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Abstract—The bulk of the produced electricity powers build-
ings; 120 million homes and 5 million commercial buildings
dominate the U.S. energy consumption. Creative design of
Buildings-to-Grid (BtG) integration methods is an essential
component of smart cities. Buildings’ occupancy behavior is
a crucial component of successful BtG integration, as buildings
become more sophisticated and people spend more time in of-
fices and cities—making occupancy behavior one of the leading
factors in energy consumption and thus largely impacting power
grid dynamics. In this paper, we study the impact of integrating
occupancy-based building dynamics and constraints with power
grid transients, while focusing on frequency regulation. First,
dynamics of building clusters and building-integrated power
networks are presented—both operating at different time-scales.
Second, occupancy-based building constraints are discussed.
Third, the time-scale discrepancies are investigated, and a model
predictive control-based algorithm that formulates occupancy-
based BtG integration is given. Finally, case studies demonstrate
the impact of the proposed framework on energy savings and
significant frequency regulation.

I. INTRODUCTION AND PAPER CONTRIBUTION

Smart cities consist of sustainable and resilient infras-
tructures, where buildings are a major constituent. Building
energy consumption contributes to more than 70% of elec-
tricity usage—profoundly impacting power grid’s operation.
Futuristic cities equipped with optimized building designs
have the auspicious potential to play a pivotal role in reducing
global energy consumption while maintaining stable electric-
grid operations. As buildings are physically connected to
the electric power grid, it is natural to understand their
coupling and develop a framework for Buildings-to-Grid
(BtG) integration. To understand the role of BtG integration,
the authors in [1] provide a list of relevant research questions
for successful BtG integration.

Various studies address a breadth of computational and
experimental aspects of BtG integration. An overview of
demand response potential from smart buildings is pre-
sented in [2]. An experimental high-level architecture that
enables smart buildings is proposed in [3] with a focus on
heating, ventilating, and air conditioning (HVAC) systems
and grid integration. A bi-level optimization framework for
commercial buildings integrated with a distribution grid is
proposed in [4]. Detailed dynamic models for buildings with
multiple zones (upper level) and an operational model for
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the distribution grid with voltage/current balance equations
(lower level) are included; nonetheless, a transient model of
the power grid, capturing frequency deviation, is missing.

The regulation service provision by smart buildings is
investigated in [5]. Other BtG integration studies have shown
that grid-aware building HVAC controls can provide fre-
quency regulation or other ancillary services to the grid
[6]-[10], largely without sacrificing the occupants’ comfort.
The load-shifting capability of buildings has also been ex-
plored [11]. Explicit account of the grid dynamics and power
flows is on the other hand missing from the previously
mentioned works.

Occupancy behavior in buildings is becoming an important
topic of research. Building systems become more sophis-
ticated and people spend more time in buildings, making
occupancy behavior one of the leading influencers of energy
consumption in buildings [12] with large impacts on grid
dynamical operation. This is due to the following reasons. (a)
Significant interactions between occupants and building sys-
tems: The occupants expectation of comfort or satisfaction in
the built environment drives the occupant to perform various
controls, such as adjusting the thermostat in spaces, opening
windows for ventilation [13], turning on lights [14], pulling
down the window blinds [15], [16], and consuming domestic
hot water [17]. (b) Strong coupling between occupant behav-
ior and building performance: Various occupancy behaviors
have different impacts on built environment (e.g., indoor
temperature, humidity level, lighting, CO2, etc.) and energy
end use [18]. In addition, prior studies have demonstrated
that significant energy savings could be achieved through
behavior driven predictive building controls [19]-[21].

To model building dynamics, a typical thermal resistance
and capacitance circuit model can be used to represent
heat transfer and thermodynamical properties of the building
envelope—widely used in building climate control studies
[22]-[25]. Given these models for building dynamics, various
control routines have been developed for building controls.
Currently, many commercial buildings use PID controllers
for HVAC systems [26]. However, model predictive control
(MPC) has proved to be advantageous when applied to
building dynamics [27]-[30] with the majority of works
showing significant energy savings given forecast and para-
metric uncertainty.

Unfortunately, none of the recent studies produces an
occupancy-based formulation or routine that buildings and
power grids operators can simultaneously utilize to optimize
their performance explicitly coupling power grid and building
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control actions and operational decisions. The objective of
this paper is to generate occupancy-based, local control ac-
tions/signals for buildings and power generators such that the
overall performance is optimized in terms of stability, energy
savings, and other socio-economic metrics. Specifically, we
focus on frequency regulation and energy savings as the
main high-level objectives. An extended version of this work
without the occupancy-based modeling and constraints is
presented in our recent work [31].

The paper is organized as follows. In Sections II, III,
and IV, we present the dynamics of building clusters, oc-
cupancy building model, and the buildings-integrated power
network. Optimal power flow is also integrated in these mod-
els. In Section V, we propose our approach of occupancy-
based BtG integration optimization problem. A customized
algorithm is also discussed to seamlessly include the optimal
power flow into the integrated framework. Case studies with
realistic building parameters are given in Section VL.

II. BUILDING CLUSTERS DYNAMICS

In this paper, we use a typical thermal resistance and
capacitance (RC) network model to represent heat transfer
and thermodynamics of building envelope, which has been
widely used and accepted in building control studies [22]—
[25]. This model is sufficient for a high-level BtG integration
study. A typical three resistant and two capacitance (3R-
2C) model is shown in [24]. The building dynamics with
temperature states Ty, and T,one can be written as:

Tamb - Twall Tzone - Twall Qsol
CR, | CR ' C

r Twall - Tzone T'amb - Tzone Qint + QHVAC
Tzone = + + s
CzoneRl CzoneRwin Czone

where Ryin, Ro, and Ry are physical parameters of building
envelope; C' is a lumped thermal capacity of all walls and
roof; Cyone is the thermal capacity of the zone; Qsol is the
total absorbed solar radiation on the external wall; Qim is the
total internal heat gains from space heat sources such as desk-
top, people, and lights; Tamb, Tyone, and T,y are the outside
ambient, wall, and zone/space temperatures, respectively. The
cooling load can be calculated as QHVAC = pnvacPavac,
where Prvac is the actual power consumed by HVAC sys-
tems and the main optimization variable/setpoint for each
building, and pvac is a constant indicating the performance
of an HVAC system. The objective is to minimize a cost
function of Pyyac while maintaining occupants’ comfort.
Since we aim to understand the impact of buildings’
contribution to frequency regulation and overall energy con-
sumption costs, we present the dynamics of building clusters:

(D

where ny is the total number of buildings in the network;
Xy = [Twall iz—‘zone]—r S Ranyub - [PHVAC] S Rnb7 and
Wi = [Tamb Qsol Qim]T € R are vectors collecting the
state, controllable input, and random uncontrollable input for
all n; buildings. In the absence of communication between
buildings, the state-space matrices Ay, B,,, and B,,, are all
block-diagonal.

Tyan =

xXp = Apxy + By, up + By, wy

III. OCCUPANCY-BASED BUILDING CONSTRAINTS

An occupancy-based building MPC is further developed to
simulate the impacts of occupancy on building demands and
enable deeper energy savings. The ground truth occupancy
information is first simulated based on a simulator from
Lawrence Berkeley National Laboratory (LBNL) [32]. The
LBNL’s simulator generates the number of occupants at the
whole building level based on large scale survey data. Then,
an innovative prediction method, previously developed by au-
thors [33] and specifically designed for building MPC is used
to transfer the occupancy number to binary presence states
and do “real” predictions based on the LBNL’s “ground truth”
simulation results for each rolling MPC. The occupancy
predictions will forecast the lunch break as absence during
certain time periods if the aggregated training data show a
majority of the people leave the offices for lunch. Hence, the
upper bounds of the building states x; will increase during
the lunch breaks. We introduce an occupancy-based slack
relaxation that will be added on the upper bounds of the
building states as follows

o if T(0,) = 0
£(0;) = ¢ max (a,x; ' —x"™) if [(Oy) > 1 2)
0, ifo<I'(0,) <1

where £(0y) is an occupancy-based slack relaxation func-
tion based on binary occupancy predictions, x;'®* is the
upper bound of the building states, and O; = s; is the
predicted binary occupancy state at optimized time step t
in a rolling building MPC. The factor o is a predefined
constraint adjustment threshold for building states. In other
words, ¢ describes how much the building zone temperature
will increase when people are absent. However, function
T’ is defined to avoid impractical settings of the factor o
that will cause infeasible solutions of the building MPCs.
This function is used to avoid infeasible solutions for BtG
integrations and defined as follows

I'(0;) = O; + max(0,x, " — x}*) (3)
t—1

where x;” " is the previous building state, and x;*** is the
upper bound of building states constraints. This empirically
derived relaxation of (2) and (3) is designed to balance
the feasibility of the MPC solver and the savings from the
MPC. Note that the infeasible solutions are usually caused
by the uncertain change of building states constraints based
on the occupancy predictions. Owing to the upper limit on
the cooling power and the building disturbances (i.e., large
solar heat gains or internal heat gains at certain periods),
building states or cooling power may not be able to satisfy
constraints simultaneously for both cooling power and zone
states. We will use the occupancy-based model as constraints
to the overall BtG problem.

IV. BUILDING-INTEGRATED POWER NETWORK:
DyYNAMICS CONNECTION TO OPF

In this section, we present the dynamics of building-
integrated power network and define the main variables
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involved in the BtG integration framework. In addition, we
discuss the connection of BtG integration model with the
optimal power flow (OPF).

A. DAE Dynamics of a Power Network with Building Loads

Let B ={1,...,n} and G = {1,...,n,} denote the
sets of buses and generators in a power network. Also, let
Ni be the neighborhood set of adjacent nodes connected
to the k" bus. Generators are indexed by m € G. The
mechanical input power to the m*™ generator is denoted by
P,,,. Define generator-to-node and building-to-node incidence
matrices I' € R"*"s and IT € R™*™ with entries given by:

o 1
Yk,.m = 0

{ 1
T, = 0

The transients of the A" bus in a power network can be
modeled by the swing equation which relates the rotor angle
& with the angular velocity 4 and angular acceleration & [34].
Define M}, and Dy, as the inertia and damping coefficients
of the generator located k™ bus; if the k™ bus does not have
a generator, then M, = Dy = 0. The swing equation for the
k™ bus (Vk € B) can be written as:

Mk5k+Dk5k = 'Wc}um_PLk_ Z bk]‘ sin(ék.—éj). @)
JEN

if the m™" generator is connected to bus k
otherwise,

if the k™ bus is connected to building !
otherwise.

The load at bus k, Pr,, can be written as follows: P, =
D;Sk + Pgr, + Y10 7rk7lPéfc)ig, where D;ék denotes the
frequency-sensitive uncontrollable load at bus k; Pgy, de-
notes the frequency-insensitive uncontrollable base-loads;
DTk lP]:()f()i defines the load from buildings indexed by [ and
attached to bus k that are Fartlcnpating in regulation, defined
as Péleg P(VAC + P where | € {1,2,...,np} is
index of buildings. PI({v Ac denotes the portion of controllable
power consumption of building I, while PIEHLC represents the
uncontrollable miscellaneous power consumption of building
. We can now rewrite (4) as:

misc’

Mydy, + Doy, = — Z by sin (6 — 6;)
JENK
+’Yk um - D;gék - PBLk

*Z”kl (PI({VACJr

In (5), P,, for generator bus m can be written as P,, =
P, + AP,,, where P,, is a solution of an optimal power
flow problem—computed every 15 minutes—and AP, is
the deviation from the setpoint P,,, which will be furnished
by the proposed BtG integration framework.

Let 0, = wy, where w, = wi™® — wy, where wi™® is
the actual frequency of the kth bus (wq is the synchronous
frequency). The resulting state-space model is a nonlinear

descriptor system (or a DAE), and can be written as:

pH ) .

®)

Egkg = Ang + Q(&) + Auz, up + Bug Uy + ng Wy, (6)

where X, = [01 ... 6y w1 ... wy] = [0 w']" is the
state of the grid; ®(§) is the vectorized nonlinear power
flow equations in (5); up = [P{0ac ... PR )T is the

control input vector of the buildings, as defined in (1), and

ug:ﬁg+Aug:[P1+AP1 ...Png+AP7Lg]TiSthe
power network’s control variable; w, = [wg; , wl. |7 =
[PBL, Par,, P, P")IT s a random vector

collecting the nodal base loads and miscellaneous building
loads. Load forecasting is a very mature area; in the sequel,
the forecast of w,, denoted by W, is assumed to be available.

B. Connection to the Optimal Power Flow

Recall that u, = u4, + Augy, where 4, is the vector
containing the setpoints for the generators, and Au, is the
real-time deviation from these setpoints that automatically
drives the power grid to stability after load deviations or
disturbances. Typically, the setpoints are computed every
5-15 minutes through solving economic dispatch or OPF
routines [34]. A linearized OPF (LOPF) problem can be
written as:

LOPF: minimize J(Q,) =1 Juqug +b, , g + ¢y (Ta)
Uy= {be}:l 1

subject to G < @, < u (7b)

(T — TI(W, + Winise) — Wer) | 1 =0 (7¢)

‘Lptdf (Fﬁg - H(ub + VAVmisc) - VAVBL) | S Fmax ) (7d)

where J(@,) is a convex cost function that represents the
generators’ cost curves; u; and Wpisc are vectors of building
HVAC and (forecasted) miscellaneous loads; wgy, is the
vector of (forecasted) base loads; vector I'ny, — IT(up +
Wmisc) —WgL, represents the nodal power injections; 1,, € R”
is a vector of all ones; F™#* € R™ is the vector containing
the thermal limits for real power flow on the n; branches
of the network; and Lpigr € R™*™ is a matrix of power
transfer distribution factors [35]. The constraints represent
the safety upper and lower bounds on the generator’s active
power while ensuring the supply-demand balance and the
satisfaction of line flow limits. This formulation is useful in
the next sections.
V. How CAN BUILDINGS IMPACT POWER GRIDS?

In the previous section, we formulate the dynamics of the
buildings-integrated power network. In (6), the presence of u,
exemplifies the control potential that buildings have on power
system operation and control, and hence the BtG integration.
Here, we investigate the discrepancies in time-scales between
the building (1) and power network dynamics (6) and discuss
a formulation of the joint optimal control problem that
addresses the time-scale discrepancies.

A. Addressing the Time-Scales Discrepancy

The formulated dynamics in Sections II and IV clearly
operate in two different time-scales. While grid regulation
problems and mechanical input power variations are often in
seconds, the building dynamics and controls are much slower.
For example, temperatures in buildings change slowly in
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Fig. 1. The figure illustrates hypothetical solutions to a joint optimal control
problem with multiple time-scales for a buildings-integrated power network.
The quantities hp, hg, Tp are the building and grid sampling periods and the
prediction horizon. Note that hy, >> hg and hy/hg = 2z, where z € N,

comparison with frequencies and voltages in power networks.

To overcome this limitation, we assume the following.
Local optimal control laws for buildings are computed at
different time-steps than local optimal control laws for gen-
erators. This approach reflects the physical realities for these
systems, and this consideration can be imposed via con-
straints in the optimal control problem, whose construction is
the objective of this section. Since buildings possess slower
dynamic behavior, we restrict the controls of buildings to be
fixed for the faster time-scale of the power network. Fig. 1
illustrates this idea. Consider a hypothetical network with
two generators and two commercial buildings, making up
a total of six control variables (uy, Uy, Aug). The optimal
deviations from the generators’ controls fluctuate at a higher
rate than the building controls, whereas the set-points for
generators change once for a single prediction horizon as
shown in Fig. 1. Given this integration scheme, and since
hard constraints are to be imposed on the grid and building
dynamics, model predictive control (MPC) becomes the only
viable solution to solve the joint optimal control problem.

B. Discretization of DAEs via Gear’s Method

Another challenge facing BtG integration is the presence
of algebraic equations in (6) emerging from power flows of
load nodes. Here, we present a simple, yet high-fidelity dis-
cretization routine for two dynamical systems with different
time-scales and dynamic algebraic constraints. The routine is
based on Gear’s method [36]. Note that for the discretization
purposes, we use the linearized power flows by assuming that
sin(6i — 6]) = (5,‘ - (SJ

First, we assume that the sampling times for the power
grid [cf. (6)] and building [cf. (1)] dynamics are respectively
hg and hy; note that hy >> h,. The discretized dynamics of

the building-integrated power network can be written as

Xg(kghg) = f4(xg, g, up, wy)
= A, Z a;Bgxg(hg (kg — 1))
i=1

+Bo (Aubub(kghg) + Bugug(k'ghg))
+BoBy, wy(kghg) ()

where Ag = (Eg — thQAg)_17B() = hgﬂOAgyﬁO =
(.Z¢:1 1/i)~" aq = (‘DHTlBO Zj:ij_le) ; k.g is the
time-step for the grid dynamics. This method requires a set
of s initial conditions. Similarly, the discrete form of (1) can
be written as follows:

xp(kphs) = £5(x5, Wy, wo) = Ay Y aixp(hy(kp — 7))
i=1

+B1 (Bu,up(kshy) + Buw, Wi (kohy)),  (9)

where k; is time-step for buildings’ dynamic operation.
Gear’s discretization amounts to a backward Euler-like im-
plicit method. The principal merit of implicit methods is that
they are typically more stable for solving systems with a
larger step size h, while still performing well for systems
with faster time-constants [36]. A simple simulation indeed
shows that Gear’s method returns accurate state-solution for
the building and grid dynamics.

C. OBtG: Occupancy-based Buildings-to-Grid Optimization

The joint optimal control problem, Occupancy-based
Buildings-to-Grid (OBtG), is formulated in (11). The vari-
ables, cost function, and constraints of OBtG are as follows.
T, is the prediction horizon and the formulation above only
shows the MPC for one prediction horizon; ¢ is the initial
starting point of the MPC (note that power grid-MPC has
been used before [37], [38]). Uy = {up(t + hp), up(t +
2hy), .., wp(t + Tp)}, AU, = {Auy(t + hy), Augy(t +
2hg),...,Auy(t + T},)}, and @, are the three sets of op-
timization variables that we defined previously.

Also, the cost function is defined as in (10) (in the next
page) which adds the LOPF costs to the average of the
building and grid control costs: J(@,) is the LOPF cost
function (7a) and c;,(t+ kphy) is a time-varying vector repre-
senting the cost of electricity at time t + kyhy. Q € R?*2"
and R € R™9*"s are positive semi-definite penalty matrices
for the grid dynamics, with penalization to the deviations in
the frequencies of the generators and the magnitude of the
control actions—see [34] for a similar regulation penalties.

Constraints (11b)—(11d) depict the dynamics of the
building-integrated power grid, as well as lower and upper
bounds on the states and inputs of the grid states and controls.
Constraints (11e)—(11g) represent the building cluster dynam-
ics and the bounds on the states and inputs of the individual
buildings where £(0Oy) is the occupancy-based slack relax-
ation function defined early in (2). Constraint (11h) imposes
the constraints of the LOPF as discussed in the previous
section. The final constraint (11i) represents the idea of the
time-scales integration, as illustrated in Fig. 1, whereby the
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h
Z [y (t + kohy)up(t + kphy)] + ?g Z [Aug (t + kghg)RAU(t + kghy)

Tp/hg

(10)
P og,=1

building control variables (8) are kept constant between two
consecutive building instances. Since h, > hg,, we assume
that between two consecutive building sampling instances
(i.e., kphp and (ky, +1)hy), the building controls wy, (kyhy) are
all constant variables to be found. Hence, for all Vkzh, €
[kbhb, (kjb + 1)hb), ub(k‘bhb) = ub(kghg) = Uuyp.

s A
OBtG:
Ub,gl{i‘g’ﬁg f(AUy, u,, Uy) (11a)
s.t. Xg(t + kghg) = (x4, uq, up, Wy | t,s)  (11b)
Au™ < Aug(t + kghg) < Aup™  (11c)
X" < xg(t+ kghy) < xg (11d)
Vkgse{l,...,T,/hg}
xp(t + kphy) = £ (xp, wp, Wy | £, 8) (11e)
up™ < uy(t 4 kphy) < up™ (11)
X < x (t+ kphy) < XX E£(0y) (11g)
Vk,e{l,... ,Tp/hb}
(7b), (7d) (11h)
u,(t + kghg) =1, = w(t + kphy) (111)
Vkghg € [kphp, (ky + 1)hp).
. 7
Algorithm 1 Online OBtG and LOPF Integration
1: input: OBtG forecasts and parameters
2: output: {uy, Auy, u;}
3: while ¢ < Thnal
4 if t = kT, (multiple of T},)
5: solve OBtG (11) for Uy, AU, uy
6: apply a; Vit € [xTy, (k + 1)T})
7: apply U; (1) V¢ € [t, ¢+ he)
8: apply AU (1) Vt € [t,t+ hy)
9: discard U; (2 : end), AU,(2 : end)
10: else if (t = Ii1hg) A (t 75 :‘iQTp) A (t # th},)
11: solve (11) without 14, U, while eliminating (11e)—(111)
12: apply AU} (1) V¢t € [t,t+ hy]
13: discard AU} (2 : end)
14: else if (t = k1hp) A (t # K2Tp)
15: solve (11) without 1,4, (11h), and J(ay)
16: apply Uy (1) V¢ € [t,t+ hs)
17: apply AU, (1) Vt e [t,t+ hg]
18: discard Uj (2 : end), AU(2 : end)
19: end if

20: t<t+hy
21: end while

Algorithm 1 illustrates a routine that implements OBtG’s
rolling horizon window along with the integration of the
LOPF problem. The proposed algorithm solution mimics
the idea depicted in Fig. 1. Given the OBtG parameters
(including the first s-initial steps of the discretized dynamics),
the algorithm computes the optimal solutions to the LOPF

problem and the joint MPC.

We assume that hy, < hy < T, << Thnal and hy/hg,
Typ/hs, Tp/hg are all positive integers. The algorithm starts
by finding the solution to the generator’s operating points 1,
for any multiple of the prediction horizon T}, as well as the
deviation from this set-point Auy and u; up until the next
planning horizon, and so on. As in classical MPC routines,
only the first instance of the optimal control trajectory is
applied, while the rest are discarded. Note that the OBtG with
LOPF is only solved for when ¢ (the counter) is a multiple
of T,,. If ¢ is not a multiple of T}, but a multiple of the
building’s sampling time h;, the building and grid controls
are computed. The final case captures the gap between
the two time-scales: where the building and grid controls
are applied, the building controls are kept constant from
the previous optimal computations, while grid controls are
computed in the meantime for every grid sampling time.

VI. CASE STUDIES
A. Experimental Setup

For the building HVAC system, one day of summer
weather data collected by a local weather station is used.
The overall coefficient of performance of the HVAC systems
in buildings is assumed to be constant and equal to 3. The
maximum cooling power is limited to 330KW per building.
Office hours are defined from 7:30am to 8:00pm, while early
start-up of the system is set from 7:00 am to 7:30 am.

The set-point for office hours is 21.4 + 0.6°C while the
set-point for non-office hours is 23.5 £ 0.5°C. A night
setback strategy for non-office hours is used for the HVAC
baseline simulation. All the commercial building occupancy
profiles are simulated and generated using the LBNL occu-
pancy simulator [32] to produce the synthetic ground truth
occupancy data for individual building. We first introduce
the occupancy density multiplier based on the randomized
building size. Then, the original algorithm is modified to
randomize the user-predefined parameters of the occupancy
transitions among zones, including private cubicles, meeting
spaces, auxiliary rooms the first arrival and the last departure
times. The example occupancy profile is presented using 300
randomized buildings in Figure 2. The data used for the
simulations are available upon request.

B. Results and Comparison

This study investigates two cases: 1) a decoupled baseline,
and 2) a centralized OBtG integration with occupancy predic-
tions. For the decoupled baseline case, we use the traditional
bang-bang approach for building simulations and perform a
separate grid MPC where the building load is merely input to
the grid operations. The building controls are assumed to use
bang-bang control of ideal cooling demands. This means that
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Fig. 2. Simulated “ground truth” form the LBNL simulator [32].
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the HVAC system only has two modes: “off”” for no cooling,
and “on” for ideal cooling to meet with loads. However,
the cooling amount may vary based on an ideal cooling
calculation [39]. The second case is the complete occupancy-
based OBtG (11) and Algorithm 1. Simulation results for
one day based on case9 from [35] are presented in Fig. 3.
Extended simulations are performed on the IEEE casel4

TABLE I
COST COMPARISON FOR THE TWO SCENARIOS (THE COSTS ARE IN
$1,000).
Test | Cost Type Baseline | OB BtG MPC
Case
Frequency 1137.56 1.34 (99%)
Case Penalty
9 Generator 227.03 223.27 (1.5%)
Generation
Building 422.75 381.98 (9.6%)
Energy Cost
Total Cost 1787.34 606.59 (66%)
Frequency 950.52 1.61 (99%)
Case Penalty
14 Generator 367.26 363.78 (0.5%)
Generation
Building 464.08 420.14 (9.4%)
Energy Cost
Total Cost 1781.92 785.55 (56%)

grid system with similar testing configurations above. This
section provides the detailed cost analysis and comparison
based on case9 and casel4 for all tested two cases.
Table I shows all the costs for the two scenarios during the
one week test simulation with absolute amounts and saving
percentages respectively (the figures only show one day).
Comparing frequency penalties for the two scenarios of all
grid cases, there are significant decreases of the frequency
costs during the grid operations when the OBtG is used.
The grid frequencies experience large deviations from its
nominal value (60 Hz) for the baseline simulations. However,
the frequency deviations for OBtG are much smaller. Similar
conclusions can be made for case14 simulation. In contrast,
the costs of electricity generation are very close to each other
for all test scenarios. Maximum 1.5% of cost saving can be
observed for both case9 and casel4 systems although
the maximum absolute saving amount is around $4,000.
Meanwhile, the building costs based on the real-time prices
show larger savings for the OBtG case comparing to the base-
line scenario. The maximum saving is around 9.6% for the
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I I I
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(a) Building zone state (temperature) responses.
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(c) Bus angle responses for all buses with angle of bus 3 as the reference.
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(d) Grid frequency responses for all buses.
Fig. 3. Comparison of the performance of the baseline optimization

framework (top subfigures) and the OBtG (bottom) in terms of the building
and grid’s states.

occupancy-based BtG case for that specific day simulation.
By calculating the total costs, OBtG produces a total of 66%
of savings for case 9 and 56% for casel4. The majority of
the savings are due to the frequency regulation and building
energy savings.

VII. PAPER SUMMARY AND FUTURE WORK

We introduce a computational framework to integrate the
local decisions of building operators, namely the HVAC
system energy consumption, with that of generators in smart
grids. The framework is cognizant of the occupancy behavior
of people inside buildings. We also explore the impact of such
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a BtG framework on frequency regulation. The presented case
studies illustrate that an occupancy-aware BtG framework has
the potential to provide frequency regulation, while reducing
energy consumption. Although only the generator and HVAC
control variables are modeled in this paper, the presented
framework can be easily extended to incorporate distributed
energy resources and optimal power flow formulations in
distribution networks, with electric vehicles and deferrable
loads. We plan to study these important extensions to this
work.
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