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Abstract

A central goal of computer graphics is to provide tools for designing and simulating real or imagined artifacts. An understanding
of functionality is important in enabling such modeling tools. Given that the majority of man-made artifacts are designed to
serve a certain function, the functionality of objects is often reflected by their geometry, the way that they are organized in an
environment, and their interaction with other objects or agents. Thus, in recent years, a variety of methods in shape analysis
have been developed to extract functional information about objects and scenes from these different types of cues. In this report,
we discuss recent developments that incorporate functionality aspects into the analysis of 3D shapes and scenes. We provide
a summary of the state-of-the-art in this area, including a discussion of key ideas and an organized review of the relevant
literature. More specifically, the report is structured around a general definition of functionality from which we derive criteria
for classifying the body of prior work. This definition also facilitates a comparative view of methods for functionality analysis.
We focus on studying the inference of functionality from a geometric perspective, and pose functionality analysis as a process
involving both the geometry and interactions of a functional entity. In addition, we discuss a variety of applications that benefit
from an analysis of functionality, and conclude the report with a discussion of current challenges and potential future works.

CCS Concepts
eComputing methodologies — Shape analysis; Spatial and physical reasoning;

1. Introduction

One of the goals of computer graphics is to provide tools for design-
ing and simulating real or imagined artifacts, such as man-made
objects. Such artifacts are usually functional, and thus an under-
standing of functionality is paramount for simulating and validat-
ing different designs of artifacts. The latter two tasks are especially
important for enabling the virtual prototyping and mass customiza-
tion of artifacts in the context of fabrication, which has become
increasingly popular in recent years. Moreover, a functional under-
standing can benefit not only the analysis of individual objects, but
also of other types of geometric datasets, such as object parts or
scenes composed of multiple objects. These observations behoove

Figure 1: Examples of objects with a variety of functionalities.
From the left: coat rack, mug, nightstand drawer. The static and dy-
namic relations between the functional entity (in orange) and other
entities characterize the functionality of the object or shape part.

computer graphics researchers to work on representing, analyzing,
and synthesizing the functionality of artifacts.

Functionality typically refers to the purpose of an object or, more
specifically, how the object can be used to accomplish a specific
goal, e.g., see Figure 1. Thus, understanding the functionality of
an artifact may involve analyzing and understanding several qual-
ities of the object, ranging from its geometry, to its interactions
with other objects, to physical properties of the object. However,
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this also implies that the analysis of functionality can be a chal-
lenging problem, given the variability that exists in the geometry of
artifacts, and the many factors that have to be taken into considera-
tion to reveal the functionality of a geometric dataset (see Figure 2).
Nevertheless, computer graphics is in a strategic position to provide
key contributions to the analysis and representation of functional-
ity, given the expertise of the community with a variety of topics
such as geometric modeling, design tools, physical simulation, and
applied machine learning.

In recent years, there has been an increasing interest in consid-
ering high-level and structural information for the analysis of 3D
geometric datasets of objects and scenes. These works have shown
that going beyond pure geometry with the use of information at a
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Figure 2: Challenges in functionality analysis: all of the objects
shown here possess similar functionalities, although they vary sig-
nificantly in their geometry, or the arrangement of their parts.

more semantic level can greatly benefit several applications in com-
puter graphics, e.g., with structure-aware processing [MWZ* 13] or
data-driven shape analysis approaches [XKHK17]. Functionality is
another form of semantic information, which goes beyond part la-
bels and object structures. One could argue that the end-goal of sev-
eral previous works involving semantics has been a functional un-
derstanding of the objects involved. Functionality-aware process-
ing, the processing of geometric datasets while involving an under-
standing of functionality, is still a relatively new idea in graphics.
However, interest in this topic has grown given the potential that
a functional understanding of objects can have in facilitating com-
puter graphics applications.

The goal of this report is to provide a comprehensive survey of
functionality analysis in computer graphics, and discuss the state-
of-the-art methods in the field. The report is structured around a
general definition of functionality which we use to derive criteria
for classifying the body of prior work, and for facilitating a compar-
ative view of methods for functionality analysis. In this definition,
we focus on the inference of functionality from the geometry of the
datasets via shape analysis methods, which is the manner in which
functionality analysis has been approached by most works in the
literature. Note that we do not consider other important physical
properties which are tied to functionality, such as the appearance
and materials of the objects. We discuss this aspect of functionality
in more detail in the perspective of future work.

Previous reports. Our focus domain is related to structure-aware
and data-driven shape analysis approaches, which were covered by
the reports of Mitra et al. [MWZ*13] and Xu et al. [XKHK17],
respectively. The key difference of our report compared to these
previous surveys is that we focus on classifying the types of func-
tionality representations in the literature, with a particular focus on
the extraction and representation of the functionality of objects. In
addition, our report discusses recent functionality-centered works
that have not received attention in these previous reports.

Functionality analysis in computer vision and robotics. In this
report, we focus on functionality analysis works published mostly
in the computer graphics literature, discussing methods that ana-
lyze geometric datasets such as 3D objects, object parts, and scenes

composed of multiple objects. There has also been considerable
work on functionality analysis in other areas of visual computing,
such as computer vision and robotics. We include in our discussion
the works from these fields that involve the use of 3D or depth in-
formation, such as RGB-D images. We consider the discussion of
works that do not involve geometric datasets to be outside the scope
of our report, for example, methods involving the analysis of digital
images composed only of color channels without depth.

Nevertheless, for the reader interested in the use of functionality
in these other contexts, our definition of functionality and derived
classification scheme can also be used as a framework to study the
related literature. For example, a class of methods for affordance
analysis in RGB images combines the idea of human pose esti-
mation and object detection [GSEH11, YFF12, YMFF13,ZFFF14],
being similar to the agent-based (GA) methods discussed in our re-
port. Another class of computer vision works follow a labeling ap-
proach, where input images are segmented and labeled with affor-
dance labels [DR13,ZZ13,RT16], similarly to the geometry-only
(G) methods in our report. A few methods combine human poses
and affordance labels with additional knowledge such as natural
language semantics, involving verb-noun relations [CWMD15], or
encode the information as a knowledge graph [ZFFF14]. Finally,
rather than using human pose to estimate affordances, some works
focus on specific applications and employ pose information directly
for scene understanding and reconstruction [ZZ13,FDG* 14].

Organization. We first introduce our formal definition of func-
tionality, which leads to the classification of previous works. We
also discuss various definitions of functionality proposed in pre-
vious works, and show how they can all be seen as a special
case of our general definition. We then frame our discussion of
the works in the literature based on this induced classification
scheme. Moreover, we present a series of applications that bene-
fit from functionality-aware processing. Finally, we conclude the
report with a discussion of current challenges and possible future
works on functionality-aware analysis.

2. Definition of functionality and classification criteria

In common speech, functionality typically refers to the use or pur-
pose of an object. For example, the Merriam-Webster dictionary
defines function in layman terms as “the action for which a person
or thing is specially fitted or used, or for which a thing exists (pur-
pose)”. In a more technical context, Bogoni and Bajcsy [BB95] de-
fine functionality as “the application of an object in a specific con-
text for the accomplishment of a particular purpose”. These defini-
tions give an intuitive explanation of functionality as the practical
use for which an object is intended or designed. However, such def-
initions do not serve well as a means of classifying technical works
in terms of the aspects of functionality that they analyze. Here, we
give a constructive definition of functionality, which more easily
serves as a classification guide for existing works in the computer
graphics literature.

2.1. Our definition of functionality

We start from the assumption that our goal is to understand the
functionality of an entity, which we refer to as the functional entity.
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Figure 3: Our analysis of functionality covers a spectrum of different levels of functional entities: entire scenes, multi-object regions, distinct

objects, multi-part sets, and distinct parts.

An entity can be an animate or inanimate object, e.g., a static ob-
ject such as a table, a moving mechanism or part such as a sliding
drawer, or an agent such as a human being. We define the function-
ality of the entity as:

Functionality = geometry + interaction. (1)

Geometry refers to the shape or 3D spatial structure of the func-
tional entity itself, given that the geometry of an object often pro-
vides valuable knowledge about the purpose of the object, as cap-
tured by the maxim “form follows function” [Sul96]. For example,
a disk-like shape provides a cue that the object may be rotated and
thus may be used as a wheel. However, geometry alone is often not
sufficient to characterize the functionality of an entity. A concrete
realization of functionality involves the use of the entity, which re-
quires some form of interaction to occur between entities.

Thus, interaction in the definition refers to the interaction be-
tween the functional entity and other entities in a context, which
we refer to as interacting entities. An interaction can involve any
type of relation that provides cues on the use or functionality of the
functional entity. Examples of relations are spatial proximity, static
support, allowed relative motions, etc. Thus, the idea behind this
definition of functionality is that we can obtain valuable knowledge
about the functionality of an entity with an analysis that considers
both the geometry of the entity and how it interacts with other en-
tities in a relevant context.

We define the interaction component of the definition as a set
of atomic interactions. We propose this compositional definition of
interaction since recurring patterns of the functionality of different
objects imply that there exists a set of atomic building blocks for
functionality. These atomic building blocks are the individual in-
teractions of the entity with each of the other entities in its context.
Specifically, an atomic interaction is a relation between two enti-
ties which enables the functionality of the functional entity, where
the relation can take a variety of forms. Thus, we denote an atomic
interaction as a tuple of the form:

Atomic interaction = (functional entity, relation, interacting entity).

@)

In the following subsections, we will discuss the components
of these definitions in more detail, while also analyzing previous
works on functionality according to the framework induced by this
formalism. We will first give concrete examples of possible entities
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and relations for Eq. (2). Then, we will see how Eq. (1) serves as a
common framework to understand and discuss previous works, also
revealing unexplored areas of research. Note that, since much prior
work in graphics has focused on the representation and analysis of
geometry, our focus in this report will be on the representation and
analysis of interaction, and its relation to functionality.

2.2. Atomic interactions

An atomic interaction is characterized by its entities and the re-
lation between the entities. We classify entities and relations ac-
cording to their characteristics as follows, and list them with the
keywords and abbreviations that we use in Table 1.

Type of entity: relates mainly to the dynamics of the entity.

e Static entity: the entity is a rigid body that can be moved but
usually does not deform during motion, e.g., a mug cup.

e Dynamic entity: the entity may deform or articulate when un-
dergoing a motion, e.g., scissors while cutting paper.

e Human(-oid) agent: this is a special case of a static or dynamic
entity that is typically the performer of actions. Since agents are
an important component in some functionality models, we clas-
sify them separately from other types of entities. Note that, al-
though humanoid agents are inherently dynamic, certain works
may model them as static entities for practical purposes.

Level of entity: relates to the level of organization at which the
entity appears, illustrated in Figure 3.

e Scene: the entity is a set composed of multiple objects, e.g., aliv-
ing room with a couch, table, and TV. Note that a scene can be
composed of multi-object entities which locally allow for differ-
ent functionalities, e.g., a living room with a TV stand, a piano,
and a dining table.

e Multi-object: the entity is a set of objects that are functionally
connected and jointly used, e.g., the combination of an office
desk, chair, and computer, which can be used for performing of-
fice tasks.

e Object: the entity is an entire object, e.g., a table.

e Multi-part: the entity is composed of multiple object parts, e.g.,
a combination of a seat and back of a chair that provide support
for a human to sit.

e Part: the entity is an object part, e.g., table leg.

Type of relation: relates mainly to the dynamics of the relation.
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Figure 4: Different representations of relations in interactions: (a) Spatial arrangement (SA) [FAVK* 14], (b) Boundary representation
(BR) [ZWK14], (c) Dense volume feature (VF) [PKH*17], (d) Gestalt and symmetry grouping (SG) [WXL* 11], (e) Mechanical relations
(MR) [MYY* 10], (f) Humanoid actions (HA) [FSL*15].

Static: the relation between the functional and interacting enti-
ties does not change over time, e.g., a plate resting on a table.
Dynamic: the relation changes over time time, e.g., someone
using a cup to drink a liquid, or scissors to cut a piece of paper.
Note from these examples that the entities involved in dynamic
relations can be static or dynamic.

Representation of the relation: categorizes how the relation be-
tween the entities is represented and what information is captured.
Examples of relations are shown in Figure 4.

Spatial arrangement (SA): includes spatial relations that cap-
ture the arrangement between the two entities. Examples include
relations such as relative position, co-occurrence and adjacency,
gravitational support, attachment, enclosure, and the Relation-
augmented Image Descriptor (RAID) [GMW16].

Boundary representation (BR): represents the boundary be-
tween the geometry of the two entities, to capture richer geomet-
ric information about the interaction when compared to simpler
measures such as relative position. Examples include the Inter-
action Bisector Surface (IBS) [ZWK14], and the IBS combined
with Interaction Regions (IR) [HZvK™*15]. Note that the bound-
ary between the entities in these works is in fact a portion of
space between the entities, which can be empty when the enti-
ties are far apart, or which can possess an infinitesimal thickness
when the entities are touching.

Dense volume feature (VF): represents the space containing the
two entities, capturing scalar or vector features of the interaction
at a dense set of points in the containing volume. An example of
this representation are Interaction Landscapes [PKH*17].
Gestalt and symmetry grouping (SG): includes relations that
capture translational and rotational symmetry groupings of the
entities, and repeated geometric patterns formed by the entities.
Much of the earlier work in shape analysis focuses on this rela-
tion type. A prominent example is the symmetry hierarchy rep-
resentation [WXL*11], where the functional entities are defined
at the part level.

Mechanical relations (MR): includes relations such as force
drivers (e.g., motors), joints, gears, and other dynamic mech-
anisms formed by the entities. These relations are common in
methods focusing on fabrication of articulated objects [LOMI11,
KLY *14], or visualization of mechanical assemblies [MYY ™10,
XLX*16].

Human(-oid) actions (HA): the relations include actions such
as gazing, grasping, holding, pushing, pulling, sitting, and ly-

ing down, which involve two entities. Note that the latter two
are actions combined with forms of gravitational support. Ac-
tion relations are the focus of human-centric analysis meth-
ods [SCH*14,FSL*15,SCH* 16, MLZ™* 16].

2.3. Representations of functionality

Given the definition of functionality introduced in Eq. (1), we group
models of functionality built by different methods into three cate-
gories, depending on the components of the definition that are taken
into consideration. These categories are illustrated in Figure 5.

Geometry-only (G): only the geometry of the functional entity and
possibly its structure are used to derive knowledge about the en-
tity’s functionality. Note that the analysis of the structure of an en-
tity may involve the analysis of relations between subcomponents
of the entity, e.g., an analysis of the relations among object parts
to infer the functionality of an object. The relations between sub-
components are usually stored in a tree or graph structure, which
allows one to establish a distance metric between region or scene
contexts and retrieve or classify entities. One may argue that given
our definition of functionality, such approaches do not really ana-
lyze functionality, since no form of interaction with entities at the
same level is considered. However, we classify these works as a
special case which implicitly falls within the scope of functionality
analysis. Examples of works in this category include:

Object co-analysis: methods that characterize the validity of ob-
jects based on the configuration of their parts, such as the meta-
representation [FAVK*14] or co-constrained handles [YK14],
where the geometry of an object and its part composition gives
an indication of the validity of the object, in terms of the prob-
ability that it belongs to a certain class of objects. The learned
validity of an object is closely related to functionality, although
it can also include aesthetic properties of the objects.

Scene synthesis: methods that represent scenes as graphs with
objects at the nodes, and edges capturing spatial relations be-
tween the objects (e.g. graph kernels for 3D scene similarity es-
timation [FSH11]).

Geometry + interaction (GI): both the geometry and interaction
with other entities are used to establish the functionality of the en-
tity. The atomic interactions can be organized in different ways, to
provide a summary of the entity’s functionality:

Rooted tree: similar to the tree or graph structure mentioned
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Figure 5: The three categories of functionality representations, according to our generalized definition of functionality: (a) Geometry-only
(G) [FAVvK™* 14], (b) Geometry + interaction (GI) [HZvK* 15], (c) Geometry + interaction with humanoid agent (GA) [KCGF14].

above, but in this case the focus is on describing the function-
ality of a single functional entity and its interactions with other
interacting entities at the same level. The functional entity corre-
sponds to the root of the tree, and can be called central or focal
object in some works. Examples include the use of objects as fo-
cal points [XMZ*14] or central objects in a context [HZvK*15].
e Dynamic field: the time-varying nature of a given atomic inter-
action is captured in a volume containing the interacting entities.
For example, the Interaction Landscapes descriptor [PKH*17]
represents the dynamic evolution of a relative position interac-
tion as a scalar or vector field over the volume. Note that, as a
special case, one of the interacting entities can be a human agent.

Geometry + interaction with human(-oid) agent (GA): we clas-
sify models that involve interactions with agents as a special case of
the previous classification, given their importance in the analysis of
functionality. Examples of approaches making use of interactions
with agents include:

e Agent-centric: interactions are represented in terms of the struc-
ture of the acting agent. Most commonly, this implies model-
ing of the human pose at the body part level, and associating
body parts to objects, e.g., the human pose representation used
by PiGraphs [SCH*16].

o Geometry-centric: interactions are represented in terms of the
geometry (typically the surface) of the objects with which the
agent interacts. An example of this representation are the action
maps or affordance maps used by SceneGrok [SCH* 14].

2.4. Additional classification criteria

Besides the components of the functionality definition we dis-
cussed above, we consider some additional criteria that are helpful
for classifying previous works.

Model type: type of model produced by the method, which is rele-
vant to the target task. We classify the model type into one of:

e Discriminative: the model can be used to classify instances into
one or more functionality categories, or to induce features and
descriptors for classification or retrieval of functionality.

e Generative: the model can be used for classification but also to
generate novel domain instances.

Approach: nature of the approach used by method to acquire
knowledge on the problem, including different types of learning
methods. We classify the approach as one of:
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e Supervised: the method is data-driven, with the functionality-
related knowledge being learned from training data.

e Unsupervised: the method is data-driven, but with knowledge
being extracted in an unsupervised manner.

o Handcrafted: the knowledge used by the method is based on
a handcrafted model, possibly consisting of a user-created rule-
based system, and no learning is involved.

Input data representation: the encoding of the main type of input
data handled by method. Note that we consider mainly approaches
that use some type of 3D shape representation. We classity the rep-
resentation into one of:

o RGB-D image: an image representing a single frame of a depth
scanner input.

e Point cloud: an already-reconstructed point cloud, possibly aris-
ing from fused RGB-D frames or from sampling a mesh.

e Mesh: a polygonal mesh, including triangle soups and manifold
meshes.

2.5. Example definitions of functionality

The general definition of functionality and terminology that we
present above allows us to classify prior work and carry out a com-
parative discussion of existing models of functionality, indepen-
dently of whether the models were explicitly defined in the works,
or only implicitly used. Here, we provide a few prominent exam-
ples to illustrate the use of our classification scheme.

Slippage Analysis [GG04]: this method analyzes a shape to dis-
cover its slippable motions, that is, rigid motions that slide a trans-
formed version of the shape against a stationary version of the
shape without forming any gaps. The approach reveals portions
of the shape that are kinematic surfaces, such as planes, cylinders,
spheres, and surfaces of revolution. Although the method is used
primarily for segmentation of the shape into primitive surfaces, the
analysis reveals the slippable portions of the shape and the asso-
ciated motions, which could be explored for inferring functional
characteristics of the shape.

Following our classification criteria, this work proposes a
geometry-only (G) method representing static symmetry relations
(SG) of static parts of a shape, by modeling the slippage charac-
teristics of the parts. In addition, the slippage analysis is based on a
prespecified mathematical definition of the various surfaces. Thus,
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the approach is handcrafted, and is used discriminatively to provide
segmentations of a shape as the output, taking polygonal meshes as
input.

ICON [HZvK™*15]: this method encodes the interactions be-
tween objects in a scene with the Interaction Bisector Surface
(IBS) [ZWK14], which is a subset of the Voronoi diagram that cap-
tures the spatial boundary between the objects. In addition, portions
of the central object that triggered the creation of the IBS are cap-
tured by the Interaction Regions (IR), which characterize the shape
portions that are directly involved in the interactions. By organizing
the interacting objects in a scene into a tree structure, according to
the similarity of their IBSs and IRs, the representation can be used
to compare the functionality of the central objects reflected in the
corresponding context.

In our classification, we characterize this approach as a geometry
+ interaction (GI) method, representing the static boundary (BR)
between the interacting objects and the central object, in a rooted
tree. Thus, the method works at the object level, and is discrimina-
tive and handcrafted, applied to point cloud representations.

SceneGrok [SCH*14]: the method takes as input dense 3D recon-
structions of real-world scenes and tracks people as they interact
with the environment. This information is used to train a classi-
fier that can predict the probable interactions that unobserved 3D
scenes support, which are encoded as action maps over the scenes.

According to our classification, this is a geometry + human agent
(GA) method representing spatial arrangement (SA) and human ac-
tion (HA) relations between human agent entities and static 3D
scenes, using the geometry-centric “action map” representation.
The model is discriminative and trained in a supervised fashion
from polygonal mesh representations of reconstructed 3D scenes.

In the following sections, we discuss individual methods that
analyze the functionality of geometric datasets. We start the dis-
cussion by first examining works that are related to functionality
analysis, but which do not exactly fit our definition as they do not
explicitly aim to analyze the functionality of shapes. Next, we orga-
nize the discussion of the more closely-related approaches accord-
ing to the three representations of functionality that we defined in
Section 2.3.

3. Shape analysis works related to functionality

In recent years, several approaches that incorporate semantic
considerations into the analysis of shapes have appeared, such
as structure-aware [MWZ*13] and data-driven [XKHK17] ap-
proaches. Although these methods do not explicitly infer or cre-
ate a model of the functionality of shapes, they can be seen as
precursor works in this direction. Many of these approaches have
objectives related to shape understanding, and form the building
blocks of later methods that perform explicit functionality analysis.
In this section, we discuss representative methods of this category,
grouped by the main problems that they address, and explore the
principles followed by these works that are also relevant to func-
tionality analysis tasks.

3.1. Consistent part correspondence

A variety of techniques have been proposed for obtaining a con-
sistent part correspondence of a set of shapes. The objective of
these techniques is to segment the input shapes into parts, while
at the same time establishing a correspondence among the parts of
all shapes, so that parts that likely possess the same semantics are
mapped to each other. For example, given a set of human models,
the goal would be to segment the models into body parts, and as-
sign a common label to similar parts, e.g., all hands get assigned the
same numeric label. Different solution approaches were proposed
to solve this problem, which can be roughly classified into methods
that first extract candidate parts and then establish a correspondence
among the parts (segmentation — correspondence methods), and
methods that follow the inverse approach by first establishing cor-
respondences between the entire shapes and then consistently seg-
menting the shapes into parts based on the correspondences (corre-
spondence — segmentation methods).

In the segmentation — correspondence category, one group
of methods is based on first performing an over-segmentation of
the shapes using geometric criteria, to yield a partitioning of the
shapes into candidate building blocks of parts, also referred to as
super-faces, similar to super-pixels in computer vision. Next, a co-
analysis is performed where the super-faces are represented by a
set of shape descriptors and clustered according to the similarity
of these descriptors. The clusters then provide the correspondence
between parts, which can cause super-faces within the same cluster
that are adjacent on a shape to be fused together into larger seman-
tic parts. Example approaches of this group use similar descriptors
but perform the clustering with a variety of methods, such as spec-
tral clustering [SVKK*11], subspace clustering [HFL12], multi-
label optimization [MXLH13], affinity propagation [WWS*13],
and deep learning [SQX*16].

Another group of methods in this category takes the global struc-
ture of the shapes into consideration when performing the segmen-
tation and then computing the correspondence. The structure can be
represented as a template, hierarchy of parts, or a pattern of part ar-
rangements. For example, the approach of Kim et al. [KLM*13]
fits a global box-template to the shapes, which provides a seg-
mentation. A correspondence can then be inferred from parts as-
signed to the same box of the template. The initial template fit-
ting and correspondence provide feedback for the refinement of the
fitting, which can be performed iteratively. The approach of van
Kaick et al. [vKXZ*13] organizes candidate parts into hierarchies
which are consistent across the shapes in the set, providing a hi-
erarchical segmentation and correspondence of the parts. Zheng et
al. [ZCOAM 14] first compare pairs of candidate parts across shapes
in a set to discover recurrent part arrangements. Then, this informa-
tion is used to define the final shape parts and their correspondence.

In the correspondence — segmentation category, a correspon-
dence is first established among shapes in the set according to a
global matching technique, such as shape alignment [GF09], func-
tional maps [HWG14], or structure matching [FvKBCO16]. Next,
the shapes can be partitioned into parts consistently according to
the adjacency of the geometric primitives on the shapes and their
correspondence across shapes [GF09, HWG14], or by transferring
a manual segmentation defined for only a few key shapes to all the
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Additional method classification criteria

‘Works Furilctional Subjcorflponent Relation type Relation. Input . Approach Model type
entity level  relation involved representation  representation
Geometry-only (G)
Xu et al. [XSF02] Scene Yes: object-level Static SA Mesh Handcrafted Generative
Merrell et al. [MSL*11] Scene Yes: object-level Static SA Mesh Handcrafted Generative
Yuetal [YYT*11] Scene Yes: object-level Static SA Mesh Supervised Generative
Fisher et al. [FSH11] Scene Yes: object-level Static SA Mesh Handcrafted Discriminative
Fisher et al. [FRS*12] Multi-object  Yes: object-level Static SA Mesh Supervised Generative
Zhao et al. [ZWK14] Multi-object  Yes: object-level Static BR Point cloud Handcrafted Discriminative
Zhao et al. [ZHG* 16] Multi-object  Yes: object-level Static BR Mesh Supervised Generative
Zheng et al. [ZCOM13] Object Yes: part-level Static SG Mesh Handcrafted Generative
Mitra et al. [MYY*10] Object Yes: part-level Static SG Mesh Handcrafted Discriminative
Xu et al. [XLX*16] Object Yes: part-level Static SG RGB-D image Handcrafted Discriminative
Fish et al. [FAVK* 14] Object Yes: part-level Static SA Mesh Supervised Generative
Yumer et al. [YK14] Object Yes: part-level Static SA Mesh Supervised Generative
Pechuk et al. [PSROS8] Part Yes: part-level Static SA RGB-D image Supervised Discriminative
Gelfand et al. [GG04] Part No - - Mesh Handcrafted Discriminative
Representation of atomic interactions Additional method classification criteria
Works FllIIICUOl’lal Intefractlng Relation type Relatlog Input . Approach Model type
entity level entity type representation  representation
Geometry+interaction (GI)
Hu et al. [HZvK*15] Object Static entity Static BR Point cloud Handcrafted Discriminative
Hu et al [HYKW*16] Object Static entity Static BR Point cloud Supervised Discriminative
Pirk et al. [PKH*17] Object Dynamic entity Dynamic VF Mesh Handcrafted  Discriminative
Myers et al. [MTFA15] Part Static entity Static SA RGB-D image Supervised Discriminative
Kim et al. [KS14] Part Static entity Static SA RGB-D image Supervised Discriminative
Laga et al. [LMS13] Part Static entity Static SA+SG Mesh Supervised Discriminative
Hu et al. [HLK*17] Part Static entity Dynamic SA+BR Point cloud Supervised Discriminative
Geometry+agent (GA)
Grabner et al. [GGVG11] Scene Agent Static HA Mesh Supervised Generative
Savva et al. [SCH* 14] Scene Agent Static SA+HA Mesh Supervised Discriminative
Zhu et al. [Z]JZ*16] Scene Agent Static SA Mesh Supervised Generative
Jiang et al. [JKS13] Multi-object Agent Static SA RGB-D image Supervised Discriminative
Wang et al. [WLY17] Multi-object Agent Static SA+HA Mesh Supervised Discriminative
Fisher et al. [FSL*15] Multi-object Agent Static SA+HA Mesh Supervised Generative
Savva et al. [SCH*16] Multi-object Agent Static SA+HA Mesh Supervised Generative
Ma et al. [MLZ*16] Multi-object Agent Dynamic SA+HA Mesh Unsupervised Generative
Zheng et al. [ZLDM16] Object Agent Static SA Mesh Handcrafted Generative
Kim et al. [KCGF14] Object Agent Static SA Mesh Supervised Generative
Bar-Aviv & Rivlin [BARO06] Object Agent Static SA+HA Mesh Handcrafted Discriminative
Zhu et al. [ZZCZ15] Object Agent Dynamic SA+HA RGB-D image Supervised Discriminative
Zhao et al. [ZCK17] Object Agent Dynamic SA+HA Mesh Handcrafted Discriminative
Lee et al. [LCL0O6] Object Agent Dynamic SA Mesh Supervised Generative

Table 1: All the literature reviewed in this report, classified according to our definition of functionality. We group first by the representation
of functionality (indicated in the row titles), then by aspects of the representation of atomic interactions for capturing the functionality, and

finally by properties of the method presented by each work.

remaining shapes in the set, with the use of a propagation mecha-
nism that relies on the correspondences [FvKBCO16].

shapes, since that often functionality also relates to the shape of an
artifact. Specifically, these methods can provide a correspondence

between parts that likely possess the same functionality. Thus,

Relation to functionality analysis. Given that the methods
discussed reveal semantics of the shapes based on the similarity
of their geometry, they can also reveal functional aspects of the

(© 2018 The Author(s)
Computer Graphics Forum (© 2018 The Eurographics Association and John Wiley & Sons Ltd.

these approaches can potentially provide a preliminary analysis of
functionality, which could then be leveraged by further analysis.
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On the other hand, a limitation of these approaches is that they
reveal parts that likely possess the same functionality. However,
correspondences between parts with different functionality may be
established based on their geometric similarity, and it may be dif-
ficult to separate them from true functional matches. In addition,
although parts with similar functionality are likely matched to each
other, the methods do not name or categorize the type of functional
relation that the parts possess, which poses difficulties in generaliz-
ing the knowledge for creating a model of functionality. Moreover,
these methods reveal corresponding functionality only at the part
level. They do not provide a model of functionality that can be used
to evaluate the functionality of the entire object formed by the parts.
Finally, as discussed in detail above, the potential functionality of
the parts is revealed based only on an analysis of the static geom-
etry and structure of the shapes, and the methods do not consider
additional knowledge such as object-to-object or agent interactions.

3.2. Symmetry detection

The use of analysis methods for detecting symmetries in shapes
has also received much attention in recent years [MPWC12]. Meth-
ods for revealing reflectional and rotational symmetries have been
proposed [MGP06, PMW™08], as well as methods that make use
of the detected symmetries for applications such as segmenta-
tion [WXL*11] and correspondence [THW * 14]. Since symmetries
are essentially self-correspondences of shapes, symmetry detec-
tion methods can be used to perform a preliminary analysis of the
shapes to reveal corresponding parts that likely possess the same
functionality, similarly to the methods that compute consistent part
correspondences.

3.3. Segmentation and labeling

The objective of methods discussed in this section is also to seg-
ment the shapes into semantic parts. The main difference to the
methods previously discussed is that the goal also includes the la-
beling of the parts with pre-assigned category names, such as hand
or leg for the category of human models. For example, the approach
of Kalogerakis et al. [KHS10] learns a classifier from samples of
segmented, labeled meshes of the same category, based on descrip-
tors that capture the geometry of mesh faces. The classifier is then
used to segment and label unknown shapes of the same category.
The approach of van Kaick et al. [VKTS*11] also considers cor-
respondence information in addition to geometric features when
performing the labeling.

The advantage of these methods in comparison to methods that
perform a consistent part labeling is that, in addition to the cor-
respondence among parts that possess similar semantics, we also
obtain a name for the semantic part. Although these methods pro-
vide additional information with the semantic segmentation in the
form of part labels, if our goal is to apply the methods to func-
tionality analysis, they possess limitations similar to the previously
discussed approaches, such as not being able to separate function-
ality from other semantics of the shape parts.

4. Geometry-only (G) methods

The methods examined in this section derive knowledge about the
functionality of an entity based only on the geometry of the entity.
The analysis of the geometry may involve an analysis of structure,
involving relations among sub-components of the entity. However,
no interactions with other entities are considered, and all of the enti-
ties and relations considered are static. For example, some methods
involve the analysis of pairwise relations between shape parts, for
inferring the functionality of a shape. We discuss the methods in
this section by grouping them according to the level of the func-
tional entity considered.

4.1. Scene-level functionality

Methods that analyze the functionality of scenes focus on exam-
ining the spatial layout of the objects in the scene, since usually
objects are placed in some specific arrangement to enable a certain
functionality, e.g., a distinctive arrangement of a TV device, TV
stand, and couch enables a person to watch TV comfortably. In the
works discussed in this section, only relations of sub-components
of a scene are considered, i.e., relations among the objects. Re-
lations to other scenes or interactions with human agents are not
incorporated into the analysis. We organize the methods discussed
in this part by the type of relation considered.

Spatial arrangement (SA): Most of the previous works that an-
alyze the affordance or functionality of scenes encode the spatial
arrangement between the objects. The mapping from specific ar-
rangements to functionality is derived either from handcrafted rules
or learned from training data.

The method of Xu et al. [XSF02] uses a combination of rule-
based placement constraints, pseudo-physics, and a manually-
designed semantic database to guide the automatic placement of
objects and generate a scene containing multiple objects. Later,
Merrell et al. [MSL*11] incorporated interior design guidelines
of furniture layouts for generating indoor scenes, where the lay-
outs can be constrained by objects placed by the user. The part-
placement rules used by these methods ensure that the generated
scenes can be used for certain types of tasks, and thus possess a spe-
cific functionality. Both of these methods use handcrafted rules to
guide the placement of objects, and the intrinsic functionality mod-
els are generative, as they can be used to synthesize new scenes.

Similar ideas are explored by Yu et al. [YYT* 11], but the hierar-
chical and spatial relationships that furniture objects need to satisfy
are learned in a supervised manner. The method extracts the object
placement rules from a set of training examples and encodes them
in priors associated with ergonomic factors, such as visibility and
accessibility. The rules provide a generative model of object place-
ment that can be used to synthesize scenes with specific function-
ality. While the three methods for scene synthesis discussed so far
can generate plausible and aesthetically-pleasing furniture arrange-
ments, they do not completely synthesize scenes, since they require
a user to specify the set of furniture objects to be arranged. To over-
come this problem, Fisher et al. [FRS*12] propose an example-
based synthesis method that also selects the objects to be placed in
the scene. The selection is performed according to a co-occurrence
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Figure 6: Examples of two Interaction Bisector Surfaces (IBSs)
computed for two different 3D scenes. The IBSs are geometry-only
(G), multi-object functionality representations under our definition.
The image is courtesy of Zhao et al. [ZWK14].

model, which can be used as a generative model to sample and op-
timize an object layout. The co-occurrence model is learned from
example scenes in a supervised manner.

Besides the problem of synthesizing object layouts, designing a
representation that can be used to compare scenes is also an impor-
tant research problem. One representative work along this direction
is the method of Fisher et al. [FSH11], where scenes are repre-
sented as graphs that encode objects and their semantic relation-
ships. The graphs are then compared based on a kernel that takes
into account substructures of the graphs. Thus, the approach uses a
handcrafted graph kernel to provide a discriminative approach that
allows the comparison of scenes. Similarly, the approach of Xu et
al. [XMZ™14] also uses object co-occurrence patterns to discover
“focal point” functional regions in a scene for scene retrieval.

Boundary representation (BR): relations that encode the spatial
arrangement (SA) between objects can be used to represent static
scenes where the placement of objects depends mainly on the ad-
jacency or support among objects. However, these relations can-
not encode more complex relationships such as different types of
enclosures or entanglements between objects, or interactions with
articulated entities such as human bodies or deformable objects.
Thus, a more descriptive representation of the boundary between
objects can capture interactions between objects more accurately.

A representative approach in this class is the Interaction Bisector
Surface (IBS) [ZWK14], which is a subset of the Voronoi diagram
that captures the spatial boundary between objects, illustrated in
Figure 6. Specifically, the subset of the diagram is represented by a
set of geometric descriptors. The IBS can capture more complex in-
teractions between any pair of entities, where the entities can be at
any level, e.g., objects, parts, etc. Specifically, Zhao et al. [ZWK14]
propose to use the IBS to hierarchically group objects in a scene,
providing a hierarchical representation for scene comparison and
content-based retrieval. The work defines a measure of closeness
for comparison between communities, which can contain a single
or set of objects. Thus, the method is discriminative, using a hand-
crafted geometric construction to represent the interactions.

To be able to synthesize scenes with complex relations, Zhao et
al. [ZHG™16] introduce relationship templates to capture complex
relationships between objects in a scene. The templates are derived
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Figure 7: Examples of three types of Symmetric Functional Ar-
rangements (SFARRs): support, embedding, and placement. Using
our functionality classification scheme, sSFARRs are geometry-only
(G) object-level representations of functionality. The image is cour-
tesy of Zheng et al. [ZCOM13].

from example scenes, and combine the interaction bisector surface
(IBS) with the space coverage feature (SCF) that encodes the open
space surrounding an object. Intuitively, the union of all IBSs is
used to subdivide the space into cells, with each cell corresponding
to one object in the example scene. The set of cells together with
their descriptive features form the relationship template of a given
scene. For synthesizing a new scene, objects in different cells are
replaced by new objects, where the placement of each new object is
guided by feature matching. Thus, the method is supervised as the
templates are extracted from existing scenes, while the templates
provide a generative model for synthesizing new scenes.

4.2. Object-level functionality

For methods that analyze the functionality of an entire object, the
most common approach found in the literature is to examine the
geometry of the shape in terms of its structure, given by relations
between sub-components. A common representation of the struc-
ture of a shape is a graph of shape parts, where nodes in the graph
are connected if the parts are adjacent or close enough on the shape,
and the edges of the graph are represented by relations between the
parts connected by the edge.

A few works consider special types of structures and relations
when building such a graph. For example, Zheng et al. [ZCOM13]
employ handcrafted rules to detect special groupings of parts called
symmetric functional arrangements (SFARRs), which are subsets of
symmetric parts that are linked to the functionality of a shape, as
illustrated in Figure 7. The method provides a generative model
of these specific functionalities, since SFARRs can be exchanged
between shapes to generate novel plausible shapes, which are well-
supported and stable. Moreover, Mitra et al. [MYY*10] introduce a
method to illustrate the functioning of mechanical assemblies com-
posed of gears, belts, levers, etc. At the core of the method is an
analysis to understand the motion of the assembly, based on detect-
ing a chain of motion from the connection between assembly com-
ponents. The method detects the motion with a set of handcrafted
rules based on symmetry relations. Recently, Xu et al. [XLX*16]
introduce an approach to recover the functioning of mechanical as-
semblies from multi-view images, also based on an analysis of the
geometry of parts linked together.
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Other methods build a graph of shape parts with more general
relations. The method of Fish et al. [FAVK*14] takes as input a
training set of shapes of a certain semantic class, where the shapes
are segmented into parts and labeled. The method then analyzes
the configurations of the shapes parts, encoded by multiple rela-
tions between pairs of parts, such as angles and relative propor-
tions, and provides a model that characterizes typical shapes in a
given class. The model can then be used to test whether unknown
shapes are valid shapes of the category by evaluating how well they
fit the model. Since most shapes of a known category are modeled
after objects that exist and function in the physical world, valid
configurations of parts learned from the training data often capture
functionality constraints, and thus the model enables to evaluate the
functionality of a shape from its geometry.

Yumer and Kara [YK14] also introduce a model to character-
ize the validity of shapes, which is based on abstracting the input
shapes as simple proxies such as cylinders and boxes, and then cap-
turing the common configuration of these proxies. The methods of
Fish et al. [FAvK*14] and Yumer and Kara [YK14] are both super-
vised, as they learn from segmented, labeled shapes, and are gener-
ative, as novel shapes can be created by sampling configurations of
parts from the distributions of relations learned for the models.

The main limitation of the last two approaches is that not all
the properties possessed by typical models of a class are related to
functionality. There are other types of properties, such as aesthetic
choices in design, which are mixed with functional properties in
the models, and which would need to be filtered out to provide a
pure model of object functionality. Structures such as the SFARRs
[ZCOM13] discussed above are more strongly tied to functionality,
but the approach is limited to discovering a few manually-defined
functionality types.

Moreover, there have been works in computer vision that follow
a classification approach to recognize the functionality of objects
appearing in images, including depth images. These works start by
classifying the functionality of parts, and then combine the infor-
mation about the entire structure of the object to infer the function-
ality of the object. In earlier work, Rivlin et al. [RDR95] introduce
a method that recognizes and labels functional parts of objects ac-
cording to a hierarchy of parts, where relations between parts are
also considered. The functionality of the object is then estimated
based on how well the hierarchy is matched by the parts. The
part hierarchies are manually defined and the method uses hand-
crafted rules for matching the hierarchies to the data being ana-
lyzed. Pechuk et al. [PSROS8] provide a supervised version of this
approach by extracting the hierarchies from example depth images.

4.3. Part-level functionality

As discussed in Section 2.5, slippage analysis [GG04] is an exam-
ple of a method that considers only the geometry of an object to
infer functionality-related knowledge about the object parts, since
the approach segments the surface of the object into contiguous re-
gions, where each region is a kinematic surface composed of points
that undergo the same type of motion. The regions describe the pos-
sible motions of the shape, and thus provide some indication of the
functionality of the shape. Thus, the method operates at the part-
level and is discriminative, as it can be used to distinguish different

types of surfaces according to their kinematics. In addition, it is
based on a handcrafted rule for grouping points into segments.

Note that all of the functionality models discussed in this section
are derived solely from the structure of the objects or scenes, and
thus certain aspects of functionality, such as the need for regions
that support interactions with entities external to the object, e.g., the
empty space above a chair seat needed for sitting, are not captured
by the analysis approaches and the generated models.

5. Geometry + interaction (GI) methods

In this section, we discuss works where both the geometry of an
entity and its interaction with other entities are used to infer its
functionality. The key observation used by this group of works is
that the functionality of an entity is well reflected by the way that
the entity is used when performing its functionality. In these works,
the functional entity always interacts with other entities, which we
call interacting entities. The type of interacting entities can be quite
general, and works involving the special case of interacting entities
which are human agents will be discussed in Section 6. We discuss
the methods in this section by first grouping them based on the
approach type, and further clustering the works based on interaction
type and the level of the functional entity considered.

5.1. Handcrafted functionality descriptors

To understand the functionality of an entity from its usage, the typ-
ical approach taken by the methods discussed in this section is to
extract and encode the functionality-related information from the
context of the entity, and then use this information to derive a func-
tionality descriptor of the functional entity. The input of these meth-
ods typically consists of a specified central entity, i.e., the func-
tional entity, and one or more interacting entities that interact with
the functional entity in a static or dynamic manner. The output of
the methods is commonly a descriptor that provides a structural or-
ganization of multiple interactions, or which encodes the dynamic
changes of a sequence of interactions.

Static interaction. When encoding multiple interactions that ap-
pear in the context of a functional entity into a descriptor of func-
tionality, one of the key challenges is to ensure that the descriptor
is insensitive to the variation in the number and categories of in-
teracting objects. For example, a scene composed of a table with
several dishes on its top, and another scene composed of a table
with one vase on its top, both communicate the supporting func-
tionality of the tabletop. Thus, the key problem to be addressed is
to recognize different types of interactions and organize them in a
meaningful manner that enables to derive generalized knowledge
about the functionality of the entity.

To describe the atomic interactions between the functional en-
tity and each interacting entity, several informative descriptors
were introduced, including IBS [ZWK14], IR [HZvK*15], and
RAID [GMW16]. As discussed in Section 2.2, both IBS and IR fo-
cus on representing the boundary between the geometry of the two
entities. IBS is the surface that bisects the free space between the
two entities, and IR is the surface region on the entity that is close to
and used to determine the IBS. To contrast, RAID encodes complex
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Figure 8: The ICON descriptor of the central table object shown
in orange in the scene on the left. In our definition, the ICON de-
scriptor is an object-level, geometry + interaction (GI) functional-
ity representation. The image is courtesy of Hu et al. [HZvK*15].

spatial relationships between two spatial regions as the spatial dis-
tribution of simpler point-to-region relationships. Although RAID
was first introduced to describe relationships between 2D image re-
gions, the approach can be easily extended to 3D space to encode
the spatial relationship between two 3D entities [HLK* 17].

To organize multiple atomic interactions, Hu et al. [HZvK*15]
group the interactions, which are described both with IBS and IR,
into a hierarchical structure based on their feature similarity. The
result is a functionality descriptor called ICON, which is essen-
tially a tree where the leaves represent atomic interactions with
the central object, and nodes at higher levels of the hierarchy rep-
resent general interaction types (e.g., support), since they charac-
terize all the interactions belonging to their subtrees, as illustrated
in Figure 8. When comparing the functionality of two central ob-
jects appearing in two different scene contexts, their corresponding
ICON descriptors are computed and matched by finding a common
subtree isomorphism. This provides an meaningful correspondence
between the interactions in different scenes, which can be used to
derive a measure of functional similarity for the two objects.

Dynamic interaction. The functionality of objects that are used
with static interactions, such as tables, can be inferred satisfacto-
rily from static scenes. However, for objects that typically involve
dynamic interactions, example sequences of dynamic interactions
are needed to fully characterize the functionality of the object. For
example, a static object like a cup is typically used with dynamic
interactions such as pouring liquid into the cup, or drinking liquid
from the cup. While the works mentioned above focus on organiz-
ing multiple static interactions of an object, the works that capture
dynamic interaction typically focus on describing a single atomic
interaction. However, the atomic interaction is dynamic. Since the
functional entity remains the same during the interaction process,
the main challenge for these approaches is to encode the dynamic
change of the atomic interaction. Accordingly, a special setup is
needed for capturing the dynamics of how objects move and be-
have when in functional use, and appropriate descriptors need to
be designed to encode and abstract the dynamic characteristics of
interactions.

The Interaction Landscapes descriptor [PKH*17] is the first at-
tempt along this direction of describing atomic interactions. To sim-
plify the acquisition and modeling of the interactions, only one in-
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(a) Sensor regions

Figure 9: Components of the interaction landscapes representa-
tion of Pirk et al. [PKH*17]. Examples of sensor regions in the
domain around the observed shape, shown in (a), and motion par-
ticles on the surface of the moving model with direction and speed
of movement recorded, shown in (b). In our definition, this is an
object-level, geometry + interaction (GI) functionality representa-
tion, which focuses on capturing a single dynamic interaction. The
image is courtesy of Pirk et al. [PKH*17].

teracting entity is considered. During the interaction, the functional
entity is kept static and considered as an action receiver, while the
interacting entity is considered as a motion driver. To capture the
dynamic change of the interaction, the interacting entity is repre-
sented as a set of motion particles, and the space around the func-
tional entity is subdivided into sensor regions to track motion par-
ticles passing by, as shown in Figure 9. For each sensor region, a
vector field is built to encode the dynamic changes of position and
velocity of passing-by particles. Thus, each dynamic interaction is
represented as a set of vector fields. Attribute histograms are com-
puted for each vector field, and the set of average histograms across
all the vector fields are taken as the final dynamic interaction de-
scriptor, called Interaction Landscape. To facilitate the comparison
and clustering of interactions, the distance between two Interaction
Landscapes is defined as the relative distance between the two sets
of global histograms.

5.2. Supervised functionality recognition

The handcrafted functionality descriptors discussed in the previous
subsection explicitly describe the functionality of a single object,
where the object is given in a static scene context or involved in a
dynamic change of interactions. Those descriptors can be used to
compare the functional similarity between two functional entities,
but cannot be directly used to recognize the actual functionality of
the object, especially when the objects are given in isolation. To
form a better understanding of different types of functionalities,
data-driven methods were introduced to learn the intrinsic proper-
ties needed by entities to perform certain functionalities. The fol-
lowing discussion of supervised methods for functionality analysis
is divided based on the functional entity level, as different types of
methods are used depending on the level of the entity. Since ob-
jects are not always guaranteed to appear in a scene demonstrating
their functionality, it is important to be able to recognize the func-
tionality of objects in isolation. On the other hand, shape parts are
typically given in conjunction with their containing object, and thus
a context for functionality inference is usually available.

Object-level functionality. To determine whether an individual 3D
object possesses a specific functionality, a sensible approach is to
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Figure 10: Example of the “proto-patch”—based category function-
ality model of Hu et al. [HYKW* 16]. Based on the model learned
for the handcart category (left), the functionality score of the shape
given in isolation (middle) is relatively high, i.e., 0.96, with the cor-
responding predicted functional patches shown on the right. This is
an object-level, geometry + interaction (GI) functionality represen-
tation according to our definition. The image is courtesy of Hu et

al. [HYKW*16].

first learn what functionality-related properties are commonly pos-
sessed by 3D objects that have this functionality, and then verify
whether all the properties are satisfied by the object. Typically the
properties are learned in a supervised manner from a set of objects
belonging to the same functional category.

For GI methods, these functional properties are derived from the
interactions of the object. Thus, each training object is not pro-
vided in isolation, as is the case for the test object, but in a scene
context that reflects the functionality of the object, as for exam-
ple in the setting for functionality descriptor computation of Hu et
al. [HZvK™ 15]. By co-analyzing the interactions involving objects
from a specific category, the method of Hu et al. [HVKW™16] lo-
calizes the analyzed properties to object locations, specifically, sur-
face patches, that support specific types of interactions. Then, these
patch-level properties are integrated to form a category function-
ality model. More specifically, the learned category functionality
model is composed of proto-patches, along with their pairwise rela-
tions, which together summarize the functional properties of all the
patches that appear in the input object category. The basic use of the
functionality model is to predict whether an unknown shape sup-
ports the functionality of the category. However, unknown shapes
often appear in isolation, not interacting with other objects in the
context of a scene. Thus, an optimization is solved to simultane-
ously find the patches on the testing shape that correspond to the
proto-patches in the model, and to compute a score of how well the
shape and its patches support the model functionality. Each testing
shape is then assigned a functionality score to indicate how well it
supports the category functionality, as shown in Figure 10.

Part-level functionality. For parts given in an object context, anal-
ysis based on intra-object part relations can provide a more com-
plete functional understanding than relying on geometry only. The
most common approach for static functionality analysis at the part
level is to segment a shape into parts and assign a corresponding se-
mantic label to the parts [LMS13]. For dynamic functionality, part
mobility, i.e., how parts move relative to each other when an object
is functioning, is the focus of recent work [HLK*17].

The context of a part within a 3D shape provides important cues
for learning the semantics of shapes. Thus, the method of Laga et
al. [LMS13] follows a supervised segmentation and labeling ap-
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Figure 11: Segmentation and semantic labeling of 3D ob-
Jects based on geometric features and part context by Laga et
al. [LMS13]. This method leverages a part-level, geometry + in-
teraction (GlI) functionality representation. The image is courtesy
of Laga et al. [LMS13].

proach that, besides geometric features, also incorporates the con-
text of parts as additional information to label an object, as illus-
trated in Figure 11. Given a 3D shape pre-segmented into sev-
eral parts, their method captures contextual part information with
a graph where nodes correspond to parts and edges correspond to
structural relationships between parts, such as intra-part symme-
try and adjacency. The context of a node is then defined as a sub-
structure of the graph, which is characterized by graph walks of
specific length that start at this node. Then, a context-aware simi-
larity measure between two parts can be defined using graph ker-
nels [FSH11], and used to derive a part correspondence between
shapes. In particular, this method is able to assign functionality-
related labels to parts, recognizing parts as graspable or non-
graspable, independently of the semantic category of the shapes.
The training is performed by providing examples of segments that
are considered graspable parts, along with counter-examples.

The method of Kim et al. [KS14] labels point clouds to rec-
ognize parts that can be useful in the context of robotics, where
the labels denote affordances such as “graspable”, “liftable”, and
“pushable”. The labeling is based on geometric features of the seg-
ments, which include relations between adjacent pairs of segments.
Similarly, Myers et al. [MTFA15] focus on understanding every-
day tools and propose a method to learn part affordances from lo-
cal shape and geometric primitives, labeling parts with affordances
such as “cut”, “scoop”, “contain” , “pound”, “support” , “grasp”,
and “wrap-grasp”. A part could be assigned with multiple affor-
dances since a tool can be used in different ways.

Dynamic functionalities of articulated 3D objects can be char-
acterized by the motion of one or more of their parts, which we
denote by part mobility. The presence of part mobilities is ubiq-
uitous in our daily lives, e.g., the opening/closing of the drawers
in a chest, or the rotation of the cap of a bottle or the seat of a
swivel chair. There have been some previous works focusing on
discovering object mobility from an input scene with repeated in-
stances of objects and parts [SHL*14], or discovering part mobil-
ity of an object from a sequence of RGBD scans of the dynamic
motion of articulated models [LWL*16]. In these works, the input
data provides different states of the motion and the key technical
problem is motion fitting to the sequences. However, in our daily
lives, we, humans, apply motion inference to objects all the time.
In general, we can predict the functionality of unseen objects by
prior experience or knowledge on similar objects. In the same spirit,
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Figure 12: Examples of motion prediction results using the part
mobility model of Hu et al. [HLK*17]. This approach uses a ge-
ometry + interaction (GI), part-level functionality representation to
analyze dynamic interactions involving part motions. The image is
courtesy of Hu et al. [HLK*17].

Hu et al. [HLK* 17] show that it is possible to infer part mobilities
of a static 3D object by learning from motion sequences of parts
from different classes of objects. By learning a motion-dependent
snapshot-to-unit distance measure, the learned part mobility model
can predict mobilities for parts of a 3D object given in the form of
a single static snapshot, where the snapshot reflects the spatial con-
figuration of the object parts in 3D space. The prediction can also
be used to transfer the mobility from relevant training data to static
shapes, as shown in Figure 12.

6. Geometry + agent (GA) methods

In this section we discuss methods that involve modeling of an
agent interacting with objects in order to characterize the func-
tionality of the objects. Agents can be posed humans, articulated
robotic hands, or other inherently animate entities. Agents are dis-
tinguished from other objects in that they are performing an action,
usually highly correlated with the functionality of the functional
entity. Thus, an analysis of functionality based on agents can re-
veal otherwise hard to infer latent functionalities of the functional
entities.

Analysis of functionality through what we have called the ge-
ometry + agent approach has been becoming increasingly popular.
Since an embodied understanding of the natural world is a common
experience shared by people, a human agent analysis of function-
ality is a natural direction for research. Interpretation of common
human actions in the real world through the lens of “atomic inter-
actions” is by extension a natural view to take.

Here, we summarize prior work that involves modeling of both
geometry and agent (GA) using three major axes of classification:
a) the focus of the functionality representation, b) the level of the
functional entity, and c¢) the temporality of the interaction relation.

6.1. Functionality representation

First, we divide prior work into two main facets reflecting a differ-
ence in focus for the functionality representation: geometry-centric
Vs. agent-centric representations.
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Figure 13: “Action map” predictions by the SceneGrok system of
Savva et al. [SCH* 14]. This geometry + agent (GA) functionality
representation encodes interactions in a geometry-centric view, as-
signing an action probability to each point on the 3D surface of
the input scene. The blue-to-red heatmap visualizes the probability.
The images are courtesy of Savva et al. [SCH* 14].

Geometry-centric representations. This group of works primar-
ily uses the geometry of the non-agent entities (typically the ge-
ometry of the functional entity) to organize the representation of
functionality. Examples in this group include the early work of
Bar-Aviv and Rivlin [BARO6] on “Agent Based Simulated Vision”
which classifies objects through collision and contact detection
with human poses and other agents, and the work of Grabner et
al. [GGVGI11] on sittability detection through the use of a sitting
agent template. Later, the work of Jiang et al. [JKS13] hallucinated
human poses in order to improve object detection and predict affor-
dances in RGB-D frames, and the work of Savva et al. on Scene-
Grok [SCH*14] predicted “action maps” over 3D scenes (see Fig-
ure 13). All three of these works leverage some form of human pose
prior to evaluating the likelihood that the local geometry can sup-
port the pose. More recently, Fisher et al. [FSL*15] demonstrated
that annotations of object geometry with human interaction regions
can be used for human activity-centric scene synthesis, improving
the quality of synthesized 3D scenes. Zhu et al. [ZZCZ15] simu-
late the dynamics of tool use by humans during specific tasks (e.g.
hammering a nail) to select the most appropriate tool and optimal
trajectory given the target object of the task. In a similar direction,
Zhu et al. [ZJZ* 16] simulate the forces between a human pose and
geometry in a 3D scene to infer locations in the scene that can
comfortably support the human pose. Wang et al. [WLY17] take
as input a set of objects and jointly select one of the objects as a
container for the rest, and a human pose for carrying the container
and containees.

All these works center their representation on the geometry with
which the agent is interacting (typically the surfaces of a collection
of objects in a 3D scene). In other words, these works cast func-
tionality into a function over the geometry of the functional enti-
ties, one example being the “action map” representation of Savva
et al. [SCH*14]. These geometry-centric representations are nat-
ural for addressing tasks that predict the functionality of newly
observed geometry without corresponding agent observations. In
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practice, it is hard to capture both object geometry and agent poses.
This means that the agent is rarely directly observed, making this
group of geometry-centric methods appropriate.

Agent-centric representations. On the other hand, one can focus
the functionality representation on the agent entity instead. In do-
ing so, functionality is organized mainly around the structure of the
agent (as opposed to over the geometry of the functional entity).
Note that the representation may still involve geometric properties
of the agent, but typically the agent is represented abstractly, for
example using the connectivity structure of the human pose. Promi-
nent examples of agent-centric representations are the Shape2Pose
priors of Kim et al. [KCGF14] and the PiGraphs interaction pri-
ors [SCH*16]. Earlier work in the animation community by Lee
et al. [LCLO6] has proposed the “motion patches” representation
which organizes geometric patches by analysis of motion captured
pose data that interacts with the patch. Zheng et al. [ZLDM16]
demonstrate an efficient 3D object editing interface that connects
deformations of the object geometry to the pose of a person inter-
acting with the object through a set of ergonomics rules. Zhao et
al. [ZCK17] have proposed indexing of an IBS-based representa-
tion of objects using a human pose in order to enable retrieval of
human-object interaction sequences from attributes of the pose.

All the works in this group organize their functionality in an
agent-centric fashion. This makes it natural to use such methods
when it is necessary to infer what geometry a particular agent con-
figuration (i.e. human pose) can interact with, or to predict plau-
sible agent configurations given the geometry as input. The latter
task is related to work in constraint-based animation, and to work
in virtual agent behavior synthesis.

6.2. Functional entity level

The second axis over which we classify prior work is the level at
which the functional entity exists. The existing works can be split
mainly into three target functional entity levels: individual objects,
multi-object regions, and scenes.

Object level. This level simplifies the analysis of functionality to
distinct objects. This is typically done by looking at the geometry
of de-contextualized objects, and analyzing agent-object interac-
tions mainly within a specific category of such de-contextualized
objects (e.g., chairs). This simplification partitions the space of
possible agent-object interactions and makes functionality analysis
more tractable. A prominent example in this group of work is the
Shape2Pose system of Kim et al. [KCGF14] which predicts inter-
action poses given the geometry of a specific instance for a known
category of objects. The shape deformation interface of Zheng et
al. [ZLDM16] is designed to operate at the level of distinct objects
such as benches or chairs. Similarly, the retrieval approach of Zhao
et al. [ZCK17] indexes single objects using the human poses that
would be interacting with them. The animation synthesis system of
Lee et al. [LCLO6] also organizes motion captured human pose se-
quences by the geometric properties of patches at the object-level.

Multi-object level. This level is an extension of the object level,
where the agent is now jointly interacting with multiple dis-
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Figure 14: The PiGraphs [SCH*16] representation is an agent-
centric geometry + agent (GA) functionality representation. Inter-
actions of the human pose with objects in the scene are encoded
based on the connectivity of the human pose. The images are cour-
tesy of Savva et al. [SCH* 16].

tinct objects within a functionally-connected region (e.g., a work-
ing desk area). This level of functionality analysis is well suited
to the work focusing on 3D scene synthesis, as it allows the
structure of 3D scenes to be factored into regions with sets of
functionally-connected objects. Two example prior works in this
space are the activity-centric scene synthesis system of Fisher et
al. [FSL*15], and the action-driven 3D scene evolution system of
Ma et al. [MLZ™*16]. Both of these methods tackle the arrangement
of regions containing multiple objects by explicitly representing an
agent performing common human actions with the objects. The
PiGraphs representation of Savva et al. [SCH*16] is also formu-
lated at the multi-object level, since it connects sets of objects to
the human pose through static support and human gaze relations
(see Figure 14). Finally, the earlier work of Jiang et al. [JKS13]
also predicts object affordances jointly for multi-object sets that
are likely to be interacting with a hallucinated human pose. Since
the human pose frequently interacts with multiple related objects,
the multi-object level appears to be a common choice for analyzing
functionality using human agent-based methods.

Scene level. At the scene level, the functional entity is now a com-
plete scene containing potentially multiple functional regions each
consisting of multiple objects. The focus of work at this level shifts
mostly to identifying distinct functional regions in the broader con-
text of the entire scene. One line of work that exemplifies this focus
is prediction of abstracted affordances such as the “sittability” pre-
diction of Grabner et al. [GGVG11], and the human pose support
comfort prediction of Zhu et al. [ZJZ*16]. Another work at this
level is the SceneGrok system of Savva et al. [SCH* 14] which pre-
dicts the probability of more specific actions (e.g. “watching TV”)
taking place at positions over a 3D scene. This group of work per-
forming functionality analysis at the scene level has focused on
such higher-level notions of functionality which are generally con-
nected to human action affordances.

© 2018 The Author(s)
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6.3. Type of relation

The third classification axis that we use characterizes whether the
relation between the functional entity and the agent exhibits vari-
ation along the temporal domain. That is, whether the relation is
static (an observation at a single point in time) or dynamic (a set of
observations over time).

Static. Methods in this category are based on analysis of a set of
interactions that are observed to hold at a single point in time. A
basic assumption in this line of work is that the functionality can
be fully characterized by a single observation of the interactions
between an agent and the functional entity, or at the very least that
a single observation captures a sufficiently large fraction of rele-
vant atomic interactions to characterize the functionality. Most ex-
isting methods fall in this category, as it is practically much easier to
work with single snapshots rather than sequences of observations.
For example all scene level and multi-object level works work with
static functional entities and static relations between the agent and
the functional entities. The only exception is the work of Ma et
al. [MLZ*16] that evolves a 3D scene layout through a series of
static configurations exhibiting transitions between related human
actions (we have categorized this work as dynamic, but more con-
cretely it builds a transition model between states which are static).

Dynamic. Methods in this category perform functionality analy-
sis that involves interactions over a temporally coherent sequence
of observations. This is a natural choice for agent-driven function-
ality analysis as most agents are inherently dynamic and their ac-
tions evolve over the time domain. The work of Lee et al. [LCLO06]
on motion synthesis is a dynamic method as it represents the dy-
namic relations of human pose sequences against the geometry of
the objects with which the pose is interacting. More recently, Zhao
et al. [ZCK17] perform motion classification and retrieval using the
interactions of human pose sequences with target objects. Both of
these approaches leverage temporally contiguous, coherent obser-
vations of an agent interacting with objects. As it is hard to acquire
the input data that is necessary for such joint dynamic analysis of
agent-object interaction, there are few dynamic agent-based meth-
ods. However, this research direction is becoming increasingly rel-
evant with the rise of interactive VR and AR applications.

6.4. Summary

In this section we discussed a variety of geometry + agent (GA)
methods that explore a multi-faceted, rich notion of functionality.
Key to these methods is the connection between the action of an
agent entity with objects, regions and scenes and the functionality
that enables the action to take place. This correlation of function-
ality and agent action can be viewed either from the perspective
of the geometry (geometry-centric representation), or from the per-
spective of the agent (agent-centric representation). The analysis
can span a range of functional entity levels including objects, multi-
object regions, and entire 3D scenes. The dynamic nature of agent
actions further enriches this notion of functionality, and is starting
to be the focus of recent work in the geometry + agent category.

There is significant potential for growth in this research area due

to emerging applications in VR and AR, where a human-centric
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Figure 15: Examples of depth images labeled with two functional
labels. The image is courtesy of Kim and Sukhatme [KS14].

embodied understanding of real spaces is critical for enabling rel-
evant information retrieval, and interaction with 3D spaces. This
research area is also connected with the rising domain of fabri-
cation. Many artifacts that are becoming 3D printable (e.g., toys,
prosthetics, novel furniture designs) are fabricated for practical use
by people. Thus, a human-centric functional understanding of the
artifacts to be generated is a critical part of the design process.

7. Applications

In this section, we discuss how prior work involving functional
analysis of shapes has been applied to a variety of applications.
We organize the work firstly by application domain, dividing our
discussion into subsections covering each domain.

7.1. Classification, segmentation, and labeling

Classification, segmentation, and labeling are all closely-related
tasks. A classification can be performed at different levels of an
entity, for example, to classify an entire object into one class out
of a set of pre-defined object classes, or to classify parts of the
object into classes, which would imply a segmentation of the shape
with a labeling of the segments. Thus, we discuss these applications
jointly in this section, based on the level of the entity considered.

Part classification. All of the methods discussed in this section
classify the shape’s primitives, e.g., triangles of a mesh, into differ-
ent groups, which effectively provides a segmentation of the object
into parts and labeling of the parts. The main differences among the
works are what types of labels are assigned to the primitives.

The slippage analysis approach of Gelfand and Guibas [GG04]
segments a triangle mesh into kinematic surfaces, which indicate
regions of the shape that undergo a similar type of motion. Each
resulting segment is classified into one of a few types of kinematic
surfaces, such as planes, spheres, and cylinders.

Pechuk et al. [PSRO8] introduce a supervised method to recog-
nize the functional regions of a shape according to a model of func-
tionality of the shape class. The functional model encodes the ge-
ometry of parts and pairwise relationships that should appear in a
shape of the class, and thus the detected parts correspond to compo-
nents of this model. Moreover, the supervised method of Kim and
Sukhatme [KS14] classifies regions of shapes with functional la-
bels such as “graspable”, “liftable”, and “pushable” (see Figure 15).
Similarly, Laga et al. [LMS13] introduce a supervised method that
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Figure 16: A human pose predicted for an input scene, along with
the scene’s context used for object labeling. The image is courtesy
of Jiang et al. [JKS13].

considers geometric features and the context of parts in the shape
to label shape parts with labels. The method learns the classifica-
tion from a set of labeled training examples. In terms of functional
labels, the work presents results mainly for labeling parts as “gras-
pable” or “non-graspable”.

Moreover, the method of Hu et al. [HYKW™16] defines weight
fields over a point-sampled surface based on a learned classifier,
where the weight of a point defines the probability of the point be-
longing to a specific type of proto-patch. Proto-patches correspond
to functional regions of shapes, such as the “sittable” region of a
chair, or “graspable” region of a stroller’s handle. In principle, the
weight fields define a probabilistic labeling of points rather than
a segmentation of the shapes into well-separated parts. However,
the weight fields can be exploited to extract functional segments in
combination with a segmentation method.

For considering dynamic parts, Hu et al. [HLK*17] classify
query pairs of already-segmented static parts into a set of motion
classes, defined by the grouping of the training data. The method
finds the nearest neighbor example in the training set, which al-
lows to transfer the motion type and motion parameters from the
example to the query pair, effectively transferring dynamic motion
information to static parts.

Object classification. The method of Grabner et al. [GGVGI11]
classifies a 3D object as being a chair or not a chair, based on the
pose assumed by a humanoid agent while attempting to sit on the
object. Thus, the method is demonstrated on one type of functional
category, and classifies objects as a whole into the two categories.
Moreover, the method of Hu et al. [HYKW*16], besides providing
weights fields that define the probability of points belonging to a
proto-patch, as discussed in the previous paragraph, can also be
used to classify entire objects into functional classes, by integrating
the weight fields in a global energy function. Although the classes
in the training data have common semantic names such as “chairs”,
“handcarts”, and “tables”, the grouping of the shapes follows their
functional use rather than geometric similarity.

The methods discussed so far label individual objects mainly
based on the geometry of the shapes. On the other hand, the fol-
lowing methods provide a labeling of objects based on their con-
text in a larger scene. Jiang et al. [JKS13] introduce an approach

to predict human poses that best fit static 3D scenes. Based on this
prediction, the approach then labels objects in the scene according
to the context formed by the objects and the fitted human poses
(see Figure 16). The method assigns semantic labels to the objects,
such as “table”, “monitor”, etc. Zhu et al. [ZJZ* 16] propose an ap-
proach with a similar initial goal, where human poses are fitted to
static 3D scenes according to a physics-based simulation. However,
rather than using the approach for labeling objects in the scene, the
approach extracts the human utility of objects in the scene, which
provides an indication of the level of comfort of a human when in-
teracting with the object, e.g, the level of comfort when sitting on
a chair. This is made possible with the physical simulation that de-
rives the forces and pressures that are applied to various body parts
of the human agent when interacting with objects in the scene.

Scene classification. The SceneGrok approach [SCH* 14] learns a
classifier from human actions tracked on scenes, including actions
such as sitting, using a computer, and reading a book. Then, the
classifier can be used to segment and label query scenes with ac-
tion labels, providing an action map of the scene. The action maps
define the probability of regions in the scene being used for the
pre-defined human actions.

7.2. Retrieval

The goal of geometric retrieval is to rank geometric datasets in a
collection according to their similarity to a query, to facilitate the
exploration of the collection. The most common application exam-
ples are shape and scene retrieval, where the goal is to rank shapes
(or scenes) in a database according to their similarity to a query
shape (or scene). This necessitates the definition of a proper sim-
ilarity measure to compare two entities. Moreover, in the context
of functionality-aware processing, the similarity measure should
take functional aspects of the shapes or scenes in consideration.
We group the discussion of the works in this section by the level of
the entity retrieved.

Part retrieval. RAID [GMW16] is a descriptor that captures com-
plex relationships between image regions, such as different forms
of containment. Given images segmented into regions, the de-
scriptor can be used to retrieve pairs of regions that have rela-
tionships similar to those between a query pair of regions (see
Figure 17). RAID is adapted to the 3D setting and used with
other functionality-related descriptors in the approach of Hu et
al. [HLK*17]. As discussed in the previous section, this approach
predicts the possible motion of a static pair of parts with a model
of part mobility learned from a training set of part motions. The
method can also be used in a retrieval context, where a type of mo-
tion is given as a query, and the method retrieves shape parts that
likely support the motion type.

Object retrieval. The regions corresponding to proto-patches de-
tected by the approach of Hu et al. [HYKW™16] can be used
to define a functional similarity measure between two objects,
which is relevant in the context of object retrieval focusing on ob-
ject functionality. Moreover, the Interaction Landscape of Pirk et
al. [PKH™17] describes dynamic interactions between objects. The
descriptor, represented as histograms of properties of vector fields
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Figure 17: Image retrieval performed with the RAID descriptor.
Left: sketch with the query regions. Right: retrieved regions with
similar relationships, and corresponding images. The image is
courtesy of Guerrero et al. [GMWI16].

that define the motions of the interactions, can be used for retrieval
of similar interactions at the object-level, but independently of the
geometry of the objects involved. This is accomplished by directly
comparing the similarity of the vector fields according to the his-
tograms of their properties.

Scene retrieval. Fisher et al. [FSH11] introduce an approach to
estimate the similarity between two scenes, by comparing objects
in the scenes and their contexts with a graph kernel capturing ge-
ometric relationships between the objects. The similarity measure
can be directly used to perform retrieval of scenes from a collection,
and can be further leveraged to search for similar objects according
to their contexts in scenes. From a more functional perspective, as
discussed in the context of classification, the SceneGrok approach
of Savva et al. [SCH*14] predicts action maps for scenes, defin-
ing regions that can likely be used for specific actions. A descrip-
tor capturing functional aspects of the scene can then be obtained
by integrating the action map corresponding to each individual ac-
tion. Scene retrieval can be performed with this descriptor, to locate
scenes that enable similar types of human actions.

Zhao et al. [ZWK14] build a similarity measure for local com-
munities of scenes based on their Intersection Bisector Surface
(IBS), where a local community denotes a group of one or more
objects and their interactions with neighboring objects. This pro-
vides an approach to perform retrieval of scenes based on the sim-
ilarity of subsets of objects. Moreover, the ICON descriptor of Hu
et al. [HZvK™15] provides an estimate of the functional similarity
of two objects given in the context of a scene, based on a hierarchi-
cal description of object-to-object interactions. Thus, the descriptor
can be directly used for performing object-in-scene retrieval from
a collection of scenes. Finally, the focal point approach of Xu et
al. [XMZ*14] also enables retrieval of objects in the context of
scenes, by emphasizing the focal object and its relations to neigh-
boring objects in the scene.

7.3. Synthesis

Synthesis of 3D content is a prominent application domain for
many works involving functionality analysis. Generative models
leveraging functionality have been applied to the domain of indoor
3D scene synthesis, and to the domain of human interaction syn-
thesis (i.e. generating human poses and corresponding 3D scenes
with which the human pose is interacting).
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Figure 18: Fisher et al. [FRS*12] demonstrate contextual object
categories inferred from commonalities in the context within which
objects are observed (bottom, in black outlines). These automati-
cally extracted categories are used to improve the perceived qual-
ity of the synthesized 3D scenes (top). The images are courtesy of
Fisher et al. [FRS*12].

3D scene synthesis. In this application, functional constraints or
priors are used to inform generation of 3D scenes, including ob-
ject selection and layout optimization. Xu et al. [XSF02] use a
constraint-based formulation that encodes functional relations be-
tween objects in the form of “binding areas” and “offer areas” (rep-
resenting object co-occurrence priors). Their system speeds up in-
teractive 3D scene composition by offering automatic placement
suggestions. On the other hand, Yu et al. [YYT*11] assume that
the full set of objects in a scene is given as input, casting the prob-
lem as one of automatic layout optimization. The objective func-
tion of their optimization encodes several functional priors for fur-
niture arrangement, such as visibility and accessibility. Fisher et
al. [FRS*12]’s example-based 3D scene synthesis method learns
a probabilistic model of both object occurrence and object layout.
Their model is based on a set of object co-occurrence and spatial
arrangement relation priors, and a set of automatically extracted
“contextual categories”, which categorize objects through their ob-
servation context (see Figure 18).

Human interaction synthesis. A closely related line of work
focuses on synthesis of 3D scenes guided by human interac-
tion priors. For example, Fisher et al. [FSL*15]’s activity-based
3D scene synthesis algorithm encodes human-object interactions
to synthesize more plausible 3D scenes, given the types of hu-
man actions that they should support. In a similar vein, Ma et
al. [MLZ"16]’s action-driven 3D scene evolution system alters a
3D scene through object placement and layout optimization such
that specific actions can be performed. Though both these works
leverage human-centric priors, they do not generate human poses.
Kim et al. [KCGF14]’s Shape2Pose system generates interaction
poses given the geometry of an object instance, whereas Savva et
al. [SCH*16]’s PiGraphs system jointly generates a human pose
and 3D scene composition given a text-based specification of a hu-
man interaction with a scene.
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7.4. Modeling and editing

Another common application domain for functionality analysis
methods is that of modeling and editing 3D geometric representa-
tions. In this application domain, an interactive modeling interface
is typically augmented by the functionality-based method to allow
for more efficient or more advanced editing operations.

Object modeling. The symmetry hierarchy of Wang et
al. [WXL*11] encodes relations between parts of an object
and allows for efficient symmetry-aware editing of objects (e.g.,
simultaneously adjusting the shape and position of all candles
on a chandelier). Similarly, Zheng et al. [ZCOM13]’s symmetric
functional arrangements are used to automatically generate object
variations by matching, replacing and adjusting triplets of parts.
Both of these methods primarily rely on symmetry relations
between parts to enable efficient editing of object geometry.
Umetani et al. [UIM12] further propose an interactive modeling
framework for efficient exploration of not only geometrically- but
also physically-valid furniture designs. Fish et al. [FAVK*14]’s
meta-representation also encodes relations between object parts,
enabling functionality-aware validation and manipulation of part
position and orientation. Similarly, Yumer and Kara [YK14]’s
method learns a set of co-constrained handles for deformation
of object parts in a shape collection. By relating global structure
to functionality, Lun et al. [LKWSI16] automatically transfer
the style of one shape to another with different functionalities
via a sequence of element-level operations. Finally, Zheng et
al. [ZLDM16] encode constraints relating the human pose with the
part structure of chairs to allow for ergonomics-inspired reshaping
of the object geometry (see Figure 19), while Fu et al. [FCSF17]
use human poses to guide part assembly and the synthesis of
functional hybrid objects.

Scene editing. There are some works that use a functionality-
based model to assist the user during 3D scene editing. Merrell
et al. [MSL*11] encode a set of interior design guidelines in the
system, reflecting functionality patterns such as clearance for navi-
gation. These guidelines are used in an interactive furniture layout
interface to automatically suggest optimized furniture layouts given
the current state of the scene. Zhao et al. [ZHG*16]’s template-
based approach can also implicitly be used for scene editing since
it allows for easily generating variations of a given object layout
through object swapping. Sharf et al. [SHL* 14] use a mobility-tree
representation to extract the potential ways in which objects exhibit
motion relative to each other in a scene (e.g., chairs around a table).
This representation is then used to allow for easy manipulation of
groups of objects and to make scene editing more efficient.

7.5. Visualization and fabrication

A rising application domain for functionality analysis methods is
in visualizing the assembly procedure of physical objects, or the
dynamic behavior of assembled and operating mechanisms. With
a similar understanding of mechanical relations, 3D object designs
can be optimized to be more easily fabricatable.

Assembly visualization. Mitra et al. [MYY*10] did early work
on generating illustrations of how mechanical assemblies work.

Figure 19: The ergonomics-based 3D object editing interface of
Zheng et al. [ZLDM16] allows for efficient editing and exploration
of 3D chair designs that conform to the specified human pose con-
figurations. The image is courtesy of Zheng et al. [ZLDM16].

Their method discovers the relative motion that different compo-
nent parts of a mechanical assembly can undergo. More recently,
Koo et al. [KLY *14] presented a system for rapid design of “works-
like” prototypes of articulated rigid objects such as cupboards. The
system relies on a set of part-to-part relations including support
and enclosure, and optimizes the size and placement of the parts
to ensure that the relations are preserved during articulation of the
object’s parts. Xu et al. [XLX*16] have recently presented a sys-
tem that takes as input a set of images of a mechanism, and allows
for more efficient extraction of the geometry and motion patterns
of the mechanism.

Fabrication. Applying functionality analysis methods for fabrica-
tion is a natural extension to applications in object modeling and
shape editing. An early example of work in this space is by Lau
et al. [LOMI11], whose method converts 3D furniture models into
sets of fabricatable parts and connectors, using a part-based anal-
ysis involving part—connector—part relations. More recently, Shao
et al. [SLR*16] have also presented a system that takes as input
multi-step assembly instruction diagrams and reconstructs the part
geometry and assembly process. The reconstructed part geome-
try can then be fabricated, and assembled into the intended object
following the generated assembly instructions. This line of work
on functionality-aware methods for fabrication is likely to become
increasingly important as fabrication technologies become more
ubiquitous.

8. Conclusion

In this report, we provide a comprehensive survey of works on
functionality representation and their applications in computer
graphics. In contrast to previous works involving a semantic un-
derstanding of 3D shapes, which focus more on the structural ar-
rangement of parts of an object or objects in a scene, the explicit
modeling of functionality can provide a deeper link between those
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structures and the intended design and purpose of the object or
scene. This deeper understanding can facilitate applications such
as classification, segmentation, modeling, and synthesis.

By defining functionality as a combination of geometry and in-
teraction, we are able to split the characterization of the function-
ality of an entity into intrinsic/internal properties of the functional
entity and extrinsic/external properties that arise from interactions
of the entity with other entities in the environment. This definition
also provides a natural grouping for studying existing works. Works
that consider only the geometry of an entity do not build a direct
connection between the intrinsic properties of the entity and the
manner in which the functional entity is used, in contrast to works
that take interaction into account which makes this connection ex-
plicit. Especially when the interacting entities are agents such as
simulated humans or articulated robotic hands, directly modeling
the agents for simulating interaction and associating the interaction
with intrinsic properties of the functional entity can provide a rich
understanding of functionality.

Limitations

Our definition of functionality considers geometry and interac-
tion as two key aspects for understanding how an entity functions,
or how it is used for a certain purpose. We reviewed the works in
the literature according to this definition. However, our definition
is by no means a complete or perfect description of functionality.
In particular, there are several questions to consider as interesting
avenues for extending this definition: Is there a better way of en-
coding functionality? In other words, are there other fundamental
properties of parts, objects, and scenes which should enter into our
definition? How far can we go by looking at form or function alone?
More concretely, can we directly infer functionality from geometric
form, or can we infer geometric form from functional descriptions?
There is a broad space of related research problems to be explored.

Current challenges and directions for future work

Functionality analysis is a relatively new topic in computer
graphics with a lot of potential for further work. Here, we discuss a
list of challenges and open problems for future exploration.

Different levels of functional entities. Functionality can be de-
fined for entities at different levels, as we discussed in the report.
There is much similarity among the techniques that analyze func-
tionality at the same level, but not so much similarity when compar-
ing techniques targeted at different levels. Thus, treating multiple
levels of functionality, e.g., in a hierarchical representation, remains
a challenging problem to solve with the existing state-of-the-art. A
multi-level treatment of functionality might need to involve multi-
ple levels of entity-entity or entity-human interactions.

Static vs. dynamic interactions. In most of the works existing in
the literature, the analysis is restricted to static artifacts and inter-
actions, especially in the case of geometry-only methods, where
all the techniques studied in this report consider only static ge-
ometry and structural relations. Thus, analyzing dynamic geome-
try and interactions is a research area that would clearly benefit
from further work. Moreover, an interesting question towards this
direction is whether geometry-only methods need to be restricted
to analyzing static interactions. Would an analysis of the motion
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of a single shape provide information on the shape’s functional-
ity? An approach based on this idea would perhaps be relevant for
predicting the possible motion of a static object. Nevertheless, for
any approach aiming at modeling dynamic interactions, the first
step to address is the problem of capturing dynamic 3D data. The
difficulties in collecting this type of data may only be justified if
dynamic interactions are proven to be superior to static interaction
data when modeling a specific type of functionality or enabling cer-
tain functionality-related applications.

Interaction/relation representation. Based on the classification of
works shown in Table 1, the most common approaches for encod-
ing interaction relations are spatial arrangement (SA) properties,
boundary representations (BR), and humanoid actions (HA). An in-
teresting research question is to explore whether there are more in-
formative relations for capturing interactions. Moreover, since dif-
ferent types of relations capture different types of information, an
obvious direction for future work is to investigate how the existing
models can be combined together, in an efficient and meaningful
manner, to improve the understanding of an artifact’s functionality,
e.g., to develop a method that is able to handle both entity-entity
and entity-agent interactions.

Handcrafted vs. data-driven models. In recent years, with the
increasing availability of 3D data and advances in learning tech-
niques, using data-driven methods for shape analysis and process-
ing has become quite popular [XKHK17]. However, in most of
the works on functionality analysis, although some level of learn-
ing is used, the models of functionality themselves are still mostly
defined based on prior knowledge and handcrafted features. One
likely cause is that a large-scale dataset for functionality analysis
does not currently exist. Most of the existing works introduce their
own dataset to prove a concept, but the lack of a large amount of
data prevents most methods from learning an entire model from
scratch, requiring professional guidance for their construction. Es-
tablishing a large functionality dataset and making full use of the
power of advanced machine learning techniques may be a fruitful
direction for future work.

Input data type. Currently, most of the works assume that “clean”
data is given as input, especially polygonal meshes with appro-
priate topology. There are research opportunities for considering
other 3D shape representations: volumetric data (uniform voxel
grids or octrees), parametric surfaces, constructive solid geometry,
etc. However, to apply functionality analysis in acquisition and re-
construction scenarios, ideally the methods would accept raw 3D
scans as input. Such data provides new research challenges due to
its shortcomings: presence of noise, incomplete / partially observed
regions, imperfect registration, etc. In addition, it would be interest-
ing to perform functionality analysis by combining multiple data
types. For example, a joint analysis of functionality with both 2D
images and 3D datasets could certainly benefit from the different
cues provided by these data types.

“Grand challenge” in applications. Applications that use func-
tionality information are likely still in their infancy. By proposing
new possible applications that involve an understanding of func-
tionality, we may also discover aspects of functionality that are
missing in the analysis of current methods and functionality rep-
resentations. We explore a few possible applications here.
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Functionality-aware shape modeling: Current shape manipula-
tion methods are largely based on the principle of preserving the
form, in the hope that preserving the form will lead to a preser-
vation of the functionality of the artifact, which is often not true
in many cases. For example, shrinking the width of a chair’s seat
might break or alter its suitability of being sittable. On the other
hand, human-centric approaches are largely designed for particular
object categories and have limited use. Thus, the introduction of
shape modeling approaches that make use of explicit functionality
information appears to be a paramount direction for future work
in computer graphics. Moreover, using functionality to guide shape
manipulation can also be essential for fabrication. For example, a
comprehensive understanding of the functionality of mug cups or
chairs could allow a fabrication design tool to suggest novel de-
signs that preserve functionality while allowing the shape to vary
in form, appearance, and material properties.

Functionality-guided shape synthesis: One step further from
functionality-aware manipulation and editing would be to gener-
ate an entire shape from a given class, based only on functional
constraints. In recent years, generative models using deep learning
have become an active area of research. These approaches could
be leveraged for learning functionality-related constraints and for
guiding shape generation.

Functionality-driven real-time interaction: In the context of
robotics, it is important for a robot to understand the functional-
ity of its surroundings to be able to interact with the environment.
Functionality analysis is thus important in this context as well, and
will likely also be critical for many emerging applications in AR
and VR. For example, when using AR glasses, a recognition of the
functionality of drawers and cupboards in a kitchen, indicating that
they can be opened/closed and that they can store objects, would
allow the AR system to display stored objects, or perform “search
and assisted navigation” to objects.

Full understanding of 3D shape. In this report, we focused on the
inference of functionality from the geometry of the input. However,
other aspects of an artifact could also be tied to its functionality
and could be explored during the analysis, e.g., material, weight,
or size. Moreover, a full understanding of the functionality of an
artifact does not necessarily imply a full understanding of the arti-
fact as a whole, as there are other non-functional aspects, such as
style, ornaments, etc., that are part of the shape but not related to
its functionality. Thus, methods in shape analysis and design would
likely benefit from combining different types of analyses, such as
functionality analysis and style analysis, to reach a richer under-
standing of 3D shapes.
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