace of ¢, we need
to identify the actions that the policy permits to influence
a domain « and therefore should be retained in the trace.
This set is defined using the sources(tr,u,s) function
shown in Figure 4, which returns the set of domains that
can transfer information to domain u over trace tr from
state s, either directly specified by the can-flow-to relation
or indirectly through the domain of another intermediate
action in the trace.

Second, to obtain a purged trace that retains the ac-
tions identified by sources, we define the purge(tr, u, s)
function as shown in Figure 5. It returns the set of all
sub-traces of tr where each action in the sources of u from
state s has been retained; the actions whose domains are
not identified by sources are optionally removed.

Third, let #' denote a purged trace in the set
purge(tr,dom(4, §), init); like other traces in this set,
tr' is obtained by retaining actions in trace tr that can
transfer information to action 4. Now let’s replay the
purged trace ¢ from the start, resulting in a new state
§" = run(init,#r"). If the system satisfies noninterfer-
ence for the policy, then invoking d from state § should
produce the same output as invoking 4 from state §'.

Formally, we define noninterference as follows:

Definition 2 (Noninterference). Given a system M =
(A,0,S, init, step, output) and a policy P = (D, ~, dom),
M satisfies noninterference for P if and only if the fol-
lowing holds for any trace tr, action a, and purged trace
tr' € purge(tr, dom(a, run(init, r)), init):

output(run(init,tr),a) = output(run(init, #'), a).

To ensure that our definition of noninterference is
reasonable, we show two properties of this definition.
First, recall that we use a state-dependent dom func-
tion; if dom is restricted to be state-independent, that is,
dom(a, s) = dom(a) holds for any a and s, then our defini-
tion reduces to classical noninterference [67], suggesting
that our definition is a natural extension.

Second, a reasonable definition of noninterference
should be monotonic [17]: a system satisfying non-
interference for some policy should also satisfy non-
interference for a more relaxed policy in which more
flows are permitted. More formally, given two policies
P = (D, ~,dom) and P’ = (D, ~',dom), we say P’ con-
tains P to mean that any flow permitted by P is also
permitted by P’ (i.e., ~» € ~'). We have proved the fol-
lowing monotonicity property as a sanity check on our
definition of noninterference: if a system M satisfies
noninterference for a policy P, then it also satisfies non-
interference for any policy P’ that contains P.

3.3 Unwinding

It is difficult to directly apply Definition 2 to prove non-
interference for a given system and policy, as it requires



7 is a state invariant:

Z(init) A (Z(s) = Z(step(s,a)))
~isan equivalence relation:

~ is reflexive, symmetric, and transitive

~ is consistent with dom:

) AZ() As S 1 = dom(a, 5) = dom(a, )

~ is consistent with ~:
Z(s)AI(t) As %t = (dom(a,s)~u < dom(a, 1)~ u)
output consistency:

() AT(t) As S

local respect:

t = output(s,a) = output(t,a)

Z(s) Adom(a, s) # u = s ~ step(s, a)
weak step consistency:

T)AT() As St ns S 1 = step(s,a) & step(r, a)

Figure 6: Unwinding conditions. Each formula is universally quantified
over its free variables, such as domain u, action a, and states s and ¢.

reasoning about all possible traces. A standard approach
is to define a set of unwinding conditions, which together
imply noninterference but require reasoning only about
individual actions. We generalize the classical unwind-
ing conditions given by Rushby [67] to obtain an unwind-
ing theorem that accommodates our state-dependent dom
function and is amenable to automated verification. Prov-
ing noninterference using the unwinding theorem requires
two extra inputs from developers: a state invariant and
an observational equivalence relation, as described next.

A state invariant Z [46] is a state predicate that must
hold on all reachable states (i.e., the set of states pro-
duced by running any trace starting from the init state).
The state invariant overapproximates the set of reachable
states, as it may also hold for unreachable states. If the
unwinding theorem holds for states satisfying Z, then
it holds for all reachable states of the system. We use
this overapproximation to enable automation: in contrast
to reachability, which cannot be expressed in first-order
logic, the state invariant can be both expressed and effec-
tively checked with an SMT solver.

The next input required for the unwinding theorem
is an observational equivalence relation ~» € (D x S x ).
The observational equivalence describes, for each do-
main, the set of states that appear to that domain to be
indistinguishable. We write ~ to mean the binary rela-
tion {(s,1) | (u, s,1) € ~} relating all equivalent states for
domain u, and s ~ f to mean (u, s, ) € ~.

We then define the unwinding conditions of system M
for policy P, shown in Figure 6, and prove the following
unwinding theorem:

Theorem 1 (Unwinding). A system M satisfies nonin-
terference for a policy P if there exists a state invariant Z
and an observational equivalence relation ~ for which the
unwinding conditions in Figure 6 hold.

The unwinding theorem obviates the need to reason
about traces to prove noninterference; instead, it suffices
to show that the unwinding conditions hold for each ac-
tion. This theorem enables Nickel to automate the check-
ing using the Z3 SMT solver (see §4). Both the state
invariant Z and the observational equivalence relation »
are untrusted: any instances that satisfy the conditions
are sufficient to establish noninterference.

We give some intuition behind the unwinding theo-
rem. The first four conditions are natural: they ask for
a reasonable state variant 7 and observational equiva-
lence relation ~ (i.e., ~ should be an equivalence relation
and be consistent with the policy). The remaining three
conditions, output consistency, local respect, and weak
step consistency, provide more hints to interface design,
as follows. As a shorthand, we say “objects” to mean
individual storage locations in the system state.

First, the output of an action should depend only on
objects that the domain of the action can read. Restricting
the output prevents an adversarial application from in-
ferring information about system state via return values,
such as the error-handling channel described in §2.

Second, if an action attempts to modify an object, the
domain of the action should be able to write to that ob-
ject, and its new value should depend only on the old
value and objects that the domain of the action can read.
This requirement prevents unintended flows while updat-
ing the system state, such as the resource-name channel
introduced by spawn sequentially allocating identifiers.

Third, if an action attempts to create a new object, that
new object should have equal or less authority than the do-
main of the action; similarly, if an object becomes newly
readable after an action, then the domain of the action
should have been able to read that object before the call.
These restrictions preclude “runaway” authority—no ac-
tion can arbitrarily increase the authority of its domain,
or create an object more powerful than itself.

3.4 Refinement

Refinement is widely used for verifying systems: devel-
opers describe the intended system behavior as a high
level, abstract specification and check that any behav-
ior exhibited by a low level, concrete implementation is
allowed by the specification. Refinement allows develop-
ers to reason about many properties of the system at the
specification level, which is often simpler than reasoning
about the implementation directly.

In our case, it would be ideal to prove noninterference
(using the unwinding theorem) for an interface specifica-
tion, and extend that guarantee to an implementation that
refines the specification. However, it is well known that
noninterference is generally not preserved under refine-
ment [25, 52]; for example, the implementation may intro-
duce extra stuttering steps that leak information. Nickel



supports a restricted form of refinement over state ma-
chines and policies. We show here that this refinement
preserves noninterference as defined in §3.2.

Let’s consider the following systems:

* Mi={(A,0,S81,inity, stepy,outputy), and

* My ={(A,0,8,, inity, step,, output,).
These two systems share the set of actions A and the set
of outputs O, but differ in the state spaces, as well as the
state-transition and output functions. One may consider
M, as the specification and M as the implementation.
We say that M, is a data refinement of M to mean that
they produce the same output for any trace [33, 46]. Data
refinement is particularly useful for verifying systems
with a well-defined interface, such as OS kernels [41, 62].

A standard way to prove data refinement of M by M>
is to ask developers to identify a data refinement relation
o< € (8 x 81); we write s; o< 51 to mean (2, 51) € o<. Let
7T, denote a state invariant for M,. To prove that M
is a data refinement of M, it suffices to show that the
following refinement conditions hold:

® initpocinity.

* Tr(s2) A sy o< sy = stepy(s2,a) o< step(s1,a).

* T)(s2) A spoc sy = outputy(s2,a) = output;(sy,a).
Each formula is universally quantified over s, 52, and a.

Given policies P; = (D, ~», dom; ) and P; = (D, ~», dom;)
for systems M and M5, respectively, we say that P, is a
policy refinement of Py with respect to M and M, if and
only if the following holds for any action a and trace tr:
dom; (@, runi(inity, #r)) = domy(a, runy(inity, #r)). Here
run; and run, apply a trace starting from a given state for
M and M5, respectively (§3.2).

With these notions of data refinement and policy refine-
ment, we have proved the following refinement theorem
for noninterference:

Theorem 2 (Refinement). Given two systems M and
M and policy P for M, M, satisfies noninterference
for any policy refinement of P with respect to M; and
./\/lz if:

* there exists a state invariant Z; of system M and an
observational equivalence relation ~ for which the
unwinding conditions of M for P hold; and

* there exists a state invariant 7, of system M and a
data refinement relation o< for which the refinement
conditions of M by M, hold.

The refinement theorem enables Nickel to check non-
interference for an implementation by checking the un-
winding conditions for the interface specification and the
refinement conditions (see §4). As with the unwinding
theorem, the state invariants Z; and Z,, the observational
equivalence relation », and the data refinement relation o<
are untrusted for establishing noninterference.

3.5 Discussion and limitations

Nickel’s formulation of noninterference falls into the cat-
egory of intransitive noninterference [67]; in other words,
it allows the can-flow-to relation of a policy to be either
transitive or intransitive. As explained in §3.1, this flex-
ibility is particularly useful for verifying practical sys-
tems, which often require downgrading operations. In
addition, unlike classical noninterference, Nickel uses a
state-dependent dom function, inspired by the formulation
used to verify multiapplicative smart cards [68] and the
selL4 kernel [57].

Nickel extends previous work in the following ways:
the formulation supports a general set of policies and
systems, which enables us to verify DIFC in NiStar (§6)
and isolation in NiKOS and ARINC 653 (§7); all of its
verification conditions for unwinding and refinement are
expressible using an SMT solver, enabling automated ver-
ification to minimize the proof burden; and it provides a
restricted form of refinement that preserves noninterfer-
ence from an interface specification to an implementation.

Nickel’s formulation of noninterference has the follow-
ing limitations. It cannot uncover covert channels based
on resources that are not captured in the interface spec-
ification, such as timing, sound, and energy. Modeling
the effects of these resources is an orthogonal problem.
Recent microarchitectural attacks [5, 42, 50] suggest the
need for new hardware designs and primitives in order to
eliminate such channels [21, 22].

Nickel does not support reasoning about concurrent
systems. Concurrency is challenging not just for verifica-
tion in general, but also for its implications on noninter-
ference [71, 75]. In addition, Nickel models systems as
deterministic state machines and requires developers to
eliminate nondeterminism from the interface design (see
§5). This requirement enables better proof automation
and simplifies noninterference under refinement, but it
restricts the types of interfaces that Nickel can verify [77].

Nickel’s can-flow-to relation ~~ is state-independent,
which means that Nickel cannot reason about dynamic,
state-dependent policies [17] (though state-dependent dom
functions partially compensate for this limitation). More-
over, Nickel’s notion of refinement requires the interface
specification and the implementation to use the same sets
of actions and domains; this equality is sufficient for
verifying systems like NiStar and NiKOS. Extending
Nickel to support dynamic policies and more flexible re-
finements [76] would be useful future work.

4 Using Nickel

This section explains how the Nickel framework works
and describes the steps needed to design and verify infor-
mation flow control systems using Nickel.

Figure 7 depicts an overview of the Nickel framework
and the required inputs from system developers (shaded
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Figure 7: An overview of development flow using Nickel. Shaded
boxes denote files written by system developers and the rest are provided
by the framework. Circled numbers denote the steps. Solid and dashed
arrows denote proof flows in SMT and Coq, respectively.

boxes with circled numbers). As part of the framework,
the unwinding and refinement theorems (Theorem 1 and
Theorem 2) serve as the metatheory for Nickel. We have
formalized and proved both theorems using the Coq in-
teractive theorem prover [74].

Developers write the system implementation in C and
specify the rest of the inputs in Python. In particular, the
development flow of using Nickel is the following:

1. Write the intended information flow policy to serve

as the top-level specification of the system.

2. Model the system as a state machine and write a pre-
cise specification of each operation in the interface.

3. Construct a state invariant and observational equiv-
alence for the interface specification, and invoke
Nickel to check the unwinding conditions.

4. Implement each operation in the interface.

5. Construct a state invariant for the implementation
and data refinement between the interface specifica-
tion and the implementation, and invoke Nickel to
check the refinement conditions.

Nickel extends the specification and verification in-
frastructure from Hyperkernel [62] to support reasoning
about noninterference. It reduces all the inputs to SMT
constraints—for instance, by performing symbolic exe-
cution on the LLVM intermediate representation of the
implementation—and invokes Z3 to verify noninterfer-
ence by checking the unwinding and refinement condi-
tions. As with Hyperkernel, the initialization and glue
code of the implementation is unverified. Interested read-
ers can refer to Nelson et al. [62] for more information.

For verifying noninterference for an interface specifica-
tion, the trusted computing base includes the information
flow policy, the checker of unwinding conditions from
Nickel, and Z3. For verifying noninterference for an im-
plementation, it further includes the checker of refinement

conditions from Nickel and the unverified initialization
and glue code of the implementation.

Below we highlight two features of the development
flow using Nickel.

A simple API for specifying the policy. As described in
§3.1, a policy consists of a set of domains, a can-flow-
to relation over domains, and a dom function associating
each action in a state with a domain. Nickel provides a
simple and intuitive API for specifying policies.

As an example, recall the isolation policy in Figure 3:
each process p; is a domain; the permitted flows in the
system are: po ~ p;, p; ~ po, and p; ~ p; fori € [0,n—1].
In Nickel, this policy is written as follows:

class ProcessDomain:

def __init__(self, pid):
self.pid = pid

def can_flow_to(self, other):
# Or is a built-in logical operator
return Or(
self.pid == 0, # po ~> pi
other.pid == 0, # pi ~> po
self.pid == other.pid, # pi ~> pi
)

In addition, the dom function of this policy returns the
process currently running by default, or the scheduler pg
for context switching actions (say, the yield system call):

class State:
current = PidT() # PidT is an integer type

def dom(action, state):

if action.name == 'yield':
return ProcessDomain(@)
else:

return ProcessDomain(state.current)

This is all Nickel needs for the policy of NiKOS (§7).

Since a policy is the top-level specification of a system
and must be trusted, developers should carefully audit the
policy and ensure that it captures the design intention. We
hope that the simple API for policies provided by Nickel
makes auditing easier.

Debugging through counterexamples. To verify nonin-
terference for an interface specification, Nickel checks
the unwinding conditions from Theorem 1. If verification
fails, Nickel produces a counterexample that illustrates
the violation, including the operation name, an assign-
ment of the operation arguments and system state(s), and
the offending unwinding conditions.

Counterexamples provide useful information for de-
bugging two types of failures. First, the violation may be
in the interface specification, indicating a covert channel.
Developers can use the counterexample to understand the
violation and iterate on the interface design (see §5 for
guidelines) until verification passes. Second, the state



invariant or the observational equivalence may be insuffi-
cient to establish noninterference. Developers can consult
the counterexample to fix these inputs. Debugging the
verification of an implementation follows similar steps.

5 Designing interfaces for noninterference

We have applied Nickel to verify noninterference in three
systems: NiStar (§6), NiKOS (§7), and ARINC 653 (§7).
While they have different information flow policies, our
experience with these systems suggests several common
guidelines for interface design.

Perform flow checks early. In general, operations need
to validate parameters, especially those from untrusted
sources (e.g., user-specified values in system calls), and
return error codes indicating the cause of failure. As de-
scribed in §2, returning error codes requires care to avoid
covert channels. One simple way to avoid such channels
is to use fewer error codes (or drop error codes altogether),
but doing so makes debugging applications difficult.

NiStar addresses this issue by performing flow checks
as early as possible. For example, many system calls need
to check whether the current thread has permission to
access specified data. After such a flow check succeeds,
the system call has more liberty to validate parameters
and return more specific error codes without violating
noninterference.

Limit resource usage with quotas. Shared resources can
lead to covert channels due to resource exhaustion. Sys-
tems may impose a quota on shared resources for each
domain to avoid such channels. There are several quota
schemes. One simple scheme is to statically assign prede-
termined quotas to domains; for instance, allowing pro-
cesses to allocate only a predetermined number of iden-
tifiers for child processes [10]. However, this scheme
limits the functionality of the system if the quota is too
low, and wastes resources if the quota is set too high.

A more flexible and explicit quota scheme is to orga-
nize resources into a hierarchy of containers [4, 69, 82],
where each container has a quota for resources such as
memory and CPU time. A thread can allocate objects
from a container, including creating subcontainers, if the
container has sufficient quota and the policy allows the
thread to access the container. A thread can also transfer
quotas between two containers if the policy allows the
thread to access both containers. NiStar uses containers
to manage resources.

Partition names among domains. Resource names in a
shared namespace, such as thread identifiers and page
numbers, can lead to covert channels. A per-domain
naming scheme partitions names among domains to
eliminate such channels. A classical example is us-
ing (process identifier, virtual page number) pairs to re-

fer to memory pages, effectively partitioning page num-
bers among processes. As another example, a sys-
tem with container-based resource management may use
(container identifier, resource identifier) pairs to refer to
resources [82]; a thread may access the resource only if
the policy permits it to access the container. Both NiStar
and NiKOS employ per-domain naming schemes.

Encrypt names from a large space. Using encrypted
names is an alternative way to address covert channels
due to resource names. Many DIFC systems allocate
sequential identifiers for resources, but return encrypted
values to make them unpredictable [15, 45, 82]. This
design technically violates noninterference, but since the
identifier space is sufficiently large (e.g., 64 bits), the
amount of information that can be leaked through this
channel is negligible in practice. However, verifying
noninterference for this design would require probabilis-
tic reasoning [44] and complicate the semantics of nonin-
terference [17: §6.4]. We therefore do not use encrypted
names for the systems verified using Nickel.

Expose or enclose nondeterminism. As mentioned in
§3.5, Nickel does not allow nondeterministic behavior
in the interface specification (for instance, a system call
that allocates an unspecified physical page), since doing
so would complicate refinement for noninterference.

There are several options for revising the semantics
of such system calls to eliminate nondeterminism. The
first option is to make the (nondeterministic) decision ex-
plicit as a system call parameter, for example, asking user
space to decide which page to allocate, similarly to exok-
ernels [18, 37, 62]. The second option is to ask developers
to explicitly describe the behavior (e.g., the allocation al-
gorithm) as part of the interface specification. This makes
the interface specification less abstract but simplifies the
verification of noninterference under refinement; NiStar
uses this option for memory management. The third op-
tion is to enclose the source of nondeterminism below
the interface [28], for example, using virtual addresses to
refer to memory pages and removing the use of physical
pages from the interface. NiKOS uses this option.

Reduce flows to the scheduler. An OS scheduler is gen-
erally associated with a powerful domain, such as in Fig-
ure 3. The scheduler decides and updates which process
torun, and other domains usually need to access this infor-
mation (e.g., to look up the process currently running),
creating inherent flows from the scheduler to other do-
mains. Many scheduling approaches access information
about processes to make scheduling decisions, creating
flows from other domains to the scheduler. The com-
bination of these flows makes the scheduler a powerful
domain that two processes might exploit to communicate.



One way to control this risk is to enforce a stricter
policy that prohibits flows fo the scheduler. This policy
restricts the power of the scheduler, since it can no longer
query state that belongs to other domains. One simple
design that satisfies this policy is to use a static, prede-
termined schedule [1, 57] that does not need to query the
system state for scheduling decisions. NiStar instead sat-
isfies this policy with a more flexible design: like exoker-
nels [18, 37], it allows applications to allocate time slices
to implement dynamic scheduling policies. Unlike exok-
ernels, NiStar performs flow checks at run time to prevent
these allocations introducing covert channels (see §6.2).

6 DIFC in NiStar

NiStar is a new OS kernel that supports decentralized in-
formation flow control (DIFC). NiStar’s design is inspired
by HiStar [82]: the kernel tracks information flow using
labels and enforces DIFC through seven object types, and
a user-space library implements POSIX abstractions on
top of these kernel object types. Unlike HiStar, however,
we have formalized NiStar’s information flow policy and
verified that both its interface specification and imple-
mentation satisfy noninterference for this policy. This
section describes how we designed the NiStar interface
to eliminate covert channels and used Nickel to achieve
automated verification.

6.1 Labels

Like other DIFC systems [23, 45, 65], NiStar uses tags
and labels to track information flow across the system. It
follows a scheme used in DStar [83] and a revised version
of HiStar [84]. A tag is an opaque integer, which has no
inherent meaning. For instance, Alice uses tags ts and #;
to represent the secrecy and integrity of her data, respec-
tively. A labelisasetoftags. Every objectin the system is
associated with a triple of (secrecy, integrity, ownership)
labels, which we designate as the domain of the object.
For instance, Alice labels her files with ({5}, {t; }, @).
We use Figure 8 as an example to illustrate how Alice
can constrain untrusted applications using labels. Sup-
pose Alice launches a spellchecker to scan her files; the
spellchecker consults a shared dictionary and prints the
results (misspelled words) to her terminal. An updater
periodically queries a server through the netd daemon
and keeps the dictionary up to date. Alice trusts her
ttyd daemon to declassify data only to her terminal. She
trusts neither the spellchecker nor the updater, which may
each be buggy, compromised, or malicious. Alice hopes
to achieve the following security goals: (1) neither the
spellchecker nor the updater can modify her files; and
(2) her spellchecked files can not be leaked to the network.
Classical information flow control expresses policies
using only secrecy and integrity labels (i.e., ignoring own-
ership). Given two objects with domains Ly = (Sy, 1, O1)

TTY NET
(2,2, 2) (2,2,2)

Alice’s ttyd spellchecker updater netd
(2.2 {1s}) ({1} 2,2) (@, {di}.{di}) (2,2,2)

Alice’s files dictionary

({rs} {1}, 2) (2.{d},2)

Figure 8: Information flow of a spellchecker and updater. Cloud boxes
represent terminal (TTY) and network (NET); rounded boxes represent
threads; and rectangular boxes represent data. Each object is associated
with a triple of (secrecy, integrity, ownership) labels; arrows denote the
flows of information allowed by these labels.

and Ly = (S, I, O,), respectively, it is safe in the classical
model for information to flow from L; to L, if (1) the se-
crecy of S; is subsumed by that of S, and (2) the integrity
of I subsumes that of I: S; € S, Al € ;. Inother words,
a flow is safe if it neither discloses secrets nor compro-
mises the integrity of any object. For example, given the
label assignment in Figure 8 and a system enforcing such
flow checks, Alice can conclude that her files will not
be modified by the spellchecker or the updater: her files
have #; in their integrity labels, but the spellchecker and
updater do not, ruling out flows from them to her files.

The classical model is often too restrictive for practi-
cal systems. For instance, a password checker needs to
declassify whether login succeeds to untrusted users; as
another example, to output misspelled words in Figure 8,
the spellchecker (with zg in secrecy) needs to communi-
cate with to Alice’s trusted ttyd (without 7g). Like other
DIFC systems, NiStar supports such intentional down-
grading without a centralized authority. It uses the own-
ership label to relax label checking for trusted threads,
giving them the privilege to temporarily remove tags from
secrecy labels (declassification) or add tags to integrity
labels (endorsement), as follows:

Definition 3 (Safe Flow). Information can flow from L =
(S1, L1, 01) to Ly = (S, I, 02), denoted as L ~ Ly, if and
only if (§1 - 01 €S U02) A (L -0,c1;U0).

This can-flow-to relation is central to NiStar’s informa-
tion flow policy. L ~ L, means that L and L, can com-
bine their ownership to allow the maximum flow from L;
to Ly; thatis, L1 lowers its secrecy to S; —O; and raises its
integrity to I; U Oy, while L, raises its secrecy to S U O3
and lowers its integrity to I, — O5.

Referring to Figure 8, as information can flow from
the spellchecker to Alice’s ttyd given their label assign-
ments, ({5}, 3, @) ~ (@, 2, {ts}), Alice’s ttyd is able to
print out misspelled words. In addition, Alice can con-
clude that her files will not be leaked to the network: the



spellchecker cannot directly leak information to the net-
work given its label assignment. The spellchecker can,
however, indirectly write to Alice’s terminal only through
her ttyd, which she trusts to declassify data only to the
terminal; no other threads in the system are trusted. This
example shows how labels can minimize the amount of
application code that must be trusted.

6.2 Kernel objects

NiStar provides seven object types:

* labels represent domains of objects;

* containers are basic units for managing resources;

 threads are basic execution units;

* gates provide protected control transfer;

* page-table pages organize virtual memorys;

* user pages represent application data; and

* quanta represent time slices for scheduling.
Each object, other than labels, is associated with a domain
of (secrecy, integrity, ownership) labels; only threads and
gates can have non-empty ownership labels. The kernel
interface consists of a total of 46 operations for ma-
nipulating these objects. Each operation performs flow
checks among objects using their labels. NiStar’s design
goal is to ensure that the interface specification satisfies
noninterference for the policy given by Definition 3.

NiStar largely follows HiStar’s object types [82], with
the following exceptions: it provides a new object type,
quantum, for scheduling; and to make the interface finite
and therefore amenable to automated verification, it uses
fixed-sized page-table pages and user pages similar to
Hyperkernel [62] and seL4 [40]. Interested readers can
refer to Zeldovich et al. [84] for details of object types and
label checks; below, we highlight three key differences in
NiStar that close covert channels.

Given L; = (S1,11,01) and Ly = (S, I, 03), we intro-
duce the following notations for flow checks:

* L ER Ly means that L can be read by L;:

(S1€8U0)A (-0, ).
* Lty Ly means that L can write to Lj:
(Sl -0 ¢ Sz) A (12 cl U01).

As a shorthand, we write Ly Eg L1 Sy L, to mean that L,
can modify Ly: (LpEgL1) A (L1EyLy). It is generally
difficult for L, to modify L, without receiving any infor-
mation in return (e.g., error code), and so this definition
includes L being able to read L;. By definition, L; Sy L3
and L3 CR L, together imply L ~ L, for any Ly, L,, and
Ls; we will use this fact below to analyze covert channels.
We denote L, as the domain of object x.

Maintain accurate quotas in containers. Like HiStar,
NiStar manages all system resources in a hierarchy of
containers, starting from a root container created during
kernel initialization. Each container maintains a set of
quotas, indicating the amount of memory pages and time
quanta it owns. A thread 7 may allocate an object O

from a container C only if it can modify the container
(i.e., LcEr LT Ey L), the new object does not exceed
the authority of the thread (i.e., L7 Sy Lo), and the con-
tainer has sufficient quota for the object.

NiStar maintains accurate quotas in containers, which
differs from HiStar in two ways. First, NiStar sets the
memory quota of the root container to be number of
available physical pages upon booting, rather than infin-
ity [82: §3.3], avoiding a potential covert channel due to
resource exhaustion. Second, NiStar does not allow an
object to be linked by multiple containers, which would
require the kernel to conservatively charge each container
as in HiStar. Instead, each object is uniquely owned by
one container. This design leads to a simpler invariant:
for each resource type, the sum of the quotas of each ob-
ject in a container equals the total quota of the container.

Enforce can-write-to-object on deallocation. In HiStar,
to deallocate an object O from a container C, a thread T
must be able to write to the container, but not necessarily
to the object itself. This relaxed check supports reclaim-
ing zombie objects to which no one else can write (e.g.,
those with a unique integrity tag) [81]. However, it leads
to a covert channel. Consider a thread T’ whose domain
permits it to read object O (i.e., Lo SR L) but pro-
hibits it from receiving information from thread T (i.e.,
L1+ Lgr). To bypass DIFC, thread T encodes a one-bit
secret by either deallocating object O from container C or
not. 7’ learns the secret by observing whether object O
still exists [82: §3.2], violating noninterference since the
label assignment prohibits information flow from T to 7”.

NiStar enforces a stricter flow check on deallocation
by requiring that thread 7 can write to object O (i.e.,
LSy Lo). With this stricter check, this covert channel
is closed: if thread T’ can read object O (i.e., Lo Eg L77),
the new check implies that thread 7’ is permitted to re-
ceive information from thread 7, since L7 Sy Lo and
Lo Eg L7+ together imply L1 ~ L.

NiStar considers reclaiming zombie objects an admin-
istrative decision and leaves it to user space. Some sys-
tems may consider it legitimate for a user to create objects
that no one else can reclaim; since NiStar enforces accu-
rate quotas, adversarial users cannot create “runaway”
zombie objects that exceed their quotas. On the other
hand, a system wishing to reclaim zombie objects can em-
ulate the HiStar behavior by setting up a trusted garbage
collector with a powerful domain during booting, without
baking this requirement into flow checks in the kernel.

Remove flows to the scheduler using quanta. As noted in
§5, two processes can exploit the scheduler to commu-
nicate in violation of information flow policy. To close
this channel, NiStar borrows the design of the exokernel
scheduler [18] and extends it with label checking. NiStar
associates the scheduler with domain (@, U, @), where U



denotes the universal label of all tags. This domain al-
lows the scheduler to switch to any thread (its universal
integrity allows it to influence any thread it runs) while
restricting it from leaking information (its empty secrecy
and ownership prevent it receiving secrets). The resulting
scheduler allows applications to implement more flexible
scheduling schemes compared to static scheduling.

NiStar introduces time quanta to allow the scheduler
to make decisions while respecting this label assignment.
The system is configured with a fixed number of quanta,
each associated with a thread identifier for scheduling.
Like other resources, all quanta are initially owned by
the root container; a thread can move quanta between
two containers only if it can modify both containers. To
schedule thread 7’ at quantum Q, thread T writes the
identifier of 7’ to Q. Thread T can perform this write
only if it can write to quantum Q (i.e., L1 Ey Lo).

To schedule using time quanta, assume that the system
delivers an infinite stream of timer interrupts. Upon the
arrival of a timer interrupt, the scheduler cycles through
all the quanta in a round-robin fashion and retrieves the
thread identifier T’ associated with the next quantum Q.
If quantum Q can be read by thread T’ (i.e., Lo Eg L77),
the scheduler switches to 7’; otherwise, it idles.

To see why these flow checks suffice to close the chan-
nel, suppose 7 is able to schedule T’ to execute at quan-
tum Q. The checks ensure L7 Ey Lo and Lo Eg L7,
which together imply L1 ~ Lr+; in other words, the label
assignment permits 7' to communicate with 7",

This design closes covert channels arising from logical
time. As mentioned in §3.5, physical timing is beyond
the scope of this paper, for which NiStar provides no
guarantees of noninterference.

6.3 Implementation

To demonstrate that NiStar’s interface is practical, we
have built a prototype implementation for x86-64 proces-
sors, and have applied Nickel to verify that both the in-
terface specification and the implementation satisfy non-
interference for the policy given by Definition 3.

To simplify verification, NiStar borrows ideas from
previous verified OS kernels. First, like Hyperkernel [62],
NiStar uses separate page tables for the kernel and user
space. It uses an identity mapping for the kernel ad-
dress space, sidestepping the complication of reasoning
about virtual memory for kernel code [43]. Second, like
seL4 [40], NiStar enables timer interrupts only in user
space and disables them in the kernel. This restriction
ensures that the execution of system calls and exception
handling is atomic, avoiding reasoning about interleaved
executions. Third, NiStar disables all other interrupts and
requires device drivers to use polling, a common practice
in high-assurance systems [1, 57].

For user space, we have ported the mus! C standard
library [59] to NiStar, running on top of an emulation
layer for Linux system calls. A library implements the
abstraction of Unix-like processes on top of NiStar’s ker-
nel object types, similar to HiStar’s emulation layer [82].
The file-system service is implemented as a thin wrapper
over containers and user pages, and the network service is
provided by IwIP [13]. Although our current user space
implementation is incomplete, it is able to run programs
such as a set of POSIX utilities from Toybox, a web server,
and the TinyEMU emulator to boot Linux.

7 Verifying isolation

Nickel generalizes to information flow control systems
beyond DIFC. This section describes applying Nickel to
two such systems: NiKOS and ARINC 653.

Process isolation. NiKOS is a small OS that enforces
an isolation policy among processes (Figure 3). The
interface of NiKOS mirrors that of a version of mCer-
tiKOS as described by Costanzo et al. [10]. It consists of
seven operations, including spawning a process, query-
ing process status, printing to console, yielding, and han-
dling a page fault. Like mCertiKOS, NiKOS imposes
a memory quota on each process and statically parti-
tions identifiers among processes, avoiding covert chan-
nels due to resource names and exhaustion (§5). We im-
plemented a prototype of NiKOS for x86-64 processors
and ported user-space applications from mCertiKOS. We
used Nickel to verify that both the interface and imple-
mentation satisfy noninterference for the isolation policy.
This effort took one author a total of two weeks.

We made one change to the design in order to verify
noninterference. In mCertiKOS, the spawn system call
creates a new process and loads an executable file; the
specification of spawn models file loading as a no-op,
whereas the implementation allocates pages and con-
sumes memory quota [26]. In NiKOS, to match the
memory quota in the specification with that in the im-
plementation, spawn creates an empty address space and
the page-fault handler lazily loads each page of the exe-
cutable file instead.

Partition isolation. ARINC 653 [1] is an industrial stan-
dard for safety-critical avionics operating systems. It
models the system as a set of partitions and defines an
inter-partition communication interface comprising 14
operations. Figure 9 depicts its isolation policy among
partitions: information can flow to a partition only from
the transmitter, the scheduler, and itself. The transmit-
ter forwards messages among partitions as configured at
boot time; each dashed arrow represents a flow that can be
independently enabled in the configuration. The sched-
uler uses a pre-configured fixed schedule, and so does not
require flows from other domains to the scheduler (§5).
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Figure 9: The isolation policy of ARINC 653: information can flow
between the transmitter and each partition p; for i € [1,n] as per a
boot-time configuration (dashed arrows); it cannot flow between any
two partitions, or from any partition or the transmitter to the scheduler.

Using Nickel, we formalized the specification of the
communication interface based on the pseudocode pro-
vided by the ARINC 653 standard. Applying Nickel to
verify noninterference for the partition isolation policy
reproduced all three known covert channels first discov-
ered by Zhao et al. [86], which were caused by missing
partition permission checks, allocating identifiers in a
shared namespace, and returning error codes that leak
information; verification succeeded once we fixed these
channels. This effort took one author a total of one week.

8 Experience

This section reports our experience with using Nickel and
reflects lesson learned during development. Experiments
ran on an Intel Core i7-7700K CPU at 4.5 GHz.

Covert channel discussion. To test the effectiveness of
Nickel for detecting covert channels, we injected each of
the examples in §2 into the NiStar interface specification.
In each case, Nickel was able to find a counterexample
pointing to the issue. As a concrete example, we switched
NiStar’s scheduler to a round-robin one. When verifying
this round-robin scheduler, Nickel failed and produced a
counterexample (§4).

Figure 10 shows empirical evidence of a covert channel
by comparing the NiStar scheduler with the round-robin
one. In this experiment, one process sampled the current
(logical) time, while a background process repeatedly
forked and then killed 30 child processes. The measuring
process recorded the duration between scheduling points
in terms of number of quanta. With the round-robin
scheduler, the gaps observed by the measuring process
vary as the background task forks and kills its children,
creating patterns that indicate the covert channel. With
the NiStar scheduler, which is verified using Nickel, the
gaps between scheduling points remain constant regard-
less of the behavior of the background process. This
result suggests that the Nickel is effective in identifying
and proving the absence of covert channels.

Development effort using Nickel. Figure 11 shows the
sizes of the three systems we verified using Nickel:

£50
810 NiStar scheduler
330 round-robin scheduler
520 l
0 100 200 300 400 500

elapsed quanta

Figure 10: A round-robin scheduler leaks background thread behavior
through patterns in logical time; no such pattern is observed in NiStar.

component NiStar NiKOS ARINC 653
specification:

information flow policy 26 14 33
interface specification 714 82 240
proof input:

interface invariant 398 63 66
observational equivalence 127 56 80
implementation invariant 52 7 -
data refinement 139 30 -
implementation:

interface implementation 3,155 343 -
user space implementation 9,348 389 -

common kernel infrastructure 4,829 (shared by NiStar/NiKOS)

Figure 11: Lines of code for the three systems verified using Nickel.

NiStar, NiKOS, and ARINC 653. The lines of code for the
interface implementations of both NiStar and NiKOS do
not include common kernel infrastructure (C library func-
tions and x86 initialization), and those of the user space
implementations do not include third-party libraries (e.g.,
musl and IwIP). The implementation of the Nickel frame-
work is split between the formalization of the metatheory
(1,215 lines of Coq) and the verifier for the unwinding and
refinement conditions (3,564 lines of C++ and Python).

The information flow policies for the three systems are
concise compared to the rest of the specification and im-
plementation, indicating the simplicity of creating poli-
cies ranging from DIFC to isolation using Nickel (§4).

In our experience, the most time-consuming part of the
verification process was coming up with an appropriate
observational equivalence relation—it was non-trivial to
determine which part of the system state was observable
by each domain, and the complexity increased as the size
of the system state and the number of interface operations
grew. We found the counterexamples produced by Nickel
particularly useful for debugging and fixing observational
equivalence. The specification and verification of NiStar,
NiKOS, and ARINC 653 took one author six weeks, two
weeks, and one week, respectively; as a comparison, im-
plementing NiStar took several researchers roughly six
months. This comparison shows that the proof effort re-
quired when using Nickel is low, thanks to its support for
automated verification and counterexample generation.



Using Z3 4.6.0, verifying NiStar, NiKOS, and ARINC
653 on four cores took 72 minutes, 7 seconds, and 8 sec-
onds, respectively.

Lessons learned. Our development of Nickel was guided
by two motives. First, in our previous work on Hyperker-
nel [62], we proved memory isolation among processes,
but this did not preclude covert channels through system
calls; Nickel extends push-button verification to support
proving stronger guarantees about noninterference. Sec-
ond, we aimed to develop a general framework that can
help analyze and design interfaces not only for isolation,
but also for mechanisms as flexible as DIFC.

While designing Nickel, we spent a total of two months
iterating through several formulations of noninterference
before settling on the one described in §3. Among these
alternatives were classical transitive noninterference [29]
and intransitive noninterference [67], as well as variants
such as nonleakage [56, 77]. As discussed in §3.5,
Nickel’s formulation has the advantage of supporting
both a spectrum of policies and automated verification.

As Figure 7 shows, Nickel combines both automated
and interactive theorem provers: Z3 automates proofs
for individual systems, while the proofs in Coq improve
confidence in Nickel’s metatheory. Similar approaches
have been used for the verification of compiler optimiza-
tions [72], static bug checkers [79], and Amazon’s s2n
TLS library [9]. We believe that this combination is an
effective approach to developing verified systems.

9 Related work

Verifying noninterference in systems. Noninterference is
a desirable security definition for operating systems look-
ing to guarantee information flow properties [66]. For
example, the seL4 microkernel [40] is proven to satisfy a
variant of noninterference for a given access control pol-
icy [56, 57]; a version of mCertiKOS [27] includes a proof
of process isolation [10]; Ironclad [32] proves end-to-end
guarantees for applications using a form of input and out-
put noninterference; and Komodo [19] proves noninter-
ference for isolated execution of software-based enclaves.
Noting the difficulty of extending noninterference proofs
to concurrent systems, Covern [58] provides a logic for
the shared memory setting. Noninterference also has ap-
plications in secure hardware [20, 21], programming lan-
guages [49, 73], as well as browsers and servers [36, 64].
Nickel takes inspiration from these efforts, focusing on
formalizations and interface designs that are amenable to
automated verification of noninterference.

DIFC operating systems. Information flow control was
originally envisioned as a mechanism to enforce multi-
level security in military systems [2, 3]. Decentralized
information flow control (DIFC) additionally allows ap-
plications to declare new classifications [60, 61]. The

design of NiStar was influenced by prior DIFC operating
systems [7, 15, 45, 65, 82], particularly HiStar and Flume.

HiStar [82, 84] enforces DIFC with a small number of
types of kernel objects. All label changes in HiStar are
explicit, closing the covert channel in Asbestos due to
implicit label changes [15]. NiStar’s design draws from
HiStar, using a similar set of kernel object types, but
adapted to close remaining covert channels and enable
automated verification.

Flume [45] is a DIFC system built on top of the Linux
kernel. Building on top of an existing kernel makes port-
ing easier, but expands Flume’s TCB. Flume’s design
has a pen-and-paper proof [44] of noninterference for a
single label assignment, modeled using Communicating
Sequential Processes [34]; a more general formalization
of Flume is given by Eggert [16]. NiStar takes this effort
a step further, with the first noninterference proof of both
the interface and implementation of a DIFC OS kernel.

Reasoning about information flows for applications. As-
signing DIFC labels for applications is a non-trivial task.
To help application developers, Asbestos offers a domain-
specific language [14] for generating label assignments
from high-level specifications. The SWIM tool [30] gen-
erates label assignments from lists of prohibited and al-
lowed flows, and has been further extended using synthe-
sis techniques [31]. These tools can benefit from a precise
specification of the DIFC framework they use to imple-
ment policies for, such as the one provided by NiStar.

10 Conclusion

Nickel is a framework for designing and verifying infor-
mation flow control systems through automated verifica-
tion techniques. It focuses on helping developers elimi-
nate covert channels from interface designs and provides
a new formulation of noninterference to uncover covert
channels or prove their absence using an SMT solver. We
have applied Nickel to develop three systems, including
NiStar, the first formally verified DIFC OS kernel. Our
experience shows that the proof burden of using Nickel
is low. We believe that Nickel offers a promising ap-
proach to the design and implementation of secure sys-
tems. All of Nickel’s source code is publicly available at
https://unsat.cs.washington.edu/projects/nickel/.
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