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Abstract

We describe a project to link the Prince-
ton WordNet to 3D representations of real
objects and scenes. The goal is to estab-
lish a dataset that helps us to understand
how people categorize everyday common
objects via their parts, attributes, and con-
text. This paper describes the annotation
and data collection effort so far as well as
ideas for future work.

1 Introduction

The goal of this project is to connect Word-
Net (Fellbaum, 1998) to 3D representations of real
objects and scenes. We believe that this is a natu-
ral step towards true grounding of language, which
will shed light on how people distinguish, catego-
rize and verbally label real objects based on their
parts, attributes, and natural scene contexts.

Our main motivation is to establish a dataset
connecting language with realistic representations
of physical objects and scenes using 3D computer-
aided design (CAD) models to enable research in
computational understanding of the human cogni-
tive process of categorization.

Categorization is the process by which we
group entities and events together based on salient
similarities, such as shared attributes or functions.
For example, the category “furniture” includes ta-
bles, chairs and beds, all of which are typical parts
of a room or house and serve to carry out activi-
ties inside or around the house. Subcategories are
“seating furniture,” which includes chairs and so-
fas and “sleeping furniture,” which includes beds,
bunkbeds and futons. Note that some categories
have a simple verbal label (a name, like “furni-
ture”), but often category names are compounds
(like “sleeping furniture”). Compounding, a uni-
versal feature of human language that accounts in
part for its infinite generativity, allows us to make
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up names on the fly whenever we feel the need to
distinguish finer-grained categories, such as “col-
lege dorm room furniture.” Of course, not all lan-
guages share the same inventory of simple labels.

We form and label categories all the time. Cat-
egories help us to recognize never-before-seen en-
tities by perceiving and assessing their attributes
and functions and, on the basis of similarity to
known category members, assign them to a cate-
gory (Rosch, 1999). Young children in particular
learn to form categories by being exposed to an
increasing number of different category members
and gradually learning whether they belong to one
category or another. Importantly, categories allow
us to reason: if we know that beds are made for
lying down on and sleeping, encountering a new
term like “sleigh bed” will tell us that such a bed
is likely to have a flat surface on which a person
can lie down. Conversely, seeing a sleigh bed for
the first time and identifying this salient feature
will prompt us to call it a “bed.” Categorization
is so fundamental to human cognition that we are
not consciously aware of it; however, it remains a
significant challenge for computational systems in
tasks such as object recognition and labeling.

Parts, attributes, and natural contexts of objects
are all involved in category formation. Objects are
made of parts, and parts often imbue functional-
ity, especially in the broad category of “artifacts.”
Thus, seat surfaces are a necessary part for func-
tioning chairs. Parts and the functionality they
enable are fundamentally intertwined with catego-
rization (Tversky and Hemenway, 1984).

Beyond their concrete parts, objects are per-
ceived to have a general set of attributes. For ex-
ample, the distinction between a cup, a goblet and
amug relies less on the presence or absence of spe-
cific parts and more on the geometric differences
in aspect ratio of the objects themselves.

Lastly, real objects occur in real scenes, mean-
ing that they possess natural contexts within which
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they are observed. In language, context reflects a
variety of aspects beyond functionality, including
syntactic patterns and distributional properties. In
contrast, physical context is concrete and defined
by the sets of co-occurring objects and their rela-
tive arrangements in a given scene.

To study these three aspects of category for-
mation, we will connect WordNet at the part,
attribute, and contextual level with a 3D shape
dataset. The longer term goal of this project is to
ask how people distinguish and categorize objects
based on how they name and describe the parts and
attributes of the objects. We will focus primarily
on the category “furniture.”

2 Existing datasets

There has been much prior work linking Word-
Net (Fellbaum, 1998) to 2D images. The
most prominent effort in this direction is Ima-
geNet (Deng et al., 2009), which structures a large
dataset of object images in accordance with Word-
Net hierarchies. Our project differs from Ima-
geNet because even though Imagenet is based on
the WordNet hierarchy, the focus of our project
is on annotating parts and attributes on 3d mod-
els rather than the labeling of images. Following
this, the SUN (Xiao et al., 2010) dataset focuses
on scene images, and the VisualGenome (Krishna
et al., 2016) dataset defines object relations and at-
tributes in a connected scene graph representation
within each image. Another line of work focuses
on detailed annotation of objects and their parts
— a prominent recent example is the Ade20K
dataset (Zhou et al., 2016). However, a fundamen-
tal assumption of all this work is that objects and
their properties can be adequately represented in
the 2D image plane. This assumption does not
generally hold, as many object parts, spatial re-
lations between objects and a full view of object
context are hard to infer from the limited field of
view of a 2D image.

More recently, there has been some work
that links 3D CAD models to WordNet. The
ShapeNet (Chang et al., 2015) dataset is a large
collection of CAD representations (curating close
to 65,000 objects in approximately 200 common
WordNet synsets), whereas the SUNCG (Song et
al., 2017) dataset contains CAD representations
of 45,000 houses, composed of individual objects
(in 159 WordNet synsets). These two datasets are
both “synthetic” in the sense that the 3D CAD

representations are designed virtually by a hu-
man expert. A different form of 3D representa-
tion is obtained by scanning and 3D reconstruc-
tion of real world spaces. Recent work intro-
duced ScanNet (Dai et al., 2017) and the Matter-
port3D (Chang et al., 2017) dataset, which both
contain 3D reconstructions of various public and
private interior spaces (containing 409 and 430 ob-
ject synsets respectively).

Though both synthetic and reconstructed 3D
data are increasingly available, no effort currently
exists to connect such 3D representations to Word-
Net at the part, attribute, and contextual levels.
Such a link of WordNet entries to 3D data can
provide much richer information than 2D image
datasets. Naturally, 3D representations allow us
to reason about unoccluded parts and symmetries,
arrangement of objects in a physically realistic
three dimensional space, and to account for empty
space, a critical property of real scenes which is
not observable in 2D images. Moreover, 3D rep-
resentations are appropriate for computationally
simulating real spaces and the actions that can be
performed within them. The ability to do this is
a powerful tool for investigating and understand-
ing actions (Pustejovsky et al., 2016). Therefore,
our project aims to annotate 3D models in one of
the existing datasets and link them to the appro-
priate synset in the WordNet database at the part,
attribute, and contextual level.

3 Project description

Our project has so far focused on annotating part
and attribute information on 3D CAD objects in
SUNCG (Song et al., 2017) and linking them
to the corresponding WordNet synsets. We are
working with a preliminary categorization of the
objects performed in prior work, which estab-
lishes their connection to WordNet synsets denot-
ing physical objects. However, we plan to refine
the granularity of this categorization by introduc-
ing finer-grained categories — e.g. partitioning
“doors” into “garage doors” and “screen doors”
among others.

We chose this dataset because the 3D objects
in SUNCG (approximately 2,500) are used across
a large number of 3D scenes (more than 45,000).
This means that for each object, we can automati-
cally establish many contextual observations. This
property of the SUNCG dataset differs from other
common 3D CAD model research datasets such
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Figure 1: Interface for labeling object parts. Top left: a
stove and range object is displayed to a user. Top right: the
user paints the “countertop” part. Bottom left: the user links
the “range” part to the corresponding WordNet synset. Bot-
tom right: the fully annotated object with parts in different
colors.

as ShapeNet (Chang et al., 2015) where each ob-
ject is de-contextualized. For the latter dataset we
would have to additionally compose scenes using
available objects in order to acquire observation
contexts for the objects.

We first augment the SUNCG objects with part
annotations that are linked to WordNet synsets.
We defer the assignment of attributes to the same
objects as it is an easier annotation task in terms of
interface design. To perform the part annotation,
we designed an interface with a “paint and name”
interaction where the user paints parts of the sur-
face of an object corresponding to a distinct part
and assigns a name to that part. The details of the
interface and annotation task are described in the
following section.

4 Annotation interface

Our interface is designed to allow for efficient
annotation of parts by inexperienced workers on
crowdsourcing platforms such as Amazon’s Me-
chanical Turk. The interface is implemented in
javascript using three.js (a WebGL-based graphics
library). It can be accessed on the web using any
modern browser, and does not require specialized
software or hardware.

Figure 1 shows a series of screenshots from the
interface illustrating the annotation process. The
user first sees a rotating “turn table” view that re-
veals the appearance of the object from all direc-
tions. The user then types the name of a part in
a text panel and drags over the surface of the ob-
ject to select the regions corresponding to the part.
The process is repeated for each part and the fi-
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Figure 2: Partially annotated object with parts highlighted
in different colors. The ”door panel” label is selected, indi-
cating that this part was just annotated.

nal result is a multi-colored painting of the object
with corresponding part names for each color. The
partitioning of the object’s geometry into different
parts is saved and submitted to a data server upon
completion. Figure 2 shows a close-up of the in-
terface while an object is in the process of being
annotated.

In order to enable an efficient multi-level paint-
ing interaction, the size of the paint brush can be
adjusted by the annotator. The object geometry
is pre-segmented for several levels of granularity:
segmentation into surfaces with the same material
assignment, a segmentation with a loose surface
normal distance criterion, and finally a segmen-
tation into sets of topologically connected com-
ponents of the object geometry. This multi-level
painting allows the speed of labeling to be adjusted
to accommodate both small parts (e.g., door han-
dles) and large parts (e.g., countertops on kitchen
islands).

The annotators use freeform text for the part
names, requiring that we address the problem of
mapping this part name text to a WordNet synset.
We implemented a simple algorithm that restricts
the candidate synset set to physical objects in the
WordNet hierarchy, preferring furniture (since we
are dealing with indoor scenes that are predomi-
nantly composed of furniture). Given the object
category, we can additionally use the meronym re-
lations in WordNet to suggest and rerank possible
part synsets.

After applying this algorithm to connect each
part name’s text to a WordNet synset, we manu-
ally verify and if needed fix the inferred link using
an interface that displays the WordNet synset as-
signment for the given part (in the same view as
the part annotation view) and allows the user to
select a different synset.



Figure 3: A fully completed part annotation example for a
car 3D object. Different colors correspond to distinct parts
with corresponding names provided by the annotator on the
right.
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Figure 4: List of 3D models to be annotated. This is the
interface through which one selects a model to annotate or
can examine a previously annotated model.

5 Initial annotations and statistics

Five persons have worked on the annotation thus
far. Annotating one 3D model takes roughly five
minutes on average, with time being mostly a
function of the complexity of the particular ob-
ject. To maintain consistency while annotating
the objects in the database, the annotators were
instructed to name the geometric and functional
parts of the object, not decorations or stylistic ele-
ments (e.g., a picture of a fish on a lamp shade).

Using the interface described above, we have
so far collected more than 100,000 part instance
annotations. An example of a car annotated by a
crowd worker is shown in Figure 3. SUNCG in-
cludes a total of 2547 models, of which we have
so far annotated 1021 during the prototyping pro-
cess for developing our interface (Figure 4). Fig-
ure 5 shows several other example objects with
their part annotations visualized.

6 Limitations

The initial stages of the annotations were limited
by two major factors: the quality of the 3D mod-
els, and language in general. A handful of the
models in the database had segmentation issues,
i.e., any error in how the model was broken up
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Figure 5: Example objects annotated with parts. Ob-
jects are assigned to the following WordNet synset,
from top left: doublelbed.n.01, bunkbed.n.01,
door.n.01, desk.n.0l, straight_chair.n.01,
swivel_chair.n.01l.

into regions. For example, a segmentation issue
for a table is encountered when more than one leg
is connected into one region, thus making it im-
possible even with the smallest brush size to label
the individual legs. To solve this problem, the seg-
mentation algorithm must be improved upon. A
more widespread problem with the database, how-
ever, was the lack of internal structure in many
of the models. For example, in book cases with
doors, only the doors would be present in the
model, while the internal structures — in this case
the shelves — were omitted.

Some linguistic factors can cause the annota-
tion to be less than straightforward. For example,
should the link be to the British or the U.S. word?
If we annotate a coffee cup, should we annotate the
piece of cardboard around the cup that is designed
to protect our hand from the heat of the coffee us-
ing its specific but rare name “zarf,” or should we
choose a more common but less specific term such

s “sleeve” or even “piece of cardboard?” More-
over, some parts do not have proper labels: what
should we call the beams that help stabilize some
tables other than “support beams?” See Figure 6
for an example.
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Figure 6: An example demonstrating some of the limita-
tions of our annotation system. Parts of the table are identi-
fied as “storage support beam” and “shelf support panel” due
to lack of a better term.

7 Future Work

Our work so far has focused on developing the
infrastructure and annotation interfaces to collect
3D object part annotations at scale. This part
data linked to WordNet is of tremendous potential
value, which we plan to investigate as our project
continues.

A very interesting direction of work is in build-
ing contextual multimodal embeddings. Many ob-
ject parts and attributes are rarely mentioned in
language. For example, a stool doesn’t have a
back, but people don’t refer to stools as “back-
less chairs.” Neither do speakers encode the fact
that chairs often have four legs or 5 wheels; only
non-default exemplars might be labeled in an ad
hoc fashion as “five-legged chairs,” for example.
Furthermore, the physical contexts of objects (see
Figure 7) provides richer information than is found
in text. In this regard, the text and 3D modali-
ties are complementary and provide an excellent
target for building multimodal distributional rep-
resentations (Bruni et al., 2014). Multimodal em-
beddings are a promising semantic representation
which has been leveraged for various Natural Lan-
guage Processing and vision tasks (Silberer and
Lapata, 2014; Kiela and Bottou, 2014; Lazaridou
et al., 2015; Kottur et al., 2016).

Another direction for future work is to leverage
the object part and attributes and their correspon-
dences to WordNet to go beyond the set of Word-
Net synsets and automatically induce new senses,
along the lines of recent work on sense induc-
tion (Chen et al., 2015; Thomason and J. Mooney,
2017). For example, we have found that WordNet
synsets do not have good coverage of some fairly
modern categories of objects that we observe in

Figure 7: An example of the same nightstand object (out-
lined in blue) in two different 3D scene contexts. A con-
textual embedding afforded by the full 3D representation of
the scene within which the nightstand is observed would be a
powerful way to analyze and disentangle different usage con-
texts for common objects.

our 3D object datasets, including iPads, iPhones
and various electronic devices such as game con-
soles.
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