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Abstract— Flapping-Wing Micro-Air-Vehicles (FWMAVs) are
bio-inspired air vehicles that mimic insect and bird flight. The
dynamic behavior of these systems is typically described by a
multi-body, multi-time-scale, nonlinear, time-varying dynamical
system. Interestingly, this rich dynamics lead to unconventional
stabilization mechanisms whose study essentially necessitates a
mathematically rigorous analysis. In this paper, we use higher-
order averaging, which is based on chronological calculus, to
show that insects and their man-made counterparts (FWMAVs)
exploit vibrational control to stabilize their body pitching angle.
Such an unconventional stabilization cannot be captured by
direct averaging. We also experimentally demonstrate such a
phenomenon by constructing an experimental setup that allows
for two degrees of freedom for the body; forward motion
and pitching motion. We measure the response of the body
pitching angle using a digital camera and an image processing
algorithm at different flapping frequencies. It is found that
there is a flapping frequency threshold beyond which the body
pitching response is naturally (without feedback) stabilized,
which conforms with the vibrational control concept. Moreover,
we also construct a replica of the experimental setup with the
FWMAV being replaced by a propeller revolving at constant
speed, which results in a constant aerodynamic force, leaving
no room for vibrational control. The response of the propeller-
setup is unstable at all frequencies, which also corroborates
the fact that the observed stabilization of the FWMAV-setup at
high frequencies is a vibrational stabilization phenomenon.

I. INTRODUCTION

Vibrational control is an open loop stabilization technique
of an unstable equilibrium via the application of a sufficiently
high-amplitude, high-frequency periodic forcing. For exam-
ple, the unstable equilibrium of the inverted pendulum gains
asymptotic stability when the pivot is oscillating vertically
at a sufficiently high frequency. Crude averaging of the
simple equations governing the dynamics of the Kapitza
pendulum [1], [2] (inverted pendulum whose pivot is subject
to a vertical oscillation) showed no stabilization due to the
pivot vibration. However, appropriate averaging techniques;
whether it is higher-order averaging [3], [4] based on chrono-
logical calculus [5]; higher-order averaging [6], [7] based on
Lie transform [8]; direct averaging exploiting the nonlinear
variation of constants formula [9], [10]; clearly show a
vibrationally-induced stabilizing stiffness.

Flapping-wing micro-air-vehicles (FWMAVs) represent a
rich dynamical system with unconventional dynamical be-
havior that caught the attention of biologists and engineers
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over the last two decades. The multi-body dynamics of
FWMAVs is typically described by nonlinear, time-periodic
(NLTP) models. Moreover, the fast oscillatory wing motion
and its associated inertial and aerodynamic loads interact
with the relatively slower body motion resulting in a multi-
time-scale dynamical system. These features lead to inter-
esting unconventional balance and stability characteristics,
which invoke a mathematically rigorous analysis.

While many research reports (e.g., [11]–[22]) concluded
an unstable flight dynamics for hovering insects and FW-
MAVs; mainly due to lack of pitch stiffness, the recent efforts
by Taha et al. [23]–[26] showed an induced vibrational
stabilization mechanism in the form of pitch stiffness on the
flight dynamics of these bio-inspired robots. In this paper, we
theoretically and experimentally demonstrate the vibrational
control phenomenon in the flight of FWMAVs. We use
higher-order averaging to show the vibrationally-induced
pitch stiffness. Moreover, we experimentally demonstrate
such a phenomenon on a flapping apparatus that allows two
degrees-of-freedom (DOF) for the body of a FWMAV .

II. FLIGHT DYNAMICS OF FWMAVS

A. Flight Dynamic Modeling

Figure 1 shows a schematic diagram for a FWMAV in
the longitudinal plane x − z with three DOF: translations
along the x and z axes with velocity components u and
w, respectively, and a rotation about the y axis (into the
page) represented by an angle θ and an angular velocity
q. The generalized forces X and Z are the aerodynamic
forces in the x- and z-directions, respectively, and M is the
aerodynamic pitching moment about the y-axis. Ignoring the

Fig. 1. Schematic diagram of a FWMAV in the longitudinal plane x− z.

wing structural and inertial effects, the longitudinal equations
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of motion are exactly the same as conventional aircraft [27]
u̇
ẇ
q̇

θ̇

 =


−qw − g sin θ
qu+ g cos θ

0
q

+


X/m
Z/m
M/Iy
0

 , (1)

where g is the gravitational acceleration, m is the body
mass, and Iy is the body pitching inertia. However, unlike
conventional aircraft, the aerodynamic loads X , Z, and M
are essentially time-varying. That is, the system (1) can be
written in the abstract form

ẋ(t) = F (x(t), τ) = f(x(t)) + ga(x(t), τ), (2)

where the aerodynamic vector field ga is time varying.
It is quite important to note that two symbols t and τ are

used in Eq. (2) to denote the independent time variable; to
distinguish between the slow time scale t associated with
the body motion and the fast time scale associated with the
concomitant flapping motion and aerodynamic loads. The
ratio between these two time scales is deceptively large; for
the slowest flapping insect (the hawkmoth), the ratio be-
tween the flapping frequency and the flight dynamics natural
frequency is around 30 [15], [28], which naturally invokes
averaging. That is, the aerodynamic loads oscillates with a
too high frequency to affect the body. In other words, the
body only responds to the mean values of the time-periodic
aerodynamic loads. This assumption is found in most of
flapping flight dynamics and control efforts [11], [12], [14]–
[16], [29]–[40]. Adopting this averaging assumption, the
averaged dynamics of the system (2) is written as

˙̄x = F̄ (x(t)) = f(x̄) + ḡa(x̄), (3)

where over bar indicates an averaged quantity; e.g., ḡa(x) =
1
T

∫ T

0
ga(x, τ)dτ , with T being the flapping period.

Following our previously derived aerodynamic model [28],
[41], which is based on Refs. [42]–[44], the aerodynamic
loads can be expressed linearly in the state variables x, near
the hovering position as

ga(x(t), τ) = g0(τ) + [G(τ)]x(t), (4)

where g0 represents the aerodynamic loads due to flap-
ping, ignoring the effect of body motion (i.e., ignoring
aerodynamic-dynamic interactions), and the matrix G repre-
sents the aerodynamic derivatives (i.e., stability derivatives)
with respect to the state variables. Expressions of the various
terms in g0 and G are given in terms of the flapping
kinematics in our previous efforts [23], [28], [41].

B. Stability Analysis Using Direct Averaging

Direct averaging greatly simplifies the problem as it
converts the time-periodic system (2) into a time-invariant
system (3). Consequently, a periodic orbit representing an
equilibrium solution of (2) reduces to a fixed point of the
averaged dynamics (3). Clearly, the stability analysis of a
fixed point of a time-invariant system is quite simpler than
that of a periodic solution for a time-periodic system. Luck-
ily, the averaging theorem [9], [45] guarantees exponential

stability of a periodic solution of (2) if the corresponding
fixed point of (3) is exponentially stable.

To focus on the open-loop stability, we will exclude the
non-trivial balance problem in this paper; that is, we assume
that the FWMAV is balanced at hover; i.e., equivalently, the
averaged dynamics has a fixed point at the origin

f(0) + ḡ0 = 0 ⇐⇒ Z̄0 = −mg.

Then, linearizing the averaged dynamics (3) about this fixed
point at the origin yields

˙̄x(t) =
[
Df(0) + Ḡ

]
x̄(t), (5)

where Df(0) is the jacobian of the vector field f at the
origin and Ḡ represents the cycle-averaged stability deriva-
tives. Evaluating the matrix of the linearized system (5) for
the hawkmoth insect, whose morphological parameters are
adopted from Refs. [15], [23], [46], one obtains

[
Df(0) + Ḡ

]
=


−3.59 0 0 −9.81

0 −3.30 0 0
39.95 0 −7.92 0
0 0 1 0


whose eigenvalues are written as

0.19± 5.74i, −11.89, −3.30.

These eigenvalues indicate an unstable system due to the pair
in the right half plane, which are mainly associated with
pitching motion as can be easily shown by checking the
corresponding eigenvectors. This result is well known and
has been concluded in several efforts [11], [12], [14]–[16],
[21], [22], [28], [47]–[49].

III. HIGHER-ORDER AVERAGING AND VIBRATIONAL
CONTROL

As in the case with the Kapitza pendulum, the crude aver-
aging analysis, explained above, does not capture vibrational
stabilization. One remedy is to use the variation of constants
formula (coordinate transformation) to write the system
(2) in the standard form of first-order averaging. However,
this process is not analytically tractable here. Alternatively,
one can use higher-order averaging to reveal higher-order
interactions between the system’s two time scales that are
typically neglected by direct averaging.

Agrachev and Gamkrelidze wrote a seminal paper [5] in
the honor of the 70th birth day of the pioneer Russian math-
ematician Lev Semyonovich Pontryagin which laid down the
foundation of a new calculus for time-varying vector fields;
the chronological calculus. Based on these tools, Sarychev
[3] and Vela [4] developed what they called the complete
averaging of the time-periodic system (2) as an infinite series

ẋ = ϵΛ1(x) + ϵ2Λ2(x) + ..., (6)

where ϵ is a small parameter, typically scaled with the
reciprocal of the forcing frequency, and

Λ1(x) = 1
T

∫ T

0
F (x, τ) dτ,

Λ2(x) = 1
2T

∫ T

0

[∫ τ

0
F (x, s) ds,F (x, τ)

]
dτ.
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So, if the flapping frequency is high enough (i.e., ϵ is small
enough), one may be able to truncate the series (6) after the
first term Λ1 (i.e., crude averaging). However, if the flapping
frequency is not high, one should take into account more
terms in the series. For more details about this approach, the
reader is referred to the Refs. [3], [4], [23].

Taking two terms in the series (6) and linearizing about
the origin, one obtains the following system matrix for the
hawkmoth linearized hovering dynamics

D(Λ1 +Λ2)(0) =


−3.58 0 0 −9.81

0 −3.09 0 0
29.98 0 −8.13 −28.45
−2.90 0 0.96 0


whose eigenvalues are written as

−0.66± 3.72i, −10.40, −3.09

which indicate a stable system.
This stabilization is not captured by crude averaging. To

determine the nature of this vibrarional stabilizing mecha-
nism, which is induced by higher-order interactions between
the system’s two times scales, we compare the two matrices
D(Λ1)(0), D(Λ1 + Λ2)(0) of the first- and second-order
averaged dynamics, respectively. Of particular interest is
the element (3,4), which represents pitch stiffness. It is
found that the original hovering flight dynamics of insects
and FWMAVs lacks any direct pitch-stiffness [28]. How-
ever, higher-order averaging revealed a vibrationally-induced
pitch-stiffness, which is written as

˙̄q = ¨̄θ = −28.45θ̄.

This vibrational control stiffness is quite similar to the
Kapitza pendulum case, which can be clearly seen in the
interesting video in Ref. [50]. Thanks to the analytical nature
of the presented model and analysis tool, we managed to
drive an analytical expression of this vibrationally induced
stiffness in terms of insect morphological parameters as

kθ =
g

2T

∫ T

0

[
Mu(t)t−

∫ t

0

Mu(τ)dτ

]
dt =

mg2f(Φ)

2Iyφ̇
2 ,

(7)
where Mu is the pitching moment due to disturbance in the
body speed, Φ is the flapping amplitude, φ̇ is the average
flapping speed, and f(Φ) = sin 2Φ

2Φ − cos 2Φ.

IV. EXPERIMENTAL DEMONSTRATION

In this section, we experimentally demonstrate the vi-
brational control phenomenon in FWMAVs. In order to
avoid the many problems associated with the free flight
of FWMAVs and to have a better focus on verifying the
vibrational stabilization phenomenon, we construct an ex-
perimental setup that allows for only two DOFs for the
body of the FWMAV; forward motion and pitching motion.
These two DOFs are particularly selected for demonstration
of the vibrational stabilization phenomenon because Eq.(7)
implies that kθ is mainly due to interactions between the
pitching and forward motions of the body. Therefore, the

proposed experimental setup will represent projection of the
full dynamics (1) onto the uθ sub-system.

Imagine a simple pendulum with its mass replaced by a
FWMAV, as shown in Fig. 2. The hovering equilibrium is
then achieved when the pendulum’s rod becomes horizontal
(γ = 90◦). This pendulum setup will allow for multiple
equilibria at different frequencies; convenient to demonstrate
vibrational control, which is evident only at high enough
frequencies. One can easily operate at a slower flapping
frequency, which results in a different equilibrium position
γe. In addition, measurement of this equilibrium pendulum
angle γe is easily achieved using a Gravity 360 Degree Hall
Angle Sensor and provides a a measure for the generated
thrust from the FWMAV as the flapping frequency changes,
according to the balance equation

FT =

(
mFWMAV +

1

2
mrod

)
g sin γe,

where FT is the cycle-averaged generated thrust force,
mFWMAV is the mass of the FWMAV (13 gm), mrod is
the mass of the pendulum’s rod (1.8 gm), and g is the gravi-
tational acceleration. As the applied voltage is increased, the
flapping frequency increases and the FWMAV rises up (i.e.,
γe increases). At each applied voltage, a video is recorded at
a rate of 240 frame per second whose time stamp is analyzed
to obtain an estimate for the flapping frequency (the average
flaps per second).

Fig. 2. Two-DOF FWMAV Experimental Setup.

A pin (hinge) connection is introduced between the body
of the FWMAV and the pendulum’s rod to allow for body
pitching θ, as shown in Fig. 2. The response of the pitching
angle is measured using a digital camera and an image
processing algorithm. As shown in Fig. 2, the nose and tail
of the FWMAV are marked with different colors. Then, a
simple algorithm is implemented ncy changes, according to
the balance equation

FT =

(
mFWMAV +

1

2
mrod

)
g sin γe,

where FT is the cycle-averaged generated thrust force,
mFWMAV is the mass of the FWMAV (13 gm), mrod is
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the mass of the pendulum’s rod (1.8 gm), and g is the gravi-
tational acceleration. As the applied voltage is increased, the
flapping frequency increases and the FWMAV rises up (i.e.,
γe increases). At each applied voltage, a video is recorded at
a rate of 240 frame per second whose time stamp is analyzed
to obtain an estimate for the flapping frequency (the average
flaps per second).in Visual Studio C++, exploiting the image
processing library OpenCV, to detect these circular stickers
from video recordings and determine the angle between the
line connecting these two marks and the horizontal (i.e. θ)
at each time step with a sampling frequency of 50 ms.

Because the line of action of the thrust force is above
the body longitudinal axis and consequently hinge point,
there is an unbalanced pitching moment which will preclude
equilibria. Therefore, we added four split shot size lead of
3g total weight near the tail of the FWMAV, as shown in Fig.
2 (the black dots near tail) to shift the center of gravity of
the FWMAV backward along the longitudinal axis. As such,
the pitching moment at the hinge point due to the weight
will balance that of the thrust force according to the balance
equation

FT eT = mgeg cos θe,

where eT and eg are the offsets of the thrust and gravity
forces, respectively, from the hinge point, and θe is the
equilibrium value of the pitching angle. At zero applied
voltage (zero thrust force), the FWMAV is standing vertically
(θe = 90◦) at the bottom position (γe = 0◦) of the pendulum.
As the voltage and consequently the flapping frequency
increase, the body moves upward along the circular path of
the pendulum (i.e., γ increases) and tilts forward towards the
horizontal attitude (i.e., θ decreases), as shown in Fig. 2. It
is noteworthy to mention that most insects have their center
of gravity behind the hinge location along their longitudinal
axis and achieve hovering equilibria at body inclination with
respect to the horizontal (i.e., θe) around 50◦ [15], [46]; i.e.,
similar to the current setup.

Having established equilibrium, studying stability comes
promptly. To experimentally verify and demonstrate the
vibrational control/stabilization phenomenon in FWMAVs,
theoretically shown using higher-order averaging in the last
section, we apply different voltages to the motor driving the
flapping mechanism to attain different equilibrium positions
(γe and θe) at different flapping frequencies, thanks to the
pendulum configuration. We then measure the response of
the pendulum angle γ and the body pitching angle θ, as
explained above, at each operating frequency.

Figure 3 shows the response of the FWMAV system at a
flapping frequency of 12Hz. At this low flapping frequency,
the FWMAV barely goes up (γe ∼ 24◦) and the equilibrium
pitching angle is quite large (θe ∼ 76◦). The response is
found to be unstable as shown in the figure, even without
giving a disturbance; the oscillatory wing motion naturally
provides a sufficient disturbance.

Figure 4 shows the response of the FWMAV system at a
relatively high flapping frequency of 18Hz. At this relatively
high flapping frequency, the FWMAV system is almost at the

0 2 4 6 8 10 12 14
0

50

100

150

P
itc

hi
ng

 A
ng

le
   

θ°

Unstable Response at Low Flapping Frequency (12 Hz)

0 2 4 6 8 10 12 14
0

50

100

P
en

du
lu

m
 A

ng
le

   
γ°

Time (sec)

Fig. 3. FWMAV unstable response at relatively low flapping frequency
(12Hz).

hovering position (γe ∼ 85◦) and the equilibrium pitching
angle θe ∼ 50◦ is close to the natural values observed in
nature for hovering insects [15], [46]. Clearly, the response
is stable. Even when a relatively large disturbance (∆θ ∼
50◦) is applied at t = 8.6 sec, the system goes back to its
equilibrium periodic orbit (i.e., the hovering periodic orbit).
A response similar to that shown in Fig. 4 is observed all
possible higher frequencies.
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Fig. 4. FWMAV stable response at relatively high flapping frequency
(18Hz).

So far, it can be concluded that the response of FWMAVs
(particularly the body pitch response) is naturally (without
feedback) stabilized beyond a certain threshold of flapping
frequency. This fact conforms well with the vibrational
control concept [1], [2], [51], [52] and suggests that the
observed natural stabilization at high forcing frequencies
is a vibrational stabilization phenomenon. However, one
might argue that because the intricate dynamics of the
system, the frequency not only affects stability, but also bal-
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ance/equilibrium; obviously increasing the frequency leads to
a different equilibrium, which may or may not have similar
stability characteristics to equilibria corresponding to low
frequencies. To show that the induced stabilizing mechanism
is indeed due to vibrational control that mainly stems from
the time-periodic nature of the driving aerodynamic thrust
force and not because of operating at a different equilibrium,
we construct a replica of the experimental setup with the
FWMAV being replaced by a small propeller revolving with
a constant speed, as shown in Fig. 5. The main difference is
that the FWMAV setup produces a periodic thrust force, and
consequently a time-periodic dynamics allowing for vibra-
tional control, while the propeller setup produces a constant
thrust force, and consequently a time-invariant dynamics
leaving no room for vibrational control.

(a) A Pendulum-Propeller Setup. (b) Used Propeller of diameter
3mm.

Fig. 5. A Two-DOF Pendulum-Propeller Setup.

Using split shot size lead, we managed to match the weight
and inertia of the propeller system with the FWMAV system.
Although the propeller system may experience gyroscopic
effects that are different from the flapping system, these
gyroscopic actions would not affect the u − θ dynamics.
Rather, they might excite the structural (bending) dynamics
of the rod, which is legitimately neglected in this analysis.
In fact, the propeller system can be viewed as the crude-
average of the flapping system; i.e., the flapping system under
the influence of the averaged thrust force after removing
the high-frequency varying component. Figure 6 shows the
response of the two-DOF propeller-pendulum system at a
relatively small propeller speed (i.e., at a small pendulum
equilibrium angle γe ∼ 9◦). Clearly, the response is expo-
nentially unstable. Increasing the applied voltage to attain
higher pendulum equilibrium angles (closer to the hovering
position) worsens the stability characteristics so much that
the system structure becomes prone to breaking.

V. CONCLUSION

The flight dynamics of insects and their man-made coun-
terparts, flapping-wing micro-air-vehicles (FWMAVs), is
studied in the longitudinal plane at hover. The system is
a nonlinear, time-periodic with a large separation between
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Fig. 6. Unstable Response of the Two-DOF Propeller-Pendulum System.

the systems’s two time scales, which invokes averaging.
Using direct averaging, it is found that insects/FWMAVs
are unstable at hover; mainly due to lack of pitc stiffness.
However, using more rigorous mathematical tools (higher-
order averaging based on chronological calculus), it is shown
that the high-frequency oscillatory aerodynamic forces in-
duce a vibrational control mechanism resulting in a pitch
stiffness on the hovering flight dynamics. This unconven-
tional stabilization technique is mainly due to the interaction
between the fast wing flapping dynamics and the slow body
dynamics, which cannot be captured by direct averaging. An
experimental setup that allows for two degrees of freedom for
the body (forward motion and pitching motion) is constructed
to verify/demonstrate such a phenomenon. Recalling that
vibrational control is an open loop stabilization technique due
to the application of a sufficiently high frequency periodic
forcing, the stability of the system is studied at different
flapping frequencies. It is found that the system is naturally
(without feedback) stabilized beyond a certain threshold of
the flapping frequency (15Hz in the current setup), which
conforms with the vibrational control concept. Moreover, a
replica of the system is constructed in which the flapping
bird is replaced with a propeller that revolves at a constant
speed to check whether the induced stabilization at high
frequencies is mainly due to periodicity of the driving force
(i.e., a vibrational control) or not. It is found that the
propeller system replica is unstable at all applied voltages
and becomes even more unstable at larger applied voltages
(i.e., when it comes closer to the hovering position). Finally,
it is concluded that FWMAVs, indeed, enjoy vibrational
stabilization.
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