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Abstract

One way to interpret neural model predic-
tions is to highlight the most important in-
put features—for example, a heatmap visu-
alization over the words in an input sen-
tence. In existing interpretation methods for
NLP, a word’s importance is determined by
either input perturbation—measuring the de-
crease in model confidence when that word is
removed—or by the gradient with respect to
that word. To understand the limitations of
these methods, we use input reduction, which
iteratively removes the least important word
from the input. This exposes pathological
behaviors of neural models: the remaining
words appear nonsensical to humans and do
not match the words interpretation methods
deem important. As we confirm with human
experiments, the reduced examples lack infor-
mation to support the prediction of any la-
bel, but models still make the same predic-
tions with high confidence. To explain these
counterintuitive results, we draw connections
to adversarial examples and confidence cali-
bration: pathological behaviors reveal difficul-
ties in interpreting neural models trained with
maximum likelihood. To mitigate their defi-
ciencies, we fine-tune the models by encourag-
ing high entropy outputs on reduced examples.
Fine-tuned models become more interpretable
under input reduction without accuracy loss on
regular examples.

1 Introduction

Many interpretation methods for neural networks
explain the model’s prediction as a counterfactual:
how does the prediction change when the input is
modified? Adversarial examples (Szegedy et al.,
2014; Goodfellow et al., 2015) highlight the insta-
bility of neural network predictions by showing
how small perturbations to the input dramatically
change the output.

SQUAD
Context In 1899, John Jacob Astor IV invested

$100,000 for Tesla to further develop
and produce a new lighting system. In-
stead, Tesla used the money to fund his
Colorado Springs experiments.

Original What did Tesla spend Astor’s money on ?
Reduced did
Confidence 0.78 → 0.91

Figure 1: SQUAD example from the validation set.
Given the original Context, the model makes the same
correct prediction (“Colorado Springs experiments”)
on the Reduced question as the Original, with even
higher confidence. For humans, the reduced question,
“did”, is nonsensical.

A common, non-adversarial form of model in-
terpretation is feature attribution: features that are
crucial for predictions are highlighted in a heatmap.
One can measure a feature’s importance by input
perturbation. Given an input for text classification,
a word’s importance can be measured by the dif-
ference in model confidence before and after that
word is removed from the input—the word is im-
portant if confidence decreases significantly. This
is the leave-one-out method (Li et al., 2016b). Gra-
dients can also reveal feature importance: a feature
influences predictions if its gradient is a large pos-
itive value. Both perturbation and gradient-based
methods can generate heatmaps, implying that the
model’s prediction is highly influenced by the high-
lighted, important words.

Instead, we study how the model’s prediction
is influenced by unimportant words. We use in-
put reduction, iteratively removing unimportant
words from the input while maintaining the model’s
prediction. Intuitively, the words remaining after
input reduction should be important for prediction.
Moreover, the words should match the leave-one-
out method’s selections, which closely align with



human perception (Li et al., 2016b; Murdoch et al.,
2018). However, rather than providing explana-
tions of the original prediction, our reduced exam-
ples more closely resemble adversarial examples.
The reduced input is meaningless to a human but
retains the same model prediction with high confi-
dence (Figure 1). Gradient-based input reduction
exposes pathological model behaviors that contra-
dict what one expects based on existing interpreta-
tion methods.

In Section 2, we construct these counterintu-
itive examples by augmenting input reduction with
beam search and experiment with three tasks:
SQUAD (Rajpurkar et al., 2016) for reading com-
prehension, SNLI (Bowman et al., 2015) for tex-
tual entailment, and VQA (Antol et al., 2015) for
visual question answering. Input reduction with
beam search consistently reduces the input sen-
tence to very short lengths—often only one or
two words—without lowering model confidence
on its original prediction. The reduced examples
appear nonsensical to humans, which we verify
with crowdsourced experiments. In Section 3, we
draw connections to adversarial examples and con-
fidence calibration; we explain why the observed
pathologies are a consequence of the overconfi-
dence of neural models. This elucidates limitations
of interpretation methods that rely on model con-
fidence. In Section 4, we encourage high model
uncertainty on reduced examples with entropy reg-
ularization. The pathological model behavior under
input reduction is mitigated, leading to more rea-
sonable reduced examples.

2 Input Reduction

To explain model predictions using a set of impor-
tant words, we must first define importance. Af-
ter defining input perturbation and gradient-based
approximation, we describe input reduction with
these importance metrics. Input reduction drasti-
cally shortens inputs without causing the model to
change its prediction or significantly decrease its
confidence. Crowdsourced experiments confirm
that reduced examples appear nonsensical to hu-
mans: input reduction uncovers pathological model
behaviors.

2.1 Importance from Input Gradient

Ribeiro et al. (2016) and Li et al. (2016b) define im-
portance by seeing how confidence changes when
a feature is removed: if removing a feature drasti-

cally changes a prediction, it must have been im-
portant. A natural approximation is to use the gra-
dient (Baehrens et al., 2010; Simonyan et al., 2014).
We formally define these importance metrics in nat-
ural language contexts and introduce the efficient
gradient-based approximation. For each word in
an input sentence, we measure its importance by
the change in the confidence of the original predic-
tion when we remove that word from the sentence.
We switch the sign so that when the confidence
decreases, the importance value is positive.

Formally, let x = ⟨x1, x2, . . . xn⟩ denote the
input sentence, f(y |x) the predicted probability
of label y, and y = argmaxy′ f(y

′ |x) the original
predicted label. The importance is then

g(xi | x) = f(y |x)− f(y |x−i). (1)

To calculate the importance of each word in a sen-
tence with n words, we need n forward passes of
the model, each time with one of the words left
out. This is highly inefficient, especially for longer
sentences. Instead, we approximate the importance
value with the input gradient. For each word in the
sentence, we calculate the dot product of its word
embedding and the gradient of the output with re-
spect to continuous vector that represents the word:
the embedding. The importance of n words can
thus be computed with a single forward-backward
pass. This gradient approximation has been used
for various interpretation methods for natural lan-
guage classification models (Li et al., 2016a; Arras
et al., 2016); see Ebrahimi et al. (2017) for further
details on the derivation. We use this approxima-
tion in all our experiments as it selects the same
words for removal as an exhaustive search (no ap-
proximation).

2.2 Removing Unimportant Words

Instead of looking at the words with high impor-
tance values—what interpretation methods com-
monly do—we take a complementary approach and
study how the model behaves when the supposedly
unimportant words are removed. Intuitively, the im-
portant words should remain after the unimportant
ones are removed.

Our input reduction process iteratively removes
the unimportant words. At each step, we remove
the word with the lowest importance value until the
model changes its prediction. We experiment with
three popular datasets: SQUAD (Rajpurkar et al.,
2016) for reading comprehension, SNLI (Bowman



et al., 2015) for textual entailment, and VQA (An-
tol et al., 2015) for visual question answering. We
describe each of these tasks and the model we use
below, providing full details in the Supplement.

In SQUAD, each example is a context paragraph
and a question. The task is to predict a span in
the paragraph as the answer. We reduce only the
question while keeping the context paragraph un-
changed. The model we use is the DRQA Docu-
ment Reader (Chen et al., 2017).

In SNLI, each example consists of two sen-
tences: a premise and a hypothesis. The task is to
predict one of three relationships: entailment, neu-
tral, or contradiction. We reduce only the hypoth-
esis while keeping the premise unchanged. The
model we use is Bilateral Multi-Perspective Match-
ing (BIMPM) (Wang et al., 2017).

In VQA, each example consists of an image
and a natural language question. We reduce only
the question while keeping the image unchanged.
The model we use is Show, Ask, Attend, and An-
swer (Kazemi and Elqursh, 2017).

During the iterative reduction process, we ensure
that the prediction does not change (exact span for
SQUAD); consequently, the model accuracy on
the reduced examples is identical to the original.
The predicted label is used for input reduction and
the ground-truth is never revealed. We use the
validation set for all three tasks.

Most reduced inputs are nonsensical to humans
(Figure 2) as they lack information for any reason-
able human prediction. However, models make
confident predictions, at times even more confident
than the original.

To find the shortest possible reduced inputs (po-
tentially the most meaningless), we relax the re-
quirement of removing only the least important
word and augment input reduction with beam
search. We limit the removal to the k least im-
portant words, where k is the beam size, and de-
crease the beam size as the remaining input is short-
ened.1 We empirically select beam size five as it
produces comparable results to larger beam sizes
with reasonable computation cost. The requirement
of maintaining model prediction is unchanged.

With beam search, input reduction finds ex-
tremely short reduced examples with little to no de-
crease in the model’s confidence on its original pre-
dictions. Figure 3 compares the length of input sen-

1We set beam size to max(1,min(k, L− 3)) where k is
maximum beam size and L is the current length of the input
sentence.

SNLI
Premise Well dressed man and woman dancing in

the street
Original Two man is dancing on the street
Reduced dancing
Answer Contradiction
Confidence 0.977 → 0.706
VQA

Original What color is the flower ?
Reduced flower ?
Answer yellow
Confidence 0.827 → 0.819

Figure 2: Examples of original and reduced inputs
where the models predict the same Answer. Reduced
shows the input after reduction. We remove words from
the hypothesis for SNLI, questions for SQUAD and
VQA. Given the nonsensical reduced inputs, humans
would not be able to provide the answer with high con-
fidence, yet, the neural models do.

tences before and after the reduction. For all three
tasks, we can often reduce the sentence to only one
word. Figure 4 compares the model’s confidence
on original and reduced inputs. On SQUAD and
SNLI the confidence decreases slightly, and on
VQA the confidence even increases.

2.3 Humans Confused by Reduced Inputs

On the reduced examples, the models retain their
original predictions despite short input lengths. The
following experiments examine whether these pre-
dictions are justified or pathological, based on how
humans react to the reduced inputs.

For each task, we sample 200 examples that are
correctly classified by the model and generate their
reduced examples. In the first setting, we com-
pare the human accuracy on original and reduced
examples. We recruit two groups of crowd work-
ers and task them with textual entailment, reading
comprehension, or visual question answering. We
show one group the original inputs and the other
the reduced. Humans are no longer able to give the
correct answer, showing a significant accuracy loss
on all three tasks (compare Original and Reduced
in Table 1).

The second setting examines how random the
reduced examples appear to humans. For each
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Figure 3: Distribution of input sentence length before and after reduction. For all three tasks, the input is often
reduced to one or two words without changing the model’s prediction.
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Figure 4: Density distribution of model confidence on
reduced inputs is similar to the original confidence. In
SQUAD, we predict the beginning and the end of the
answer span, so we show the confidence for both.

of the original examples, we generate a version
where words are randomly removed until the length
matches the one generated by input reduction. We
present the original example along with the two re-
duced examples and ask crowd workers their pref-
erence between the two reduced ones. The workers’
choice is almost fifty-fifty (the vs. Random in Ta-
ble 1): the reduced examples appear almost random
to humans.

These results leave us with two puzzles: why
are the models highly confident on the nonsensical
reduced examples? And why, when the leave-one-
out method selects important words that appear
reasonable to humans, the input reduction process
selects ones that are nonsensical?

Dataset Original Reduced vs. Random

SQUAD 80.58 31.72 53.70
SNLI-E 76.40 27.66 42.31
SNLI-N 55.40 52.66 50.64
SNLI-C 76.20 60.60 49.87
VQA 76.11 40.60 61.60

Table 1: Human accuracy on Reduced examples drops
significantly compared to the Original examples, how-
ever, model predictions are identical. The reduced ex-
amples also appear random to humans—they do not
prefer them over random inputs (vs. Random). For
SQUAD, accuracy is reported using F1 scores, other
numbers are percentages. For SNLI, we report results
on the three classes separately: entailment (-E), neutral
(-N), and contradiction (-C).

3 Making Sense of Reduced Inputs

Having established the incongruity of our definition
of importance vis-à-vis human judgements, we now
investigate possible explanations for these results.
We explain why model confidence can empower
methods such as leave-one-out to generate reason-
able interpretations but also lead to pathologies
under input reduction. We attribute these results to
two issues of neural models.

3.1 Model Overconfidence
Neural models are overconfident in their predic-
tions (Guo et al., 2017). One explanation for over-
confidence is overfitting: the model overfits the
negative log-likelihood loss by learning to output
low-entropy distributions over classes. Neural mod-
els are also overconfident on examples outside the
training data distribution. As Goodfellow et al.
(2015) observe for image classification, samples
from pure noise can sometimes trigger highly confi-
dent predictions. These so-called rubbish examples
are degenerate inputs that a human would trivially



SQUAD
Context: The Panthers used the San Jose State practice facility and stayed
at the San Jose Marriott. The Broncos practiced at Stanford University and
stayed at the Santa Clara Marriott.

Question:
(0.90, 0.89) Where did the Broncos practice for the Super Bowl ?
(0.92, 0.88) Where did the practice for the Super Bowl ?
(0.91, 0.88) Where did practice for the Super Bowl ?
(0.92, 0.89) Where did practice the Super Bowl ?
(0.94, 0.90) Where did practice the Super ?
(0.93, 0.90) Where did practice Super ?
(0.40, 0.50) did practice Super ?

Figure 5: A reduction path for a SQUAD example. The
model prediction is always correct and its confidence
stays high (shown on the left in parentheses) through-
out the reduction. Each line shows the input at that step
with an underline indicating the word to remove next.
The question becomes unanswerable immediately after
“Broncos” is removed in the first step. However, in the
context of the original question, “Broncos” the input
gradient considers it the least important word.

classify as not belonging to any class but for which
the model predicts with high confidence. Goodfel-
low et al. (2015) argue that the rubbish examples
exist for the same reason that adversarial examples
do: the surprising linear nature of neural models.
In short, the confidence of a neural model is not a
robust estimate of its prediction uncertainty.

Our reduced inputs satisfy the definition of rub-
bish examples: humans have a hard time making
predictions based on the reduced inputs (Table 1),
but models make predictions with high confidence
(Figure 4). Starting from a valid example, input
reduction transforms it into a rubbish example.

The nonsensical, almost random results are best
explained by looking at a complete reduction path
(Figure 5). In this example, the transition from
valid to rubbish happens immediately after the first
step: following the removal of “Broncos”, humans
can no longer determine which team the question is
asking about, but model confidence remains high.
Not being able to lower its confidence on rubbish
examples—as it is not trained to do so—the model
neglects “Broncos” and eventually the process gen-
erates nonsensical results.

In this example, the leave-one-out method will
not highlight “Broncos”. However, this is not a fail-
ure of the interpretation method but of the model it-
self. The model assigns a low importance to “Bron-
cos” in the first step, causing it to be removed—
leave-one-out would be able to expose this by not
highlighting “Broncos”. However, in cases where
a similar issue only appears after a few unimpor-

SQUAD
Context: QuickBooks sponsored a “Small Business Big Game” contest,
in which Death Wish Coffee had a 30-second commercial aired free of
charge courtesy of QuickBooks. Death Wish Coffee beat out nine other
contenders from across the United States for the free advertisement.

Question:
What company won free advertisement due to QuickBooks contest ?
What company won free advertisement due to QuickBooks ?
What company won free advertisement due to ?
What company won free due to ?
What won free due to ?
What won due to ?
What won due to
What won due
What won
What

Figure 6: Heatmap generated with leave-one-out shifts
drastically despite only removing the least important
word (underlined) at each step. For instance, “adver-
tisement”, is the most important word in step two but
becomes the least important in step three.

tant words are removed, leave-one-out would fail
to expose the unreasonable model behavior.

Input reduction can expose deeper issues of
model overconfidence and can stress test a model’s
uncertainty estimation and interpretability.

3.2 Second-order Sensitivity

Thus far, we have seen that a neural model’s output
changes wildly with small changes in its input. We
call this first-order sensitivity, because interpreta-
tion based on input gradient is a first-order Taylor
expansion of the model near the input (Simonyan
et al., 2014). However, the interpretation (e.g.,
which words are important) also shifts drastically
with small input changes (Figure 6). We call this
second-order sensitivity.

The shifting heatmap suggests a mismatch be-
tween the model’s first- and second-order sensi-
tivities. The heatmap shifts when, with respect to
the removed word, the model has low first-order
sensitivity but high second-order sensitivity.

Similar issues complicate comparable interpreta-
tion methods for image classification models. For
example, Ghorbani et al. (2017) modify image in-
puts so the highlighted features in the interpretation
change while maintaining the same prediction. To
achieve this, they iteratively modify the input to
maximize changes in the distribution of feature im-
portance. In contrast, our shifting heatmap occurs
by only removing the least impactful features with-
out a targeted optimization. They speculate that the
steepest gradient direction for the first- and second-
order sensitivity values are generally orthogonal.



Loosely speaking, the shifting heatmap suggests
that the direction of the smallest gradient value
can sometimes align with very steep changes in
second-order sensitivity.

When explaining individual model predictions,
the heatmap suggests that the prediction is made
based on a weighted combination of words, as
in a linear model, which is not true unless the
model is indeed taking a weighted sum such as
in a DAN (Iyyer et al., 2015). When the model
composes representations by a non-linear combina-
tion of words, a linear interpretation oblivious to
second-order sensitivity can be misleading.

4 Mitigating Model Pathologies

The previous section explains the observed patholo-
gies from the perspective of overconfidence: mod-
els are too certain on rubbish examples when they
should not make any prediction. Human experi-
ments (Section 2.3) confirm that reduced examples
fit the definition of rubbish examples. Hence, a
natural way to mitigate pathologies is maximizing
model uncertainty on the reduced examples.

4.1 Regularization on Reduced Inputs
To maximize model uncertainty on reduced exam-
ples, we use the entropy of the output distribu-
tion as an objective. Given a model f trained on
a dataset (X ,Y), we generate reduced examples
using input reduction for all training examples X .
Beam search often yields multiple reduced versions
with the same minimum length for each input x,
and we collect all of these versions together to form
X̃ as the “negative” example set.

Let H (·) denote the entropy and f(y |x) the
probability of the model predicting y given x. We
fine-tune a model to maximize log-likelihood on
regular examples and entropy on reduced examples:

∑
(x,y)

log(f(y |x)) + λ
∑
x̃∈X̃

H (f(y | x̃)) , (2)

where hyperparameter λ trades-off between the two
terms. Similar entropy regularization is used by
Pereyra et al. (2017), but not in combination with
input reduction; their entropy term is calculated on
regular examples rather than reduced examples.

4.2 Regularization Mitigates Pathologies
On regular examples, entropy regularization does
no harm to model accuracy, with a slight increase
for SQUAD (Accuracy in Table 2).

Accuracy Reduced length

Before After Before After

SQUAD 77.41 78.03 2.27 4.97
SNLI 85.71 85.72 1.50 2.20
VQA 61.61 61.54 2.30 2.87

Table 2: Model Accuracy on regular validation exam-
ples remains largely unchanged after fine-tuning. How-
ever, the length of the reduced examples (Reduced
length) increases on all three tasks, making them less
likely to appear nonsensical to humans.

After entropy regularization, input reduction pro-
duces more reasonable reduced inputs (Figure 7).
In the SQUAD example from Figure 1, the re-
duced question changed from “did” to “spend Astor
money on ?” after fine-tuning. The average length
of reduced examples also increases across all tasks
(Reduced length in Table 2). To verify that model
overconfidence is indeed mitigated—that the re-
duced examples are less “rubbish” compared to
before fine-tuning—we repeat the human experi-
ments from Section 2.3.

Human accuracy increases across all three tasks
(Table 3). We also repeat the vs. Random exper-
iment: we re-generate the random examples to
match the lengths of the new reduced examples
from input reduction, and find humans now prefer
the reduced examples to random ones. The increase
in both human accuracy and preference suggests
that the reduced examples are more reasonable;
model pathologies have been mitigated.

This is promising, but do we need input reduc-
tion to reduce overconfidence? To provide a base-
line, we fine-tune models using randomly reduced
inputs (with the same lengths as input reduction).
This baseline improves neither model accuracy on
nor interpretability (i.e., the reduced examples are
just as short). Input reduction provides negative
examples that curb overconfidence.

5 Discussion

Rubbish examples have been studied in im-
ages (Goodfellow et al., 2015; Nguyen et al., 2015),
but to our knowledge not for NLP. Our input re-
duction gradually transforms a valid input into a
rubbish example. We can often determine which
word’s removal is the tipping point—for example,
removing “Broncos” in Figure 5. These rubbish ex-
amples are interesting, as they are also adversarial:
they resemble valid examples. In contrast, image



SQUAD
Context In 1899, John Jacob Astor IV invested

$100,000 for Tesla to further develop
and produce a new lighting system. In-
stead, Tesla used the money to fund his
Colorado Springs experiments.

Original What did Tesla spend Astor’s money on ?
Answer Colorado Springs experiments
Before did
After spend Astor money on ?
Confidence 0.78 → 0.91 → 0.52
SNLI
Premise Well dressed man and woman dancing in

the street
Original Two man is dancing on the street
Answer Contradiction
Before dancing
After two man dancing
Confidence 0.977 → 0.706 → 0.717
VQA
Original What color is the flower ?
Answer yellow
Before flower ?
After What color is flower ?
Confidence 0.847 → 0.918 → 0.745

Figure 7: SQUAD example from Figure 1, SNLI and
VQA (image omitted) examples from Figure 2. We ap-
ply input reduction to models both Before and After en-
tropy regularization. The models still predict the same
Answer, but the reduced examples after fine-tuning ap-
pear more reasonable to humans.

rubbish examples generated from noise lie outside
the training data distribution and resemble static.

The robustness of NLP models has been studied
extensively (Papernot et al., 2016; Jia and Liang,
2017; Iyyer et al., 2018; Ribeiro et al., 2018), and
most studies define adversarial examples similar
to the image domain: small perturbations to the
input lead to large changes in the output. Hot-
Flip (Ebrahimi et al., 2017) uses a gradient-based
approach, similar to image adversarial examples,
to flip the model prediction by perturbing a few
characters or words. Our work and Belinkov and
Bisk (2018) both identify cases where noisy user
inputs become adversarial by accident: common
misspellings break neural machine translation mod-
els; we show that incomplete user input can lead to
unreasonably high model confidence.

Other failures of interpretation methods have
been explored in the image domain. The sensi-
tivity issue of gradient-based interpretation meth-
ods, similar to our shifting heatmaps, are observed
by Ghorbani et al. (2017) and Kindermans et al.
(2017). They show that various forms of input
perturbation—from adversarial changes to simple

Accuracy vs. Random

Before After Before After

SQUAD 31.72 51.61 53.70 62.75
SNLI-E 27.66 32.37 42.31 50.62
SNLI-N 52.66 50.50 50.64 58.94
SNLI-C 60.60 63.90 49.87 56.92
VQA 40.60 51.85 61.60 61.88

Table 3: Human Accuracy increases after fine-tuning
the models. Humans also prefer gradient-based re-
duced examples over randomly reduced ones, indicat-
ing that the reduced examples are more meaningful to
humans after regularization.

constant shifts in the image input—cause signifi-
cant changes in the interpretation. Ghorbani et al.
(2017) make a similar observation about second-
order sensitivity, that “the fragility of interpretation
is orthogonal to fragility of the prediction”.

Previous work studies biases in the annotation
process that lead to datasets easier than desired
or expected which eventually induce pathological
models. We attribute our observed pathologies
primarily to the lack of accurate uncertainty es-
timates in neural models trained with maximum
likelihood. SNLI hypotheses contain artifacts that
allow training a model without the premises (Guru-
rangan et al., 2018); we apply input reduction at test
time to the hypothesis. Similarly, VQA images are
surprisingly unimportant for training a model; we
reduce the question. The recent SQUAD 2.0 (Ra-
jpurkar et al., 2018) augments the original reading
comprehension task with an uncertainty modeling
requirement, the goal being to make the task more
realistic and challenging. Question answering tasks
such as Quizbowl combine knowing what to answer
with when there is sufficient information to answer
for the agent or an opponent (He et al., 2016).

Section 3.1 explains the pathologies from the
overconfidence perspective. One explanation for
overconfidence is overfitting: Guo et al. (2017)
show that, late in maximum likelihood training, the
model learns to minimize loss by outputting low-
entropy distributions without improving validation
accuracy. To examine if overfitting can explain the
input reduction results, we run input reduction us-
ing DRQA model checkpoints from every training
epoch. Input reduction still achieves similar re-
sults on earlier checkpoints, suggesting that better
convergence in maximum likelihood training can-



not fix the issues by itself—we need new training
objectives with uncertainty estimation in mind.

5.1 Methods for Mitigating Pathologies
We regularize the model using input reduction’s
reduced examples and improve its interpretability.
This resembles adversarial training (Goodfellow
et al., 2015), where adversarial examples are added
to the training set to improve model robustness.
The objectives are different: entropy regularization
encourages high uncertainty on rubbish examples,
while adversarial training makes the model less
sensitive to adversarial perturbations.

Pereyra et al. (2017) apply entropy regulariza-
tion on regular examples from the start of train-
ing to improve model generalization. A similar
method is label smoothing (Szegedy et al., 2016).
In comparison, we fine-tune a model with entropy
regularization on the reduced examples for better
uncertainty estimates and interpretations.

To mitigate overconfidence, Guo et al. (2017)
use post-hoc fine-tuning a model’s confidence with
Platt scaling. This method adjusts the softmax func-
tion’s temperature parameter using a small held-out
dataset to align confidence with accuracy. However,
because the output is calibrated using the entire con-
fidence distribution, not individual values, this does
not reduce overconfidence on specific inputs, such
as the reduced examples.

5.2 Generalizability of Findings
To highlight the erratic model predictions on short
examples and provide a more intuitive demonstra-
tion, we present paired-input tasks. On these tasks,
the short lengths of reduced questions and hypothe-
ses obviously contradict the necessary number of
words for a human prediction (further supported
by our human studies). We also apply input re-
duction to single-input tasks including sentiment
analysis (Maas et al., 2011) and Quizbowl (Boyd-
Graber et al., 2012), achieving similar results.

Interestingly, the reduced examples transfer
to other architectures. In particular, when
we feed fifty reduced SNLI inputs from each
class—generated with the BIMPM model (Wang
et al., 2017)—through the Decomposable Attention
Model (Parikh et al., 2016),2 the same prediction
is triggered 81.3% of the time.

2http://demo.allennlp.org/
textual-entailment

6 Conclusion

We introduce input reduction, a process that iter-
atively removes unimportant input words while
maintaining a model’s prediction. Combined with
gradient-based importance estimates, we expose
pathological behaviors of neural models. Without
lowering model confidence original predictions, an
input sentence can be reduced to the point where
it appears nonsensical, often consisting of one or
two words. Humans cannot understand the reduced
examples, but neural models maintain their original
predictions.

We explain these pathologies with known issues
of neural models: overconfidence and sensitivity
to small input changes. Inaccurate uncertainty esti-
mates cause the the nonsensical reduced examples:
the model is cannot lower its confidence on ill-
formed inputs. The second-order sensitivity also
explains why gradient-based interpretation meth-
ods contradict human expectations: a small change
in the input can cause a minor change in the pre-
diction but a large change in the interpretation. In-
put reduction’s many small perturbations—a stress
test—can expose deeper issues of model overconfi-
dence and oversensitivity that other methods can-
not.

To properly interpret neural models, it is impor-
tant to understand their fundamental characteristics:
the nature of their decision surfaces, robustness
against adversaries, and limitations of their train-
ing objectives. We explain fundamental difficulties
of interpretation due to pathologies in neural mod-
els trained with maximum likelihood. Our work
suggests several future directions to improve inter-
pretability: more thorough evaluation of interpre-
tation methods, better uncertainty and confidence
estimates, and interpretation beyond bag-of-word
heatmap.

More practically, NLP systems are often de-
signed as pipelines: speech recognition or machine
translation feeds into a downstream classification
task. The classification is typically trained on un-
corrupted English text. Input reduction suggests
that both the outputs and confidences of such naı̈ve
pipelines should be treated with greater suspicion.

http://demo.allennlp.org/textual-entailment
http://demo.allennlp.org/textual-entailment
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