
Pensieve: a Machine Learning Assisted SSD Layer
for Extending the Lifetime

Te I∗, Murtuza Lokhandwala†, Yu-Ching Hu∗ and Hung-Wei Tseng∗
∗Department of Computer Science, †Department of Electrical and Computer Engineering

North Carolina State University

Abstract—As the capacity per unit cost dropping, flash-based
SSDs become popular in various computing scenarios. However,
the restricted program-erase cycles still severely limit cost-
effectiveness of flash-based storage solutions.

This paper proposes Pensieve, a machine-learning assisted
SSD firmware layer that transparently helps reduce the demand
for programs and erases. Pensieve efficiently classifies writing
data into different compression categories without hints from
software systems. Data with the same category may use a
shared dictionary to compress the content, allowing Pensieve
to further avoid duplications. As Pensieve does not require any
modification in the software stack, Pensieve is compatible with
existing applications, file systems and operating systems. With
modern SSD architectures, implementing a Pensieve-compliant
SSD also requires no additional hardware, providing a drop-in
upgrade for existing storage systems.

The experimental result on our prototype Pensieve SSD shows
that Pensieve can reduce the amount of program operations by
19%, while delivering competitive performance.

I. INTRODUCTION

With the capacity per unit cost of flash memory technologies
improves as well as flash memory’s low latency, non-volatile,
low-power and shock resistance natures, flash-based solid state
drives (SSDs) become popular in all computing scenarios,
ranging from mobile phones, personal computers to data center
servers. However, the limited number of program-erase cycles
and the asymmetrical granularities for read/program operations
versus erase operations restricts the cost-effectiveness of flash-
based storage solutions. With modern TLC (Triple-level cell)
flash memory chip technologies, a cell can start to wear out
after 3,000 program-erase cycles and the whole SSD may
become unusable if a sufficient amount of cells do not function
correctly [25].

To extend the lifetime of an SSD without increasing hard-
ware costs, the system needs to mitigate the demand for
programming and erasing data. As compression and dedupli-
cation techniques reduce data sizes, the storage system can
apply these techniques to reduce the amount of writes to the
device or increase the effective capacities. Integrating data
compression or deduplication into the storage device allows
the system to take advantanges from these schemes without
modifying the application or the file system. The system can
also optimize the compression or deduplication according to
device characteristics [35].

However, applying data compression or deduplication
within the device also results in some trade-offs in per-
formance. First, as the storage device only receives block
addresses in I/O commands, the storage device cannot use
high level context-related information to avoid the computation
overhead on compressing files that are already in compressed

format or use optimized algorithms for different file types.
Second, to accommodate the increased computation overhead,
existing solutions need to equip hardware accelerators to avoid
significant performance degradation, increasing the hardware
costs of the device. Finally, existing solutions decouple the
execution of compression and deduplication, resulting in ad-
dition writes as doing both is a two-phase process.

This paper presents Pensieve, a machine learning assisted
SSD layer that achieves transparent, low-overhead data re-
duction to extend SSD lifetime without increasing device
costs. Pensieve leverages idle processor cores that are already
presented in modern SSD controllers. Pensieve simply needs
to scan very small amount of data in each chunk of written
data in the write buffer to make accurate predictions on the
context. Pensieve’s prediction result will guide whether the
SSD needs to compress the data or how to compress the data
before writing into the flash medium.

Pensieve brings several benefits to the storage system. First,
Pensieve’s machine learning model builds upon the similarity
of data, Pensieve can compress data blocks belong to the
same category to share a compression dictionary, achieving the
effects of compression and deduplicating redundant dictionary
entries simultaneously. Second, with light-weight machine
learning models categorizing the context of incoming data,
Pensieve does not rely on hints from the software system.
Therefore, Pensieve requires no changes to the host software
stack. Third, Pensieve predicts data that are uncompressible
or have low potential in compression, allowing the SSD to
reduce the computation overhead. Finally, with the simplicity
of the in-line compression and deduplication mechanisms that
Pensieve enables, Pensieve incurs almost no impact on the
cost and performance of SSDs, providing a drop-in upgrade
applicable to existing systems.

In describing Pensieve, this paper makes the following
contributions:
(1) It provides a machine learning assisted, low-overhead
mechanism that naturally achieve both effects of compressing
data content and deduplicating dictionary contents.
(2) It presents a machine learning based model that can
reconstruct the missing context information and predict un-
compressible data without going through every bit of the data
or using additional file system or software hints.
(3) It demonstrates that the proposed mechanism in Pensieve
requires no change to the software system and adds no
overhead to host processors.
(4) It shows that Pensieve provides these benefits without
increasing the total cost of ownership through prototype im-
plementation.

35

2018 IEEE 36th International Conference on Computer Design

2576-6996/18/$31.00 ©2018 IEEE
DOI 10.1109/ICCD.2018.00016

This paper evaluates the performance of Pensieve using a
custom-built platform that resembles the design of modern
SSDs. Using the Pensieve SSD prototype in a contemporary
server machine configuration, the system achieves the same-
level performance without additional costs to the hardware.
Pensieve successfully reduces the amount of written data by
18%.

The rest of this paper is organized as follows: Section II
briefly provides the background of modern SSD architectures.
Section III provides an overview of the Pensieve design. Sec-
tion IV depicts the machine learning model used in Pensieve.
Section V introduces the architecture of Pensieve. Section VI
presents our results. Section VII provides a summary of related
work to put this project in context, and Section VIII concludes
the paper.

II. BACKGROUND

Pensieve proposes enhancements in the flash translation
layer of an SSD with a mechanism that achieves both dedu-
plication and compression. This section will provide some
background materials that place the proposed mechanism in
context.

A. Flash translation layer
Flash-based SSDs become the mainstream of high-

performance storage alternatives due to their features including
shorter access latency, lower power consumption, shock resis-
tance comparing with magnetic hard disk drives (HDDs) as
well as they are hitting a reasonable price per unit storage.
However, flash memory technologies have several characteris-
tics that SSDs need to especially address.

First, flash memory technologies do not allow reprogram-
ming a cell until the chip performs an erase operation for
the cell. Second, although modern flash memory technologies
can read and write in the granularity of pages, where each
page usually stores 4 KB – 8 KB of data, the erase operation
can only perform in the unit of blocks, where each block
may contains 64 to 512 pages. In addition, the latencies for
read, program and erase operation vary a lot. Reading a page
can take less than 100 μs, but programming a page can take
100 μs to 2000 μs. Erasing a block takes even longer, as this
operation usually takes several milliseconds to complete [7].
Finally, each block can only function correctly within a limited
amount of program-erase cycles. A cell in a block can become
unreliable after the erase operations performed on the block
reaches a certain threshold.

To address the above characteristics of flash memory tech-
nologies but also maintain the compatibility with software
system using conventional HDDs, flash-based storage systems
usually incorporate a flash translation layer (FTL) in their
designs. The FTL virtualizes the storage space to the software
systems using logical block addresses (LBAs). The FTL will
dynamically map LBAs to physical page numbers (PPNs)
where the SSD actually stores data in flash arrays. Since pro-
gramming a page or erasing a block takes significantly longer
time than reading, the FTL performs out-of-place updates
for each write/program requests and changes the mapping of
logical and physical block addresses. As a result, the FTL
also needs to perform garbage collection algorithms to reclaim
pages and blocks that stale data occupy.

Embedded
cores

Embedded
cores

Embedded
cores

Embedded
cores

Embedded
cores

Embedded
cores

Embedded
cores

I/O
 in

te
rf

ac
e

DMA engine

DDR
controller

In-SSD interconnect

Flash Interface

ECC/
Accele-
rators

Embedded
cores

Flash memory

SSD
DRAM

Fig. 1. The architecture of conventional SSDs

As program-erase cycles of flash blocks limit the lifetime
of SSDs, the system design should minimize the number of
programs and erases to maximize the lifetime. Therefore, most
FTL also combines wear-leveling algorithms during garbage
collections to identify hot/cold data and evenly distribute
program-erase cycles of flash blocks. Furthermore, the system
can apply techniques, including compression and deduplica-
tion, to reduce the number of programs in the SSD.

B. Modern flash-based SSDs
Figure 1 depicts the architecture of a modern high-end

SSD that data center servers may use. In addition to the
flash arrays for data storage, a modern data center SSD
can contain a system-on-chip with the I/O interface, several
microprocessor cores, hardware accelerators, DMA engines,
flash interfaces, and DRAM interface as the controller. The
SSD also contains DRAM chips for buffering DMA data. The
SSD usually organizes flash arrays into multiple channels to
allow parallel accesses and provide abundant internal access
bandwidth between data arrays and the SoC-based controller.

The embedded cores inside the SoC will execute firmware
programs to parse commands from the I/O interface and
perform FTL functions. To support the execution of firmware
programs, these cores may leverage the on-die SRAM or uti-
lize the DRAM chips inside the SSD. The firmware programs
also use in-SSD DRAM as write buffers or data caches to
further improve the access performance. The SoC controller
also equips with accelerators to reduce compute latencies for
ECC or encryption.

To communicate with the host computer, the SSD wires
the I/O interface to PCIe, M.2, SATA slots. The I/O interface
interprets signals coming from the host computer using either
SATA or NVMe [1] standard. These standards include gen-
eral commands including data reads, data writes as well as
administrative commands that allows the host system to query
or adjust the status of the SSD. These commands represent
data locations on the SSD using logical block addresses that
the host software infrastructure (e.g., the file system and the
device driver) abstracts the storage array in the device. As a
result, the storage device is completely agnostic to the content
of data. In this project, we implemented the prototype SSD
using the NVMe standard since NVMe is specifically designed
to address the demands of SSDs and generally deliver better
performance comparing with other counter-parts.

36

Pensieve Layer

Applications

File system

Disk I/O driver

System Interconnect (e.g. PCIe)

FTL

I/O interface

Dictionary files

Compressor

Decompressor

Address
mappingGarbage

collection
Wear-leveling

Classifier

host
system

SSD

Fig. 2. The system architecture of Pensieve

III. OVERVIEW OF PENSIEVE

Pensieve provides a low-overhead, machine learning as-
sisted layer in the SSD to extend the device lifetime. As
Pensieve works within the device, Pensieve is transparent
to the host system. Pensieve does not require any changes
in system software stack, applications and I/O protocols.
Pensieve simply requires changes in the FTL of a modern SSD.
Therefore, existing SSDs can adopt the Pensieve FTL design
without additional hardware costs. With Pensieve categorizes
similar data, the SSD can potentially achieve both effects of
compression and deduplication without an additional pass of
storage data.

Figure 2 places Pensieve in the system architecture. Pen-
sieve interacts with the host system through a standard disk I/O
interface and the FTL of an SSD. Pensieve contains four main
components, the classifier, a set of dictionary files, the com-
pressor, and the decompressor. The classifier contains a trained
prediction model to categorize incoming data into different
compression classes. Each class will have a corresponding
dictionary file associated with it. The compressor can compress
data using a specified dictionary file. In the case of reading
data, the decompressor can extract compressed data using the
specified dictionary file.

Upon receiving a write command from the I/O interface, the
classifier of Pensieve looks over a small part of the writing data
and uses the prediction model to decide the compression class.
For classes that are not compressible or have limited benefits
with compression, the SSD will bypass the compression to
save computation resources. For data belong to the same class,
the SSD can assign the same dictionary file if the SSD selects
a dictionary-based compression scheme for this class. The
compressor will then take the whole writing data and compress
the content using the designated dictionary file. Since Pensieve
potentially changes the data size, Pensieve also needs to pass
the compressed data size and the compression class to the FTL.
The FTL also needs to keep this information in the mapping
table to locate storage data correctly.

Unlike conventional file-based data compression mecha-
nisms, Pensieve does not consider each file as a single unit
of compression. Instead, Pensieve classifies all storage data
into several different categories and all data within the same
category can use a shared dictionary file. Therefore, Pensieve
can achieve data compression while avoiding duplication of
dictionary contents.

If the SSD receives a read command, Pensieve works with
the FTL to obtain the compression class and the physical loca-
tions from the mapping table. The decompressor reconstructs
the original data content using the compression algorithm for
the specified class as well as the designated dictionary file in
the memory buffer. Pensieve will then send the content back
to the host computer when the request data is ready.

Though Pensieve adds additional features to compress data
in the SSD efficiently, Pensieve does not need additional
information from the host system. Therefore, Pensieve is com-
patible with existing SSD I/O interfaces (e.g., NVMe/SATA).

IV. PENSIEVE’S CLASSIFIER

Pensieve relies on the built-in classifier to categorize in-
coming data to decide the compressibility of data and avoid
duplication in dictionary entries without using hints from the
host software. Therefore, the accuracy and the efficiency of
the classification model will affect the success of Pensieve.

Pensieve applies two machine learning approaches, agglom-
erative clustering and random forest, to generate the data
classification model. We use agglomerative clustering to group
data that are highly similar and figure out the optimal number
of classes in our resulting model. We will then tag each data
item with the group number that agglomerative clustering
produced as the input of random forest algorithm to train the
desired classification model.

To build the classification model, we collected real disk
contents from a set of daily used Linux machines running
Ubuntu 14.04. This collection of data contains 800000 files
ranging from text files, program binaries, images, videos,
program sources, etc. In the following paragraphs, we will
present the details and our considerations for building the
classification model in Pensieve.

A. Data clustering

Pensieve uses the compression class to decide the com-
pressibility of incoming data and the dictionary file to use.
Therefore, the prediction model in Pensieve needs first to
identify these groups. Because the file information is lost
in block device layer I/O commands, using the high-level
file information (e.g., suffixes of files) is not feasible. The
classification model must be able to identify the type of data
by directly looking into the content without any hint from the
rest of the system.

In this work, we use agglomerative clustering algorithm to
cluster sample files, instead of error-prone, time-consuming
human-based labeling approaches on the huge amount of files.
For each input file, the compression program uses dictionary-
based algorithm that converts every two bytes of data into
a 16-bit unsigned integer, and counts the occurrences of
each integer to generate an optimal dictionary. The clustering
algorithm compares the edit distances of identical symbols

37

average latency accuracy

AdaBoost 3241 μs 86.56%

Decision Tree 4.6 μs 82.58%

Random Forest 13.5 μs 87.16%

SVC 68619 μs 60.40%

NuSVC 74917 μs 60.21%

Linear SVC 220 μs 63.82%
TABLE I

THE PERFORMANCE OF EVALAUTED CLASSIFICATION ALGORITHMS

in the resulting dictionary files to determine the appropriate
clustering.

To decide the number of classes that can generate the best
result, we change the target number of groups for each run of
the agglomerative clustering algorithm and feed the training
model with the complete content from each file that we
collected as inputs. For each clustering result, we compute the
overall compression rate, including the overhead of dictionary
files, for the training dataset.

We tested the compressed data sizes with cluster sizes
between 4 and 128. The result shows that 64 clusters will
deliver the optimal data size. The clustering algorithm also
successfully categorizes uncompressible data types (e.g., jpeg
files, mpeg files) into the same classes. Therefore, the resulting
model can also use as a predictor whether if the incoming data
is compressible or not.

B. Data classifier
To classify incoming data efficiently, Pensieve’s classifi-

cation model considers two factors – the execution time of
making a prediction and the number of bytes that the model
needs to process to make an accurate prediction. The resulting
Pensieve’s classification model uses Random Forest algorithm
and simply needs to read 512-byte data from each write
request. This section will describe the design decisions we
made for Pensieve’s classification model.

1) Classification algorithms: Pensieve aims at using idle
controller cores for desired prediction and compression. The
classification model should make a prediction within the
latency of writing a flash page so that the firmware program
can use pipeline parallelism to hide the latency of prediction
in the worst case. In modern flash memory chips, the mini-
mum page program latency is around 200 μs. Therefore, we
target at a classification algorithm that can deliver reasonable
performance within 200 μs.

We evaluated six different classification algorithms: Ad-
aBoost, Decision Tree, Random Forest, C-Support Vec-
tor Classification (SVC), Nu-Support Vector Classification
(NuSVC) and Linear Support Vector Classification (Linear
SVC). We implemented these classification algorithms on
the ARM-based controller that Section V-A describes and
randomly chose 10000 files as the training data set.

Table IV-B1 lists the performance of these classification
algorithms. We validate the accuracy using files from the
collected Linux files, excluding the training data set. Among
these algorithms, Random Forest delivers the best prediction
accuracy and also finishes within the desired latency. There-
fore, Pensieve uses Random Forest as the default classifier in
the rest part of this paper.

 0

 0.2

 0.4

 0.6

 0.8

 1

4 8 16 32 64 128 256 512 1 K 2 K 4 K 8 K

A
cc

ur
ac

y

Sample size (Bytes)

Fig. 3. The accuracy of classifier using different number of bytes from the
beginning of data chunks

Fig. 4. The hardware of a Pensieve-compliant SSD

2) Input length for each prediction: Pensieve also aims at
predicting compression groups using the minimum of bytes
from each chunk of data to classify incoming data. Therefore,
Pensieve can start compression data content in the early phase
of writing data and hide the latency of compression task
through buffering and multitasking, mitigating the impact of
writing to flash chips.

Figure 3 shows the classification accuracy of by randomly
select x bytes from each file. We changed the length of bytes
(x) that Random Forest uses as the input of classification.
We used the same training datasets and validation data as in
Section IV-B1. The result shows that using 512 bytes reaches
the best accuracy (90.25%). And once the length exceeds 512
bytes, the model becomes overfitting the training data and
degrades the prediction accuracy. In the rest of the paper, we
use 512 as the default number of bytes that Pensieve’s classifier
needs to make decisions.

V. THE IMPLEMENTATION OF PENSIEVE

Pensieve leverages existing hardware components in modern
SSDs. Therefore, modern SSDs can integrate Pensieve by
just modifying firmware programs running on general-purpose
processor cores, without increasing the hardware cost. To
demonstrate the feasibility of Pensieve on modern SSDs, we
developed a prototype SSD with Pensieve. This section will
describe the design of our prototype SSD as well as the
required firmware modifications.

A. The hardware architecture of the prototype SSD

Figure 4 shows the hardware of our prototype Pensieve-
compliant SSD. This prototype SSD contains an NXP
LS2088A board and an FPGA-based daughter board. This

38

assembly resembles existing SSD architectures that Figure 1
illustrates.

The LS2088A itself is a PCIe expansion card equipped with
a system-on-chip (SoC) that consists of eight ARM cores
and a set of hardware accelerators. These ARM cores can
execute firmware code for NVMe interface and FTL func-
tions, including address mapping, garbage collection and wear-
leveling algorithms that modern SSDs need to perform. Similar
to modern SSDs that use hardware accelerators to calculate
error-correction code for stored data, the Pensieve-compliant
SSD also leverages these hardware accelerators for the same
purpose. Since the ARM cores on this SSD provide better
computation capabilities than existing SSD controllers, we
change the frequencies and the number of cores the prototype
platform use during experiments to align with the architecture
of modern commercially available data-center SSDs.

The FPGA-based daughter board connects to the LS2088A
through an on-board interconnect that offers bandwidth up to
7.88GB/sec. This daughter board contains an FPGA and a few
memory slots. These memory slots host custom-built NAND
flash-based DIMMs using MT29F256G08CMCABH2 MLC
chips. The FPGA acts as the flash memory controller that
receives commands from the LS2088A and translates those
commands into DDR3 signals.

B. The firmware of Pensieve-compliant SSDs
In addition to the conventional FTL functions, Pensieve’s

firmware programs also implement the classifier, the compres-
sor and the decompressor. As Pensieve changes the size of
data, the firmware programs also need to support Pensieve
in the mapping table for LBAs and PBAs. Though Pensieve
requires changes to the FTL firmware, Pensieve does not
propose any change to the I/O interface protocols (e.g., NVMe
or SATA). The rest of this section will describe those parts of
firmware programs that are different from conventional SSD
firmware programs.

1) Compressor: When the I/O interface receives a write
command, the I/O interface forwards this command to the
compressor. The compressor works with the classifier to de-
termine the compression class. The compressor will then fetch
the incoming data and compresses data using the compression
class that the classifier determined. The compressor also works
with the FTL to allocate space for the compressed data.

To compress incoming data, the compressor locates the
dictionary file that the classifier determined and compresses
data using that dictionary file. As most dictionaries only need a
few MBs to store and the current design of Pensieve uses only
64 clusters, the compressor maintains a cached version of these
dictionaries using the SSD DRAM space. After the compressor
finishes compressing data, the compressor will pass the LBA,
the length of source data, the length of compressed data and
a pointer to the compressed data in the SSD DRAM buffer.
The compressor discards the raw data upon the completion
of compression since the SSD does not need that anymore.
Though our classification model rarely mispredicts, in case
the length exceeds the original data size, the compressor will
pass the uncompressed data and discard the compressed data
instead.

Since the effect of compression is more significant when
the granularity of data is larger and to simplify the design of

the mapping table, the compressor works together with the I/O
interface and maintains several data buffers in SSD DRAM.
Each buffer stores a fixed size chunk with the starting logical
block address aligned with the chunk size (e.g., If the chunk
size is 1 MB, the starting address of each buffered data will
align with 1 MB). The compressor will notify the FTL to map
the LBAs of buffered data blocks to the DRAM locations.

As soon as the FTL mapping for the buffered data com-
pletes, the compressor can allow the I/O interface to respond
to the host system for the completion of the write commands
like how conventional SSDs handle writes. In this way, the
host system can consider the request is successful and make
forward progress for the application.

In case that the compression class for the buffered data
belongs to a category that is compressible and can use a shared
dictionary, the compressor can start compressing the buffered
data since the shared dictionary approach does not need the
whole unit to create a dictionary file. Otherwise, when the
buffered data reach the predefined chunk size or the SSD needs
to flush the buffer, the compressor will compress the whole
chunk of data. The compressor can then update the mapping
information with the FTL after data compression finishes.

2) Classifier: The classifier in the Pensieve-compliant SSD
interacts with the compressor and categorizes the incoming
data. The classifier receives DRAM buffer addresses from the
compressor returns the categorization result.

Instead of scanning the whole buffered data, the classifier
simply needs to use part of the data in the DMA buffer to
classify the compression class. As modern file systems (e.g.,
ext4) tends to allocate logical block addresses consecutively
for the same file, sampling part of the incoming data can
achieve high accuracy in terms of predicting the data type. The
algorithm and the model that the classifier implements follow
the result that Section IV presents. Since the classifier only
needs the beginning part of the buffered data, the classifier
can decide the compression class whenever any core is free,
before the buffer is full.

3) Addressing Mapping: Unlike the conventional flash stor-
age system that each physical NAND flash page contains
the consistent number of logical data blocks, flash pages
in Pensieve-compliant SSD can contain variable numbers of
logical blocks. As a result, the FTL in a Pensieve-compliant
SSD would need to modify the design of the mapping table
between LBAs and PBAs accommodate this difference. Except
for the address mapping, most FTL features, including garbage
collection and wear-leveling, could remain the same as in the
FTL of modern SSDs.

The FTL of the prototype Pensieve-compliant SSD uses the
“chunk id”, which is the starting LBA of the compressed data
divided by the chunk size, as the index of the mapping table.
Each entry in the mapping table records the physical pages of
the compressed data in sequential order and the compression
class of the chunk. This design maintains the same table size
as the FTL firmware programs we examined in conventional
SSDs. For a 1 TB SSD, this table requires at most 1GB of
space to maintain the mapping table. Similar to conventional
SSDs, the Pensieve-compliant SSD also periodically backs up
the mapping table in the SSD.

Figure 5 illustrates an example of mapping table. Since
the starting LBA of each chunk aligns with the predefined

39

Fig. 5. An exemplary mapping table design of a Pensieve-compliant SSD

chunk size, the FTL simply uses the LBA shifted with chunk
offset bits as the index to access the table. The indexed entry
will contain the current mapping information of the requesting
LBA. For each entry, we reserve the space to map up to

chunk size
flash page size cells for physical page locations so that the
FTL always has sufficient cells to map data. If the compressed
data does not use all reserved cells for physical locations,
where is common in most cases of Pensieve, the FTL marked
these empty cells in the entry as unused (e.g., fill with all 1s).
The mapping table also needs several bits to keep track of the
dictionary for decompression as in the category field.

4) Decompressor: When the I/O interface receives a read
command, the I/O interface works with the decompressor to
handle the request. The decompressor queries the FTL to fetch
the compressed chunk containing the requesting data from the
flash storage array. The decompressor will use the compression
class of the chunk and the corresponding dictionary file to
decompress the chunk into the SSD DRAM buffer. When
the decompression finishes, the I/O interface can then initiate
DMA data transfers and complete the requests.

Pensieve compresses data from fixed size chunks in raw,
uncompressed data. Therefore, a read request may require the
decompressor to fetch every flash page that belongs to the
same chunk and hurt the latency of a single read command.
To mitigate the latency degradation, the decompressor can
response to the read request as soon as the decompression
reaches the offset of the read command.

Our Pensieve firmware program will keep decompressed
data in the SSD DRAM buffer until the SSD DRAM buffer
management policy (e.g., FIFO in our implementation) needs
to reclaim the buffer space. Therefore, if the workload exhibits
reasonable spatial locality, Pensieve can achieve the effect of
prefetching data since the workload tends to request for the
rest of the compressed data within a short period of time.

VI. RESULTS

This section will present the performance of the prototype
SSD with Pensieve. This paper evalautes the Pensieve design
by building a machine with the prototype SSD and executing
a set of applications on the machine. The host machine uses a
quad-core Intel Kaby Lake processor clocked at 3.5GHz. The
machine contains 8 GB DRAM modules as the physical main
memory to host a Linux system with 4.10.0 kernel version.
The linux uses ext4 file system for all disk partitions.

A. Design space exploration of Pensieve
The chunk size and the buffer size are two factors that

affect the performance and the design of the mapping table
and DRAM buffers in an SSD with Pensieve. This section
examines the impact of these two parameters and determines
the values of these parameters for our prototype SSD.

 0

 0.2

 0.4

 0.6

 0.8

 1

16K 32K 64K 128K 256K 512K 1MB 2MB

R
es

ul
tin

g
da

ta
 s

iz
es

Chunk sizes

Fig. 6. The data compression rate and the chunk size in SSD buffer.

 0

 0.2

 0.4

 0.6

 0.8

 1

64 128 256 512 1024

R
el

at
iv

e
la

te
nc

y

Number of 1 MB buffers

Random access Sequential access

Fig. 7. The relative latency of our SSD under different buffer sizes

Figure 6 presents compressed data size using various chunk
sizes. We found that compression rate does not show signifi-
cant change for chunk sizes larger than 1 MB.

Figure 7 depicts the performance of both sequential and
random 4K read requests using different number of buffers
with 1 MB in each buffer. We use 64 × 1 MB buffers
as the baseline. For sequential access, we found that the
SSD can achieve optimal performance with 512 × 1 MB
buffers. Increasing the buffer size to 1024 × 1 MB does not
help improve the sequential access performance. For random
accesses, the buffer size does not significantly improve the the
performance. Therefore, we use 512 MB as the default buffer
size for the rest of our experiements.

B. Write reductions

In this sets of experiments, we evaluate the number of
program operations for storing different sets of data. These

40

 0

 0.2

 0.4

 0.6

 0.8

 1

Image Large Text Ubuntu 16.04 Windows 7 Average

N
um

be
r

of
 p

ag
e

pr
og

ra
m

s

Workloads

Huffman Encoding Pensieve

Fig. 8. The relative number of page programs of using Pensieve and
conventional compression scheme

workloads include compressed images, large text files, files
from a daily used Ubuntu 16.04 machine and files from a
daily used Windows 7 machine.

Figure 8 the relative number of program operations of
each workload with the baseline configuration that does not
employee any data compression. With Pensieve’s ML-assisted
layer, we reduce program operations by 19% on average.

To demonstrate the effect of sharing dictionary entries
that Pensieve’s design enables, we also compare Pensieve
with regular Huffman encoding using the same chunk size.
Pensieve incurs 7% fewer program operations than conven-
tional dictionary-based encoding that requires a dictionary file
assoicated with each data chunk. In addition, for workloads
that contain large amount of uncompressible files (e.g., image),
Pensieve does not have to always compress data to test if data
compression helps.

C. Synthetic Workload

In this sets of experiments, we use filebench [29] to generate
synthetic workloads from a different set of files that we
collected on another Linux server to estimate the performance
of real usage of Pensieve. For this workload, we assume 80%
of reads and 20% of writes. We also assume 20% of these
requests are random, and the rest are sequential. Each request
size ranges from 4 KB to 4 MB. The whole dataset would
occupy 90% of our storage space. average lantecy, Pensieve
maintains an average latency of 107μs, only 13.4% slower
than the baseline that does not use any data compression
without our current implementation relying on general-purpose
processor cores.

VII. RELATED WORK

As compression can reduce the amount of writing data,
improve the cost per unit capacity and the lifetime of flash-
based SSDs, existing research projects applied compression
in several ways. Similar to Pensieve, zFTL [26], CaFTL [3],
FlaZ [23], Nitro [20], RCFFS [14], Delta-FTL [32], ZBD [24]
as well as FCL for SmartMedia [33] all perform compression
in the SSD address mapping layer. Compression is transparent
to the user program and the file system in these designs.
However, without the assistance of the machine-learning based
prediction as Pensieve, these systems always need to compress

data and compare the data size with original input, signifi-
cantly increasing the overhead of handling writes. On the other
hand, Pensieve does not even try to compress data predicted
as inappropriate for compression. In addition, these works
constructs dictionaries for different data chunks independently,
thus there will have duplication issue in dictionaries that
Pensieve avoids.

Deduplication is another approach that can help reduce
the amount of storage data, previous research projects also
demonstrate the deduplication can help improve the SSD life
time [5], [9], [10], [12], [15], [16], [22], [28]. However,
these approaches usually require complex computation to
achieve better results. To optimize writes performance, these
deduplication mechanisms are usually decoupled from regular
write operations and data compression, leading to additional
writes. Though the effect of deduplication in Pensieve can-
not compete with these dedicated deduplication algorithms,
Pensieve’s approach inherently achieves some deduplication
effects without additional computation.

Pensieve implements the whole framework using general-
purpose processor cores already presented in modern SSDs. To
accelerate the performance, SSD controllers can use hardware
accelerators to further improve compression and decompres-
sion performance [17], [19], [34]. However, as we demon-
strated in this paper, even with general-purpose cores, the
proposed algorithm of Pensieve can still achieve competitive
performance.

Many file systems, including, NTFS [27], JFFS2 [31],
LeCramFS [13] and SquashFS [2], allows users to turn file
compression features on and save the required space on the
storage device. However, these file system-level compressing
mechanisms consume precious CPU resources. Though the
file system level compression can leverage content-related
information, none of the above applied similar mechanisms
that Pensieve uses machine-learning assisted approach to avoid
potential duplication in dictionaries.

To more effectively compress data, some applications store
data in compression, deduplication friendly data formats [4],
[11] or even store data in compressed forms [21]. Kothiyal
et. al., also studied the effect of compression algorithms for
various file types [18]. Pensieve requires no modifications in
applications and relies on no hints from applications. Even if
we use Pensieve-compliant SSDs, Pensieve’s model can avoid
the inflation of storage data due to redundant compressions
applied.

As the advancement of microarchitecture and process tech-
nologies, modern SSD controllers become more powerful to
improve the performance of storage systems without increas-
ing the burden of the host processor. Recent research projects
show that using the idle processor cores on the SSD controller
can potentially accelerate general-purpose computing [6], [8],
[30]. Instead of offloading computation, Pensieve only uses
those general-purpose cores to predict and compress data.
Therefore, Pensieve provides another approach to reclaim the
wasted processing power on the SSD controller without any
programmer’s effort.

VIII. CONCLUSION

This paper presents Pensieve to demonstrate the potential of
applying machine-learning techniques in the FTL to improve

41

the lifetime and capacities of SSDs. As machine learning tech-
niques allow the FTL to predict storage contexts without hints
from the software layer accurately, the FTL can still obtain
information missed in the storage protocol stack. Pensieve
leverages this advantage from machine learning techniques to
classify the storage data, enable more efficient data compres-
sion as well as naturally reduce duplication of compression
dictionaries.

We also implement a prototype Pensieve-compliant SSD us-
ing commercially available parts that resemble the architecture
of modern SSDs. The experimental results show that Pensieve
successfully reduces the number of program operations while
maintaining competitive performance.

ACKNOWLEDGMENTS

This research was supported in part by NSF grant CNS-
1657039. This paper also would like to thank Dragan Savic
of Dell EMC for his support in developing the prototype for
Pensieve and NVIDIA Corporation for the K40 and Quadro
P5000 GPU used for this research.

REFERENCES

[1] AMBER HUFFMAN. NVM Express Revision 1.1. http://nvmexpress.org/
wp-content/uploads/2013/05/NVM Express 1 1.pdf, 2012.

[2] ARTEMIY I. PAVLOV AND MARCO CECCHETTI. SquashFS HOWTO.
http://www.tldp.org/HOWTO/html single/SquashFS-HOWTO/.

[3] CHEN, F., LUO, T., AND ZHANG, X. Caftl: A content-aware flash
translation layer enhancing the lifespan of flash memory based solid
state drives. In Proceedings of the 9th USENIX Conference on File and
Stroage Technologies (Berkeley, CA, USA, 2011), FAST’11, USENIX
Association, pp. 6–6.

[4] CONSTANTINESCU, C., GLIDER, J., AND CHAMBLISS, D. Mixing
deduplication and compression on active data sets. In 2011 Data
Compression Conference (March 2011), pp. 393–402.

[5] DEBNATH, B., SENGUPTA, S., AND LI, J. Chunkstash: Speeding up
inline storage deduplication using flash memory. In Proceedings of the
2010 USENIX Conference on USENIX Annual Technical Conference
(Berkeley, CA, USA, 2010), USENIXATC’10, USENIX Association,
pp. 16–16.

[6] DO, J., KEE, Y.-S., PATEL, J. M., PARK, C., PARK, K., AND DEWITT,
D. J. Query processing on smart ssds: Opportunities and challenges.
In Proceedings of the 2013 ACM SIGMOD International Conference
on Management of Data (New York, NY, USA, 2013), SIGMOD ’13,
ACM, pp. 1221–1230.

[7] GRUPP, L., CAULFIELD, A., COBURN, J., SWANSON, S., YAAKOBI,
E., SIEGEL, P., AND WOLF, J. Characterizing flash memory: Anomalies,
observations, and applications. In MICRO-42: 42nd Annual IEEE/ACM
International Symposium on Microarchitecture (12 2009), pp. 24 –33.

[8] GU, B., YOON, A. S., BAE, D.-H., JO, I., LEE, J., YOON, J., KANG,
J.-U., KWON, M., YOON, C., CHO, S., JEONG, J., AND CHANG, D.
Biscuit: A framework for near-data processing of big data workloads.
SIGARCH Comput. Archit. News 44, 3 (June 2016), 153–165.

[9] GUPTA, A., KIM, Y., AND URGAONKAR, B. Dftl: A flash translation
layer employing demand-based selective caching of page-level address
mappings. In Proceedings of the 14th International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems
(New York, NY, USA, 2009), ASPLOS XIV, ACM, pp. 229–240.

[10] HA, J. Y., LEE, Y. S., AND KIM, J. S. Deduplication with block-level
content-aware chunking for solid state drives (ssds). In 2013 IEEE
10th International Conference on High Performance Computing and
Communications 2013 IEEE International Conference on Embedded and
Ubiquitous Computing (Nov 2013), pp. 1982–1989.

[11] HARNIK, D., KHAITZIN, E., SOTNIKOV, D., AND TAHARLEV, S. A
fast implementation of deflate. In 2014 Data Compression Conference
(March 2014), pp. 223–232.

[12] HUA, Y., LIU, X., AND FENG, D. Smart in-network deduplication
for storage-aware sdn. In Proceedings of the ACM SIGCOMM 2013
Conference on SIGCOMM (New York, NY, USA, 2013), SIGCOMM
’13, ACM, pp. 509–510.

[13] HYUN, S., BAHN, H., AND KOH, K. Lecramfs: an efficient compressed
file system for flash-based portable consumer devices. IEEE Transac-
tions on Consumer Electronics 53, 2 (May 2007), 481–488.

[14] KANG, Y., AND MILLER, E. L. Adding aggressive error correction to a
high-performance compressing flash file system. In Proceedings of the
Seventh ACM International Conference on Embedded Software (New
York, NY, USA, 2009), EMSOFT ’09, ACM, pp. 305–314.

[15] KIM, D., AND KANG, S. zf-ftl: A zero-free flash translation layer. In
Proceedings of the 31st Annual ACM Symposium on Applied Computing
(New York, NY, USA, 2016), SAC ’16, ACM, pp. 1893–1896.

[16] KIM, J., LEE, C., LEE, S., SON, I., CHOI, J., YOON, S., U. LEE, H.,
KANG, S., WON, Y., AND CHA, J. Deduplication in ssds: Model and
quantitative analysis. In 012 IEEE 28th Symposium on Mass Storage
Systems and Technologies (MSST) (April 2012), pp. 1–12.

[17] KJELSO, M., GOOCH, M., AND JONES, S. Design and performance
of a main memory hardware data compressor. In Proceedings of
EUROMICRO 96. 22nd Euromicro Conference. Beyond 2000: Hardware
and Software Design Strategies (Sep 1996), pp. 423–430.

[18] KOTHIYAL, R., TARASOV, V., SEHGAL, P., AND ZADOK, E. Energy
and performance evaluation of lossless file data compression on server
systems. In Proceedings of SYSTOR 2009: The Israeli Experimental
Systems Conference (New York, NY, USA, 2009), SYSTOR ’09, ACM,
pp. 4:1–4:12.

[19] LEE, S., PARK, J., FLEMING, K., ARVIND, AND KIM, J. Improv-
ing performance and lifetime of solid-state drives using hardware-
accelerated compression. IEEE Transactions on Consumer Electronics
57, 4 (November 2011), 1732–1739.

[20] LI, C., SHILANE, P., DOUGLIS, F., SHIM, H., SMALDONE, S., AND

WALLACE, G. Nitro: A capacity-optimized ssd cache for primary
storage. In Proceedings of the 2014 USENIX Conference on USENIX
Annual Technical Conference (Berkeley, CA, USA, 2014), USENIX
ATC’14, USENIX Association, pp. 501–512.

[21] LI, J., TSENG, H.-W., LIN, C., SWANSON, S., AND PAPAKONSTANTI-
NOU, Y. HippogriffDB: Balancing I/O and GPU Bandwidth in Big Data
Analytics. Proceedings of the VLDB Endowment 9, 14 (2016).

[22] MA, J., STONES, R. J., MA, Y., WANG, J., REN, J., WANG, G., AND

LIU, X. Lazy exact deduplication. Trans. Storage 13, 2 (June 2017),
11:1–11:26.

[23] MAKATOS, T., KLONATOS, Y., MARAZAKIS, M., FLOURIS, M. D.,
AND BILAS, A. Using transparent compression to improve ssd-based
i/o caches. In Proceedings of the 5th European Conference on Computer
Systems (New York, NY, USA, 2010), EuroSys ’10, ACM, pp. 1–14.

[24] MAKATOS, T., KLONATOS, Y., MARAZAKIS, M., FLOURIS, M. D.,
AND BILAS, A. Zbd: Using transparent compression at the block level
to increase storage space efficiency. In 2010 International Workshop on
Storage Network Architecture and Parallel I/Os (May 2010), pp. 61–70.

[25] MICRON INC. MT29F384G08EBHBBJ4 Datasheet. https://www.
micron.com/products/nand-flash/tlc-nand/384Gb#/, 2017.

[26] PARK, Y., AND S. KIM, J. zftl: power-efficient data compression support
for nand flash-based consumer electronics devices. IEEE Transactions
on Consumer Electronics 57, 3 (August 2011), 1148–1156.

[27] RUSSINOVICH, M., AND SOLOMON, D. A. Windows Internals: Includ-
ing Windows Server 2008 and Windows Vista, Fifth Edition, 5th ed.
Microsoft Press, 2009.

[28] SEO, B. K., MAENG, S., LEE, J., AND SEO, E. Draco: A deduplicating
ftl for tangible extra capacity. IEEE Computer Architecture Letters 14,
2 (July 2015), 123–126.

[29] TARASOV, V., ZADOK, E., AND SHEPLER, S. Filebench: A flexible
framework for file system benchmarking. ;login: The USENIX Magazine
41, 1 (March 2016), 6–12.

[30] TSENG, H.-W., ZHAO, Q., ZHOU, Y., GAHAGAN, M., AND SWANSON,
S. Morpheus: Creating application objects efficiently for heterogeneous
computing. In 43rd International Symposium on Computer Architecture
(2016), ISCA 2016.

[31] WOODHOUSE, D. JFFS: the journaling flash file system. In Proceedings
of Ottawa Linux Symposium (2001), OLS.

[32] WU, G., AND HE, X. Delta-ftl: Improving ssd lifetime via exploiting
content locality. In Proceedings of the 7th ACM European Conference
on Computer Systems (New York, NY, USA, 2012), EuroSys ’12, ACM,
pp. 253–266.

[33] YIM, K. S., BAHN, H., AND KOH, K. A flash compression layer for
smartmedia card systems. IEEE Trans. on Consum. Electron. 50, 1 (Feb.
2004), 192–197.

[34] ZIV, J., AND LEMPEL, A. A universal algorithm for sequential data
compression. IEEE Transactions on Information Theory 23, 3 (May
1977), 337–343.

[35] ZUCK, A., TOLEDO, S., SOTNIKOV, D., AND HARNIK, D. Compres-
sion and ssds: Where and how? In 2nd Workshop on Interactions
of NVM/Flash with Operating Systems and Workloads (INFLOW 14)
(Broomfield, CO, 2014), USENIX Association.

42

