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Abstract

We describe a project to link the Prince-

ton WordNet to 3D representations of real

objects and scenes. The goal is to estab-

lish a dataset that helps us to understand

how people categorize everyday common

objects via their parts, attributes, and con-

text. This paper describes the annotation

and data collection effort so far as well as

ideas for future work.

1 Introduction

The goal of this project is to connect Word-

Net (Fellbaum, 1998) to 3D representations of real

objects and scenes. We believe that this is a natu-

ral step towards true grounding of language, which

will shed light on how people distinguish, catego-

rize and verbally label real objects based on their

parts, attributes, and natural scene contexts.

Our main motivation is to establish a dataset

connecting language with realistic representations

of physical objects and scenes using 3D computer-

aided design (CAD) models to enable research in

computational understanding of the human cogni-

tive process of categorization.

Categorization is the process by which we

group entities and events together based on salient

similarities, such as shared attributes or functions.

For example, the category “furniture” includes ta-

bles, chairs and beds, all of which are typical parts

of a room or house and serve to carry out activi-

ties inside or around the house. Subcategories are

“seating furniture,” which includes chairs and so-

fas and “sleeping furniture,” which includes beds,

bunkbeds and futons. Note that some categories

have a simple verbal label (a name, like “furni-

ture”), but often category names are compounds

(like “sleeping furniture”). Compounding, a uni-

versal feature of human language that accounts in

part for its infinite generativity, allows us to make

up names on the fly whenever we feel the need to

distinguish finer-grained categories, such as “col-

lege dorm room furniture.” Of course, not all lan-

guages share the same inventory of simple labels.

We form and label categories all the time. Cat-

egories help us to recognize never-before-seen en-

tities by perceiving and assessing their attributes

and functions and, on the basis of similarity to

known category members, assign them to a cate-

gory (Rosch, 1999). Young children in particular

learn to form categories by being exposed to an

increasing number of different category members

and gradually learning whether they belong to one

category or another. Importantly, categories allow

us to reason: if we know that beds are made for

lying down on and sleeping, encountering a new

term like “sleigh bed” will tell us that such a bed

is likely to have a flat surface on which a person

can lie down. Conversely, seeing a sleigh bed for

the first time and identifying this salient feature

will prompt us to call it a “bed.” Categorization

is so fundamental to human cognition that we are

not consciously aware of it; however, it remains a

significant challenge for computational systems in

tasks such as object recognition and labeling.

Parts, attributes, and natural contexts of objects

are all involved in category formation. Objects are

made of parts, and parts often imbue functional-

ity, especially in the broad category of “artifacts.”

Thus, seat surfaces are a necessary part for func-

tioning chairs. Parts and the functionality they

enable are fundamentally intertwined with catego-

rization (Tversky and Hemenway, 1984).

Beyond their concrete parts, objects are per-

ceived to have a general set of attributes. For ex-

ample, the distinction between a cup, a goblet and

a mug relies less on the presence or absence of spe-

cific parts and more on the geometric differences

in aspect ratio of the objects themselves.

Lastly, real objects occur in real scenes, mean-

ing that they possess natural contexts within which



they are observed. In language, context reflects a

variety of aspects beyond functionality, including

syntactic patterns and distributional properties. In

contrast, physical context is concrete and defined

by the sets of co-occurring objects and their rela-

tive arrangements in a given scene.

To study these three aspects of category for-

mation, we will connect WordNet at the part,

attribute, and contextual level with a 3D shape

dataset. The longer term goal of this project is to

ask how people distinguish and categorize objects

based on how they name and describe the parts and

attributes of the objects. We will focus primarily

on the category “furniture.”

2 Existing datasets

There has been much prior work linking Word-

Net (Fellbaum, 1998) to 2D images. The

most prominent effort in this direction is Ima-

geNet (Deng et al., 2009), which structures a large

dataset of object images in accordance with Word-

Net hierarchies. Our project differs from Ima-

geNet because even though Imagenet is based on

the WordNet hierarchy, the focus of our project

is on annotating parts and attributes on 3d mod-

els rather than the labeling of images. Following

this, the SUN (Xiao et al., 2010) dataset focuses

on scene images, and the VisualGenome (Krishna

et al., 2016) dataset defines object relations and at-

tributes in a connected scene graph representation

within each image. Another line of work focuses

on detailed annotation of objects and their parts

— a prominent recent example is the Ade20K

dataset (Zhou et al., 2016). However, a fundamen-

tal assumption of all this work is that objects and

their properties can be adequately represented in

the 2D image plane. This assumption does not

generally hold, as many object parts, spatial re-

lations between objects and a full view of object

context are hard to infer from the limited field of

view of a 2D image.

More recently, there has been some work

that links 3D CAD models to WordNet. The

ShapeNet (Chang et al., 2015) dataset is a large

collection of CAD representations (curating close

to 65,000 objects in approximately 200 common

WordNet synsets), whereas the SUNCG (Song et

al., 2017) dataset contains CAD representations

of 45,000 houses, composed of individual objects

(in 159 WordNet synsets). These two datasets are

both “synthetic” in the sense that the 3D CAD

representations are designed virtually by a hu-

man expert. A different form of 3D representa-

tion is obtained by scanning and 3D reconstruc-

tion of real world spaces. Recent work intro-

duced ScanNet (Dai et al., 2017) and the Matter-

port3D (Chang et al., 2017) dataset, which both

contain 3D reconstructions of various public and

private interior spaces (containing 409 and 430 ob-

ject synsets respectively).

Though both synthetic and reconstructed 3D

data are increasingly available, no effort currently

exists to connect such 3D representations to Word-

Net at the part, attribute, and contextual levels.

Such a link of WordNet entries to 3D data can

provide much richer information than 2D image

datasets. Naturally, 3D representations allow us

to reason about unoccluded parts and symmetries,

arrangement of objects in a physically realistic

three dimensional space, and to account for empty

space, a critical property of real scenes which is

not observable in 2D images. Moreover, 3D rep-

resentations are appropriate for computationally

simulating real spaces and the actions that can be

performed within them. The ability to do this is

a powerful tool for investigating and understand-

ing actions (Pustejovsky et al., 2016). Therefore,

our project aims to annotate 3D models in one of

the existing datasets and link them to the appro-

priate synset in the WordNet database at the part,

attribute, and contextual level.

3 Project description

Our project has so far focused on annotating part

and attribute information on 3D CAD objects in

SUNCG (Song et al., 2017) and linking them

to the corresponding WordNet synsets. We are

working with a preliminary categorization of the

objects performed in prior work, which estab-

lishes their connection to WordNet synsets denot-

ing physical objects. However, we plan to refine

the granularity of this categorization by introduc-

ing finer-grained categories — e.g. partitioning

“doors” into “garage doors” and “screen doors”

among others.

We chose this dataset because the 3D objects

in SUNCG (approximately 2,500) are used across

a large number of 3D scenes (more than 45,000).

This means that for each object, we can automati-

cally establish many contextual observations. This

property of the SUNCG dataset differs from other

common 3D CAD model research datasets such







Figure 6: An example demonstrating some of the limita-
tions of our annotation system. Parts of the table are identi-
fied as “storage support beam” and “shelf support panel” due
to lack of a better term.

7 Future Work

Our work so far has focused on developing the

infrastructure and annotation interfaces to collect

3D object part annotations at scale. This part

data linked to WordNet is of tremendous potential

value, which we plan to investigate as our project

continues.

A very interesting direction of work is in build-

ing contextual multimodal embeddings. Many ob-

ject parts and attributes are rarely mentioned in

language. For example, a stool doesn’t have a

back, but people don’t refer to stools as “back-

less chairs.” Neither do speakers encode the fact

that chairs often have four legs or 5 wheels; only

non-default exemplars might be labeled in an ad

hoc fashion as “five-legged chairs,” for example.

Furthermore, the physical contexts of objects (see

Figure 7) provides richer information than is found

in text. In this regard, the text and 3D modali-

ties are complementary and provide an excellent

target for building multimodal distributional rep-

resentations (Bruni et al., 2014). Multimodal em-

beddings are a promising semantic representation

which has been leveraged for various Natural Lan-

guage Processing and vision tasks (Silberer and

Lapata, 2014; Kiela and Bottou, 2014; Lazaridou

et al., 2015; Kottur et al., 2016).

Another direction for future work is to leverage

the object part and attributes and their correspon-

dences to WordNet to go beyond the set of Word-

Net synsets and automatically induce new senses,

along the lines of recent work on sense induc-

tion (Chen et al., 2015; Thomason and J. Mooney,

2017). For example, we have found that WordNet

synsets do not have good coverage of some fairly

modern categories of objects that we observe in

Figure 7: An example of the same nightstand object (out-
lined in blue) in two different 3D scene contexts. A con-
textual embedding afforded by the full 3D representation of
the scene within which the nightstand is observed would be a
powerful way to analyze and disentangle different usage con-
texts for common objects.

our 3D object datasets, including iPads, iPhones

and various electronic devices such as game con-

soles.
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