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Abstract—Identifying the location of a disturbance and its
magnitude is an important component for stable operation of
power systems. We study the problem of localizing and estimating
a disturbance in the interconnected power system. We take a
model-free approach to this problem by using frequency data
from generators. Specifically, we develop a logistic regression
based method for localization and a linear regression based
method for estimation of the magnitude of disturbance. Our
model-free approach does not require the knowledge of system
parameters such as inertia constants and topology, and is
shown to achieve highly accurate localization and estimation
performance even in the presence of measurement noise and
missing data.

I. INTRODUCTION

Frequency response is one of the key performance measures

that indicate the stability of a power system. The frequency of

a power system is a complex function of physics, generation

control actions and load behaviors over the system topology.

Although power systems are designed to operate at a nom-

inal frequency, which is typically 60Hz or 50Hz, they often

experience frequency excursion due to the imbalance between

generation and load. That is, the system frequency goes up

if generation exceeds load, and goes down otherwise. Most

of frequency excursions (due to the time-varying nature of

demands which generation can keep up with) are not consid-

ered harmful and thus do not call for any action to restore

the system frequency. Such a frequency range is referred to as

deadband [1].

On the other hand, when there is a major disturbance

such as generator tripping and load surge, the frequency can

go down to a critical point where generators are damaged

permanently or loads severely malfunction. Such a frequency

decline should be arrested through so-called primary control

that adjusts generation to match the current load, in which

case the system frequency reaches the steady state. However,

for most of energy sources, it is hard to ramp up generation

immediately, and as a consequence, the frequency can decline

below a critical point, e.g., 5% of nominal frequency [2].

In this case, some loads have to be disconnected from

the power grid, and this is referred to as load shedding.
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Obviously, the amount of load shedding should be neither

too small, which may fail to arrest frequency decline below a

critical point, nor too large, which may excessively deteriorate

the quality of service. It is therefore important to determine

the right amount of load to be shed in order to prevent

the system frequency from dropping to a critical point. This

clearly requires a quick and accurate estimation of the power

imbalance between load and generation. In this paper, we study

the problem of locating and estimating the disturbance leading

to underfrequency, i.e., the disturbance such as load surge and

generator tripping.

There are several works that present the method for esti-

mating the power imbalance in the context of load shedding.

The work in [2] estimates the power imbalance of an isolated

generator by measuring the initial slope of frequency decline,

i.e., the rate of change of frequency (ROCOF) right after

disturbance. The initial slope of an isolated generator is indeed

proportional to the power imbalance, which is thus easy to

estimate (if the inertia constant is known). This idea can be

extended to the case of multiple generators by adding indi-

vidual power imbalance, which gives the total load-generation

imbalance in the power system [3]. Furthermore, the accuracy

of estimation can be enhanced by using voltage measurements

in addition to ROCOF data [4], [5], and load characteristics

and system topology [6].

Most of the above works rely upon the physical model

of the power system. This approach, however, hinges on the

accurate knowledge of system parameters. For example, as

mentioned above, the disturbance estimation method following

the principle in [2] uses the inertia constant of a power

system which also needs to be estimated. Although there

are many known methods for estimating the inertia constant,

the estimation is subject to several sources of errors and

more importantly, the system-wide inertia constant can vary

depending on the system status such as load [7]. In this work,

we are interested in the model-free approach that does not

explicitly use the system model which involves the parameters

depending on the fundamental characteristics of the system.

In contrast to the estimation of power imbalance, the litera-

ture of localization of disturbance or fault has seen a number

of papers taking model-free approaches, i.e., machine learning

techniques for fault localization. In [8], neural networks are

used to locate the fault and estimate the fault resistance



based on current and voltage measurement data. In [9], neural

networks are developed separately for different components

such as transformers and buses. Only the status of circuit

breakers and relays is used as input, and hence, the localization

method is scalable and robust to topology changes. Other

techniques such as support vector machine [10], [11] and linear

discriminant analysis [12] have been used as well (see [13] for

more references in this context).

There are also several works that take a model-based

approach for the localization of a disturbance [14]. Typically,

in this approach, phasor measurement units (PMUs) detect

the disturbance possibly at different times because PMUs

are geographically distributed and the disturbance propagates

much slower than the electromagnetic wave. The key idea is

to use the disturbance propagation speed in order to compute

the distance from the disturbance location to each PMU, and

apply triangulation method to locate the disturbance. However,

the disturbance propagation speed can vary from 100 to 1000

miles/s depending on the system condition [15].

Our goal in this paper is to develop a disturbance local-

ization and (magnitude) estimation method in the presence of

measurement noise and even missing data. Our method uses

frequency data from interconnected generators. The intercon-

nected generators are synchronized so that they operate at

the same frequency. However, when there is a disturbance,

its impact is perceived by generators at different times. For

example, a generator close to the disturbance may experience

frequency drop earlier than the one far from the distur-

bance. Consequently, generators may exhibit different fre-

quency dynamics before they are synchronized eventually. As

mentioned above, the disturbance propagation speed is slow,

and hence, the frequency changes of generators might show

distinguishably different patterns depending on the location

of disturbance. Based on this observation, we apply a simple

logistic regression to frequency change data and demonstrates

that the location of a disturbance can be identified with high

accuracy. In addition, the rate of frequency change also reflects

the magnitude of disturbance, and thus, using the same data

as in the localization, we propose a simple linear regression

based method for estimating the magnitude of disturbance.

The rest of the paper is organized as follows. In Section

II, we present the model and the problem of our interest.

In Section III, we discuss the methods for localization and

estimation. In Section IV, we demonstrate the performance of

our methods under various environments, and in Section V,

we conclude the paper.

II. MODEL AND PROBLEM DESCRIPTION

We consider a power system where there is a control center

that collects the frequency data from generators. Note that

such a frequency monitoring network (FNET) already exists,

and there is even a low cost 120V-outlet measurement based

FNET [16], [17]. Assume that there are N generators and B
buses. Let fi(t) be the frequency of generator i at time t.
Suppose that there is a sudden increase of load at a bus. Let

∆Pi denote the power imbalance, i.e., load minus generation,

at generator i. This value can be expressed as

∆Pi = −
2HiSi

fn

dfi(t)

dt
, (1)

where Hi[s], Si[MVA] and fi[Hz] are the inertia constant,

rated apparent power and frequency of generator i, respec-

tively, and fn[Hz] is the nominal frequency [2]. To be more

precise, ∆Pi is given by ∆Pi = Pei−Pmi
where Pmi

and Pei

are mechanical input power to generator and electric output

power from generator, respectively. Hence, (1) represents

the fact that when the system load suddenly increases, the

rotational energy in the mass of generator unit is released

to initially supply the load, thereby decreasing the frequency.

It is important to note that this relationship between power

imbalance and rate of frequency change is valid only right

after the disturbance has occurred. This is because once the

control action (specifically, primary control that immediately

responds to frequency change) of generator takes effect, the

effect of disturbance decays and the system reaches the steady

state where
dfi(t)
dt

≈ 0.

In the interconnected power system, a load change is shared

by generators. This is typically expressed by summing the

individual power imbalances as

∆P =
∑

i

∆Pi = −
∑

i

2HiSi

fn

dfi(t)

dt
, (2)

where ∆P is the total power imbalance in the system [5].

Using this model, the total power imbalance in the system can

be estimated using the rate of frequency change from each

generator. This estimation, however, can suffer from several

errors. First, as mentioned in the introduction, the inertia

constant Hi can change depending on the system status such

as load. Second, if there is a disturbance at a certain bus,

the disturbance starts to take effect at a generator nearest to

the bus. The electric output power at the nearest generator

will then suddenly increase, leading to frequency decline,

while other generators may not have received the impact

yet. This makes it unclear when the model in (2) should be

used to estimate the disturbance. This subtlety of model-based

approach has led us to consider a model-free approach that

does not rely on a specific system model.

Our approach uses the rate of change of frequency (ROCOF)

as well because it reflects the magnitude of disturbance in

that the frequency change is larger in the event of larger

disturbance. In this paper, we assume that the disturbance

occurs at a single bus (our method can be readily extended

to the case of multiple disturbances), and that the disturbance

start time is known (there are existing methods for detecting

start time such as the one in [18]). We first develop a

localization method by applying logistic regression to ROCOF

data. The location information together with ROCOF data are

used to estimate the magnitude of disturbance based on linear

regression.



III. PERTURBATION LOCALIZATION AND MAGNITUDE

ESTIMATION

In this section, we present the method of disturbance local-

ization based on logistic regression, and disturbance magnitude

estimation based on linear regression. We first discuss the

selection of features for the learning algorithms, using the

frequency measurement at all the generators. Furthermore, we

discuss how training and prediction are performed when some

measurements are missing, e.g., due to communication delays

or failures.

A. Extracting Features from Frequency Data

Assume that the frequency at each generator is measured

with a PMU. Typically, PMUs are equipped with GPS for

clock synchronization, and hence, measurement data can

be assumed synchronized. Let tk be the k-th sample time

at every generator. The control center receives from each

generator i the noisy frequency measurement expressed as

f̃i(tk) = fi(tk) + εi where εi is the measurement noise

normally distributed with mean zero and variance σ2, i.e.,

εi ∼ N (0, σ2). Real frequency measurement data show that

measurement noise is common and non-negligible [18].

Recall that the time at which the disturbance occurred is

assumed to be known. Without loss of generality, let t0 be

the time at which the disturbance occurred. As discussed

in Section II, the initial slope f ′

i(t0) ,
fi(t1)−fi(t0)

t1−t0
is

proportional to the magnitude of the disturbance. Depending

on the distance from the epicenter, the initial slopes at a

generator may exhibit different patterns for different locations

of disturbance, as a result of power flow dynamics. One

could use more samples afterwards, f ′

i(t1), f
′

i(t2), ..., so as

to construct a more distinguishable footprint of disturbance.

Note that when there is a disturbance, the frequency declines

and thus the slope is negative. However, with actual noisy

frequency data, the sign of slope f̃ ′

i(tk) ,
f̃i(tk+1)−f̃i(tk)

tk+1−tk
, k =

0, 1, 2, ... can fluctuate, even if the frequency data are

smoothed, whereas the original signs are steadily negative.

This is detrimental to training, as the sign (and magnitude) of

the slope captures the critical information of disturbance.

To address this issue, we use the following form of fre-

quency change. Let ∆f̃i(tk) = f̃i(tk) − f̃i(t0), k = 1, 2, ...
for each generator i. Assuming equally spaced sample times,

the values represent the slopes with respect to the disturbance

moment t0. Clearly, compared to the values f̃ ′

i(tk) defined

above, the signs of ∆f̃i(tk) are more likely to be the same

as the original signs of ∆fi(tk) with noiseless data because it

considers difference between (originally declining) frequency

values farther separated in time. Hence, this gives a more

robust measure of frequency change. We apply a simple mean

filter to these values as

xi =

[

1
Wa

j+Wa−1
∑

k=j

∆f̃i(tk), j = 1, ...,Ws −Wa + 1

]

, (3)

and we use the following vector x as a feature vector:

x =
[

x1 x2 · · · xN 1
]

. (4)

The kth coordinate of xi will be denoted as xik. Here, the

value Wa is the averaging window size that determines the

smoothness of the filtered data in xi, i.e., large values of

Wa lead to smoother data. The value Ws is the sampling

window size that determines how many samples will be

used to form a feature vector. The last scaler value 1 is

used to fit the intercept. The length of the feature vector is

L = (Ws−Wa+1)N +1, where N is the number of PMUs.

In Section IV, we examine the impact of these values on the

accuracy of prediction.

B. Logistic Regression for Localization

Let y = [y0 y1 ... yB ] be a binary vector such that yi = 1
if there is a disturbance at bus i, and yi = 0 otherwise, where

B is the total number of buses. The value y0 = 1 indicates

that there is no disturbance. Since we assume that there is

at most one disturbance, we have
∑B

i=0 yi = 1. One sample

of the training data for localization is given by (y, x), i.e.,

x is the frequency change information in (4) and y is the

true disturbance location. Denote by X the random variable

representing the feature vector x, and Y the indicator vector

y. The randomness comes from the measurement noise. The

logistic regression problem is formulated as

max
β=[β0 β1 ··· βB ]

P(Y |X) =

B
∏

b=0

pb(X;β)Yb , (5)

where pb(X) represents the probability that the disturbance

occurs at bus b. Typically, this probability is expressed as

pb(X;β) =
eβ

b
·X

∑B

a=0 e
βa·X

, (6)

where βb ∈ R
L is the coefficient vector corresponding to the

disturbance at bus b, and

βb ·X = βb
0 +

N
∑

i=1

Ws−Wa+1
∑

k=1

βb
ikXik. (7)

Suppose that there are M samples of training data,

(y1, x1), ..., (yM , xM ). Taking the logarithmic function on the

objective function in (5) and adding a regularization term, the

logistic regression problem computes β that minimizes the

objective function

min
β

λ

2
||β||22 −

M
∑

j=1

{

B
∑

b=0

yjb(β
b · xj)− log

(

B
∑

b=0

eβ
b
·xj

)}

,

(8)

where λ is a parameter that controls the strength of regular-

ization. For large values of λ, regularization is emphasized so

as to avoid over-fitting and enhance robustness to noise.

Denote by β̂ the solution of (8). Given a new measurement

data xnew, the location of a disturbance is estimated as the

bus b with the largest pb(x
new; β̂). The advantage of logistic

regression is that the value pb(x
new; β̂) gives the probability

that b is the location of disturbance, and hence, these values

can be used to pick, say k, most probable locations of



disturbance. These candidates can be further examined by

other methods or even human experts in order to narrow down

to the actual location. In Section IV, we show that this method

can significantly reduce the classification error.

C. Estimation of Magnitude of Disturbance

Given the location of a disturbance, we now discuss how

the magnitude of the disturbance is estimated. As discussed

with respect to the relationship (1), the magnitude of initial

frequency change increases as the magnitude of disturbance

increases. We thus use the same feature x as in the localization

above, which gives a robust measure of frequency change

after a disturbance. Furthermore, as the model (2) suggests,

one can expect a linear relationship between rate of frequency

change and magnitude of disturbance. This led us to apply

linear regression as it seeks to find an affine function that best

fits the input (x in our case) and output (∆P in our case) data.

Unlike in the localization, we train the linear regression

separately for each disturbance location, i.e., separate linear

regression for each bus. Consider an arbitrary bus b. Let z ∈
R+ be the magnitude of a disturbance that has occurred at

bus b. One sample of training data is then given as (z, x).
Assuming that there are M samples (z1, x1), ..., (zM , xM ),
the linear regression problem is formulated as

min
αb

1

2

M
∑

j=1

(

zj − αb · xj
)2

. (9)

Let A = [x1; · · · ; xM ] ∈ R
M×L and q = [z1; · · · ; zM ] ∈

R
M . As long as A has full column rank, the solution to the

above minimization problem is given as α̂b = (ATA)−1AT q.

Otherwise, if the inverse is computationally expensive or does

not exist, the solution can be found using gradient descent

methods. Given the new measurement data xnew and location

b (either from the localization above or known a priori), the

magnitude is estimated as α̂b · xnew.

D. Dealing with Missing Data

So far, we have assumed that the communication between

control center and PMUs is always reliable. However, as

PMUs are increasingly deployed over power grid, the commu-

nication channel can possibly turn unreliable due to excessive

amount of data or even link failures. It is therefore important

to ensure the above regression schemes work as designed even

when some data from generators are missing.

Assume for simplicity that measurement data are missing

from at most one generator. To address the scenario of missing

data, for each missing scenario, we train logistic and linear

regression coefficients in advance. This requires N+1 separate

trainings for both localization and estimation since we assume

missing data from at most one generator. Note that everything

in the training process is identical to the case of no missing

data except that the feature vector x in (4) does not include

the measurement at the generator where the data are missing.

To address the general case where data can be missing from

at most k generators, one can separately train for
∑k

j=0

(

N
k

)

missing scenarios. Similarly, as soon as the control center

finds that measurement data are missing from j generators

{Gi1 , ..., Gij}, the regression coefficients corresponding to

missing generators {Gi1 , ..., Gij} are retrieved and used for

localization and estimation. We believe that this method is a

practical solution because the event that a large number of

generators fail to deliver their data at the same time may

be unlikely. In the next section, we show that even with

missing data, our schemes yield fairly accurate localization

and estimation performance.

IV. SIMULATION

We generate the data using MATLAB power system toolbox

(Simscape Power Systems), based on the New England Power

System IEEE benchmark topology [19]. Each disturbance

scenario is a load increase at one of 21 bus locations. For

the training data, the load increases range from 100 MW to

1000 MW, with 10 MW interval. For the test and validation

data, the load increases are chosen uniformly at random within

the range from 100 MW to 1000 MW. The frequencies are

sampled at all generators once every 5 millisecond.

In the rest of this section, we study the performance

of the learning algorithms on disturbance localization and

magnitude predictions, using scikit-learn package [20]. The

hyper-parameters of the learning algorithms, such as the

regularization coefficient, are tuned to minimize the prediction

error in the test data. We then evaluate the performance of the

algorithms using validation data, which avoids over-fitting of

the algorithms on test data.

A. Disturbance localization

We evaluate the performance of logistic regression in distur-

bance localization. We first explain the tuning of regularization

coefficient under noisy measurement, and then evaluate the

prediction accuracy by tuning the sampling window size Ws

and averaging window size Wa. We report the optimal Ws

and Wa that minimize the error rates, and provide intuitions

on the selections of Ws and Wa.

1) Regularization coefficient λ: Recall that λ is tuned to

minimize the test error. Table I shows the error rates (defined

as the fraction of misclassified scenarios) on test and validation

data under Ws = 200,Wa = 1, and optimal λ. We observe

that, as noise magnitude increases, a larger regularization

strength is required, and the estimation error increases. Since

the error rates on test data and validation data are close, in

the remainder of the section, we only report the error rates on

validation data to study the impact of Ws and Wa under the

optimally tuned regularization coefficient.

TABLE I: Classification errors under different noise levels

σ (mHz) 0 0.5 1 5 10

λ 1 100 2× 10
3

10
4

10
5

test error 0.006 0.015 0.033 0.103 0.149

validation error 0.009 0.012 0.030 0.118 0.155





7) Sampling frequency: A larger PMU sampling frequency

allows the averaging of more adjacent measurements, and thus

reduces the measurement noise and improves the estimation

accuracy, shown by Table VII.

TABLE VII: Classification errors under different sampling

frequencies

sampling frequency (Hz) 200 100 50 20 10

validation error 0.057 0.076 0.109 0.179 0.218

B. Disturbance magnitude estimation

We apply linear regression to estimate the disturbance

magnitude, given disturbance location. We observe that both l1
and l2 regularizations do not improve the prediction accuracy.

Therefore, we apply ordinary least square estimation (9), and

report the average relative errors |(∆P̂ − ∆P )/∆P | on the

validation data.

Table VIII shows the relative errors under different noise

levels, for Ws = 200,Wa = 1. We observe that the errors are

negligible for moderate measurement noise. Table IX shows

that the error decreases as the sampling window size Ws

increases. The averaging window size does not have noticeable

impact on the errors, and the numerical results are omitted.

TABLE VIII: Regression errors under different noise levels

σ (mHz) 0 1 5 10

relative error 8.4× 10
−5

8× 10
−4

3× 10
−3

7× 10
−3

TABLE IX: Regression errors under different sampling win-

dow sizes (σ = 5mHz)

Ws 5 50 100 200 500

relative error 0.411 0.028 0.016 0.007 0.003

The disturbance magnitude estimations are robust under

missing measurement. Remarkably, when there is only mea-

surement available at a single generator, the relative error

merely increases to 0.020, for any given disturbance location.

This can be explained by the observation that the amount of

frequency deviation is a monotone function in the amount of

disturbance, for a fixed disturbance location.

We remark that the model-based estimation using Eq. (2)

has very high error (over 60% relative error), even without

measurement noise. This further demonstrates the superior

performance of our estimation algorithms.

V. CONCLUDING REMARKS

We developed logistic regression and linear regression based

methods for localizing and estimating a disturbance by using

frequency data from generators. Our model-free approach

does not require the knowledge of system parameters such as

inertia constants and topology. We showed through simulations

that our approach achieves highly accurate localization and

estimation of a disturbance even in the presence of measure-

ment noise and missing data. The power system increasingly

integrates distributed generation and renewable resources that

bring about more uncertainty compared to the typical large-

scale power plant. The traditional model-based approach to the

localization and estimation problem hinges on the accuracy of

a model, which may be highly challenging with increasing

uncertainty. Our results in this paper show the effectiveness of

model-free approaches applying machine learning techniques

in the face of increasingly complex power system.
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