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Abstract—The bulk of the produced electricity powers build-
ings; 120 million homes and 5 million commercial buildings
dominate the U.S. energy consumption. Creative design of
Buildings-to-Grid (BtG) integration methods is an essential
component of smart cities. Buildings’ occupancy behavior is
a crucial component of successful BtG integration, as buildings
become more sophisticated and people spend more time in of-
fices and cities—making occupancy behavior one of the leading
factors in energy consumption and thus largely impacting power
grid dynamics. In this paper, we study the impact of integrating
occupancy-based building dynamics and constraints with power
grid transients, while focusing on frequency regulation. First,
dynamics of building clusters and building-integrated power
networks are presented—both operating at different time-scales.
Second, occupancy-based building constraints are discussed.
Third, the time-scale discrepancies are investigated, and a model
predictive control-based algorithm that formulates occupancy-
based BtG integration is given. Finally, case studies demonstrate
the impact of the proposed framework on energy savings and
significant frequency regulation.

I. INTRODUCTION AND PAPER CONTRIBUTION

Smart cities consist of sustainable and resilient infras-

tructures, where buildings are a major constituent. Building

energy consumption contributes to more than 70% of elec-

tricity usage—profoundly impacting power grid’s operation.

Futuristic cities equipped with optimized building designs

have the auspicious potential to play a pivotal role in reducing

global energy consumption while maintaining stable electric-

grid operations. As buildings are physically connected to

the electric power grid, it is natural to understand their

coupling and develop a framework for Buildings-to-Grid

(BtG) integration. To understand the role of BtG integration,

the authors in [1] provide a list of relevant research questions

for successful BtG integration.

Various studies address a breadth of computational and

experimental aspects of BtG integration. An overview of

demand response potential from smart buildings is pre-

sented in [2]. An experimental high-level architecture that

enables smart buildings is proposed in [3] with a focus on

heating, ventilating, and air conditioning (HVAC) systems

and grid integration. A bi-level optimization framework for

commercial buildings integrated with a distribution grid is

proposed in [4]. Detailed dynamic models for buildings with

multiple zones (upper level) and an operational model for
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the distribution grid with voltage/current balance equations

(lower level) are included; nonetheless, a transient model of

the power grid, capturing frequency deviation, is missing.

The regulation service provision by smart buildings is

investigated in [5]. Other BtG integration studies have shown

that grid-aware building HVAC controls can provide fre-

quency regulation or other ancillary services to the grid

[6]–[10], largely without sacrificing the occupants’ comfort.

The load-shifting capability of buildings has also been ex-

plored [11]. Explicit account of the grid dynamics and power

flows is on the other hand missing from the previously

mentioned works.

Occupancy behavior in buildings is becoming an important

topic of research. Building systems become more sophis-

ticated and people spend more time in buildings, making

occupancy behavior one of the leading influencers of energy

consumption in buildings [12] with large impacts on grid

dynamical operation. This is due to the following reasons. (a)

Significant interactions between occupants and building sys-

tems: The occupants expectation of comfort or satisfaction in

the built environment drives the occupant to perform various

controls, such as adjusting the thermostat in spaces, opening

windows for ventilation [13], turning on lights [14], pulling

down the window blinds [15], [16], and consuming domestic

hot water [17]. (b) Strong coupling between occupant behav-

ior and building performance: Various occupancy behaviors

have different impacts on built environment (e.g., indoor

temperature, humidity level, lighting, CO2, etc.) and energy

end use [18]. In addition, prior studies have demonstrated

that significant energy savings could be achieved through

behavior driven predictive building controls [19]–[21].

To model building dynamics, a typical thermal resistance

and capacitance circuit model can be used to represent

heat transfer and thermodynamical properties of the building

envelope—widely used in building climate control studies

[22]–[25]. Given these models for building dynamics, various

control routines have been developed for building controls.

Currently, many commercial buildings use PID controllers

for HVAC systems [26]. However, model predictive control

(MPC) has proved to be advantageous when applied to

building dynamics [27]–[30] with the majority of works

showing significant energy savings given forecast and para-

metric uncertainty.

Unfortunately, none of the recent studies produces an

occupancy-based formulation or routine that buildings and

power grids operators can simultaneously utilize to optimize

their performance explicitly coupling power grid and building
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control actions and operational decisions. The objective of

this paper is to generate occupancy-based, local control ac-

tions/signals for buildings and power generators such that the

overall performance is optimized in terms of stability, energy

savings, and other socio-economic metrics. Specifically, we

focus on frequency regulation and energy savings as the

main high-level objectives. An extended version of this work

without the occupancy-based modeling and constraints is

presented in our recent work [31].

The paper is organized as follows. In Sections II, III,

and IV, we present the dynamics of building clusters, oc-

cupancy building model, and the buildings-integrated power

network. Optimal power flow is also integrated in these mod-

els. In Section V, we propose our approach of occupancy-

based BtG integration optimization problem. A customized

algorithm is also discussed to seamlessly include the optimal

power flow into the integrated framework. Case studies with

realistic building parameters are given in Section VI.

II. BUILDING CLUSTERS DYNAMICS

In this paper, we use a typical thermal resistance and

capacitance (RC) network model to represent heat transfer

and thermodynamics of building envelope, which has been

widely used and accepted in building control studies [22]–

[25]. This model is sufficient for a high-level BtG integration

study. A typical three resistant and two capacitance (3R-

2C) model is shown in [24]. The building dynamics with

temperature states Twall and Tzone can be written as:

Ṫwall =
Tamb − Twall

CR2
+

Tzone − Twall

CR1
+

Q̇sol

C

Ṫzone =
Twall − Tzone

CzoneR1
+

Tamb − Tzone

CzoneRwin
+

Q̇int + Q̇HVAC

Czone
,

where Rwin, R2, and R1 are physical parameters of building

envelope; C is a lumped thermal capacity of all walls and

roof; Czone is the thermal capacity of the zone; Q̇sol is the

total absorbed solar radiation on the external wall; Q̇int is the

total internal heat gains from space heat sources such as desk-

top, people, and lights; Tamb, Tzone, and Twall are the outside

ambient, wall, and zone/space temperatures, respectively. The

cooling load can be calculated as Q̇HVAC = µHVACPHVAC,
wherePHVAC is the actual power consumed by HVAC sys-

tems and the main optimization variable/setpoint for each

building, and µHVAC is a constant indicating the performance

of an HVAC system. The objective is to minimize a cost

function of PHVAC while maintaining occupants’ comfort.

Since we aim to understand the impact of buildings’

contribution to frequency regulation and overall energy con-

sumption costs, we present the dynamics of building clusters:

ẋb = Abxb +Bub
ub +Bwb

wb , (1)

where nb is the total number of buildings in the network;

xb = [Twall Tzone]
> ∈ R

2nb ,ub =
[

PHVAC

]

∈ R
nb , and

wb = [Tamb Q̇sol Q̇int]
> ∈ R

3nb are vectors collecting the

state, controllable input, and random uncontrollable input for

all nb buildings. In the absence of communication between

buildings, the state-space matrices Ab,Bub
, and Bwb

are all

block-diagonal.

III. OCCUPANCY-BASED BUILDING CONSTRAINTS

An occupancy-based building MPC is further developed to

simulate the impacts of occupancy on building demands and

enable deeper energy savings. The ground truth occupancy

information is first simulated based on a simulator from

Lawrence Berkeley National Laboratory (LBNL) [32]. The

LBNL’s simulator generates the number of occupants at the

whole building level based on large scale survey data. Then,

an innovative prediction method, previously developed by au-

thors [33] and specifically designed for building MPC is used

to transfer the occupancy number to binary presence states

and do “real” predictions based on the LBNL’s “ground truth”

simulation results for each rolling MPC. The occupancy

predictions will forecast the lunch break as absence during

certain time periods if the aggregated training data show a

majority of the people leave the offices for lunch. Hence, the

upper bounds of the building states xb will increase during

the lunch breaks. We introduce an occupancy-based slack

relaxation that will be added on the upper bounds of the

building states as follows

E(Ot) =











α, if Γ(Ot) = 0

max
(

α,xt−1
b − xmax

b

)

if Γ(Ot) > 1

0, if 0 < Γ(Ot) ≤ 1

(2)

where E(Ot) is an occupancy-based slack relaxation func-

tion based on binary occupancy predictions, xmax
b is the

upper bound of the building states, and Ot = st is the

predicted binary occupancy state at optimized time step t
in a rolling building MPC. The factor α is a predefined

constraint adjustment threshold for building states. In other

words, α describes how much the building zone temperature

will increase when people are absent. However, function

Γ is defined to avoid impractical settings of the factor α

that will cause infeasible solutions of the building MPCs.

This function is used to avoid infeasible solutions for BtG

integrations and defined as follows

Γ(Ot) = Ot +max(0,xt−1
b − xmax

b ) (3)

where xt−1
b is the previous building state, and xmax

b is the

upper bound of building states constraints. This empirically

derived relaxation of (2) and (3) is designed to balance

the feasibility of the MPC solver and the savings from the

MPC. Note that the infeasible solutions are usually caused

by the uncertain change of building states constraints based

on the occupancy predictions. Owing to the upper limit on

the cooling power and the building disturbances (i.e., large

solar heat gains or internal heat gains at certain periods),

building states or cooling power may not be able to satisfy

constraints simultaneously for both cooling power and zone

states. We will use the occupancy-based model as constraints

to the overall BtG problem.

IV. BUILDING-INTEGRATED POWER NETWORK:

DYNAMICS CONNECTION TO OPF

In this section, we present the dynamics of building-

integrated power network and define the main variables
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involved in the BtG integration framework. In addition, we

discuss the connection of BtG integration model with the

optimal power flow (OPF).

A. DAE Dynamics of a Power Network with Building Loads

Let B = {1, . . . , n} and G = {1, . . . , ng} denote the

sets of buses and generators in a power network. Also, let

Nk be the neighborhood set of adjacent nodes connected

to the kth bus. Generators are indexed by m ∈ G. The

mechanical input power to the mth generator is denoted by

Pm. Define generator-to-node and building-to-node incidence

matrices Γ ∈ R
n×ng and Π ∈ R

n×nb with entries given by:

γk,m =

{

1 if the mth generator is connected to bus k
0 otherwise,

πk,l =

{

1 if the kth bus is connected to building l
0 otherwise.

The transients of the kth bus in a power network can be

modeled by the swing equation which relates the rotor angle

δ with the angular velocity δ̇ and angular acceleration δ̈ [34].

Define Mk and Dk as the inertia and damping coefficients

of the generator located kth bus; if the kth bus does not have

a generator, then Mk = Dk = 0. The swing equation for the

kth bus (∀k ∈ B) can be written as:

Mk δ̈k+Dk δ̇k = γk,mPm−PLk
−

∑

j∈Nk

bkj sin(δk−δj). (4)

The load at bus k, PLk
, can be written as follows: PLk

=

D′
k δ̇k + PBLk

+
∑nb

l=1 πk,lP
(l)
bldg, where D′

k δ̇k denotes the

frequency-sensitive uncontrollable load at bus k; PBLk
de-

notes the frequency-insensitive uncontrollable base-loads;
∑

l πk,lP
(l)
bldg defines the load from buildings indexed by l and

attached to bus k that are participating in regulation, defined

as P
(l)
bldg = P

(l)
HVAC + P

(l)
misc, where l ∈ {1, 2, . . . , nb} is

index of buildings. P
(l)
HVAC denotes the portion of controllable

power consumption of building l, while P
(l)
misc represents the

uncontrollable miscellaneous power consumption of building

l. We can now rewrite (4) as:

Mk δ̈k +Dk δ̇k = −
∑

j∈Nk

bkj sin (δk − δj)

+γk,mPm −D′
k δ̇k − PBLk

−
nb
∑

l=1

πk,l

(

P
(l)
HVAC + P

(l)
misc

)

. (5)

In (5), Pm for generator bus m can be written as Pm =
P̄m + ∆Pm, where P̄m is a solution of an optimal power

flow problem—computed every 15 minutes—and ∆Pm is

the deviation from the setpoint P̄m, which will be furnished

by the proposed BtG integration framework.

Let δ̇k = ωk, where ωk = ωtrue
k − ω0, where ωtrue

k is

the actual frequency of the kth bus (ω0 is the synchronous

frequency). The resulting state-space model is a nonlinear

descriptor system (or a DAE), and can be written as:

Egẋg = Agxg +ΦΦΦ(δδδ) +Aub
ub +Bug

ug +Bwg
wg, (6)

where xg = [δ1 . . . δn ω1 . . . ωn]
> = [δδδ> ωωω>]> is the

state of the grid; ΦΦΦ(δδδ) is the vectorized nonlinear power

flow equations in (5); ub = [P
(1)
HVAC . . . P

(nb)
HVAC]

> is the

control input vector of the buildings, as defined in (1), and

ug = ūg + ∆ug = [P̄1 + ∆P1 . . . P̄ng
+ ∆Png

]> is the

power network’s control variable; wg = [w>
BL,w

>
misc]

> =

[PBL1
. . . PBLn

, P
(1)
misc . . . P

(nb)
misc ]

> is a random vector

collecting the nodal base loads and miscellaneous building

loads. Load forecasting is a very mature area; in the sequel,

the forecast of wg , denoted by ŵg , is assumed to be available.

B. Connection to the Optimal Power Flow

Recall that ug = ūg + ∆ug, where ūg is the vector

containing the setpoints for the generators, and ∆ug is the

real-time deviation from these setpoints that automatically

drives the power grid to stability after load deviations or

disturbances. Typically, the setpoints are computed every

5–15 minutes through solving economic dispatch or OPF

routines [34]. A linearized OPF (LOPF) problem can be

written as:

LOPF: minimize
ūg={ūgi

}
ng

i=1

J(ūg) = ū>
g Jug

ūg + b>
ug
ūg + cug

(7a)

subject to ūmin
g ≤ ūg ≤ ūmax

g (7b)

(Γūg −Π(ub + ŵmisc)− ŵBL)
>
1n = 0 (7c)

|Lptdf (Γūg −Π(ub + ŵmisc)− ŵBL) | ≤ Fmax , (7d)

where J(ūg) is a convex cost function that represents the

generators’ cost curves; ub and ŵmisc are vectors of building

HVAC and (forecasted) miscellaneous loads; ŵBL is the

vector of (forecasted) base loads; vector Γūg − Π(ub +
ŵmisc)−ŵBL represents the nodal power injections; 1n ∈ R

n

is a vector of all ones; Fmax ∈ R
nl is the vector containing

the thermal limits for real power flow on the nl branches

of the network; and Lptdf ∈ R
nl×n is a matrix of power

transfer distribution factors [35]. The constraints represent

the safety upper and lower bounds on the generator’s active

power while ensuring the supply-demand balance and the

satisfaction of line flow limits. This formulation is useful in

the next sections.

V. HOW CAN BUILDINGS IMPACT POWER GRIDS?

In the previous section, we formulate the dynamics of the

buildings-integrated power network. In (6), the presence of ub

exemplifies the control potential that buildings have on power

system operation and control, and hence the BtG integration.

Here, we investigate the discrepancies in time-scales between

the building (1) and power network dynamics (6) and discuss

a formulation of the joint optimal control problem that

addresses the time-scale discrepancies.

A. Addressing the Time-Scales Discrepancy

The formulated dynamics in Sections II and IV clearly

operate in two different time-scales. While grid regulation

problems and mechanical input power variations are often in

seconds, the building dynamics and controls are much slower.

For example, temperatures in buildings change slowly in
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Fig. 1. The figure illustrates hypothetical solutions to a joint optimal control
problem with multiple time-scales for a buildings-integrated power network.
The quantities hb, hg , Tp are the building and grid sampling periods and the
prediction horizon. Note that hb >> hg and hb/hg = z, where z ∈ N+.

comparison with frequencies and voltages in power networks.

To overcome this limitation, we assume the following.

Local optimal control laws for buildings are computed at

different time-steps than local optimal control laws for gen-

erators. This approach reflects the physical realities for these

systems, and this consideration can be imposed via con-

straints in the optimal control problem, whose construction is

the objective of this section. Since buildings possess slower

dynamic behavior, we restrict the controls of buildings to be

fixed for the faster time-scale of the power network. Fig. 1

illustrates this idea. Consider a hypothetical network with

two generators and two commercial buildings, making up

a total of six control variables (ub, ūg,∆ug). The optimal

deviations from the generators’ controls fluctuate at a higher

rate than the building controls, whereas the set-points for

generators change once for a single prediction horizon as

shown in Fig. 1. Given this integration scheme, and since

hard constraints are to be imposed on the grid and building

dynamics, model predictive control (MPC) becomes the only

viable solution to solve the joint optimal control problem.

B. Discretization of DAEs via Gear’s Method

Another challenge facing BtG integration is the presence

of algebraic equations in (6) emerging from power flows of

load nodes. Here, we present a simple, yet high-fidelity dis-

cretization routine for two dynamical systems with different

time-scales and dynamic algebraic constraints. The routine is

based on Gear’s method [36]. Note that for the discretization

purposes, we use the linearized power flows by assuming that

sin(δi − δj) = δi − δj .

First, we assume that the sampling times for the power

grid [cf. (6)] and building [cf. (1)] dynamics are respectively

hg and hb; note that hb >> hg . The discretized dynamics of

the building-integrated power network can be written as

xg(kghg) = fg(xg,ug,ub,wg)

= Āg

s
∑

i=1

αiEgxg(hg(kg − i))

+B0

(

Aub
ub(kghg) +Bug

ug(kghg)
)

+B0Bwg
wg(kghg) (8)

where Āg = (Eg − hgβ0Ag)
−1,B0 = hgβ0Āg, β0 =

(
∑s

i=1 1/i)
−1,αi = (−1)i+1β0

∑s
j=i j

−1
(

j
i

)

; kg is the

time-step for the grid dynamics. This method requires a set

of s initial conditions. Similarly, the discrete form of (1) can

be written as follows:

xb(kbhb) = fb(xb,ub,wb) = Āb

s
∑

i=1

αixb(hb(kb − i))

+B1 (Bub
ub(kbhb) +Bwb

wb(kbhb)) , (9)

where kb is time-step for buildings’ dynamic operation.

Gear’s discretization amounts to a backward Euler-like im-

plicit method. The principal merit of implicit methods is that

they are typically more stable for solving systems with a

larger step size h, while still performing well for systems

with faster time-constants [36]. A simple simulation indeed

shows that Gear’s method returns accurate state-solution for

the building and grid dynamics.

C. OBtG: Occupancy-based Buildings-to-Grid Optimization

The joint optimal control problem, Occupancy-based

Buildings-to-Grid (OBtG), is formulated in (11). The vari-

ables, cost function, and constraints of OBtG are as follows.

Tp is the prediction horizon and the formulation above only

shows the MPC for one prediction horizon; t is the initial

starting point of the MPC (note that power grid-MPC has

been used before [37], [38]). Ub = {ub(t + hb),ub(t +
2hb), . . . ,ub(t + Tp)},∆Ug = {∆ug(t + hg),∆ug(t +
2hg), . . . ,∆ug(t + Tp)}, and ūg are the three sets of op-

timization variables that we defined previously.

Also, the cost function is defined as in (10) (in the next

page) which adds the LOPF costs to the average of the

building and grid control costs: J(ūg) is the LOPF cost

function (7a) and cb(t+kbhb) is a time-varying vector repre-

senting the cost of electricity at time t+ kbhb. Q ∈ R
2n×2n

and R ∈ R
ng×ng are positive semi-definite penalty matrices

for the grid dynamics, with penalization to the deviations in

the frequencies of the generators and the magnitude of the

control actions—see [34] for a similar regulation penalties.

Constraints (11b)–(11d) depict the dynamics of the

building-integrated power grid, as well as lower and upper

bounds on the states and inputs of the grid states and controls.

Constraints (11e)–(11g) represent the building cluster dynam-

ics and the bounds on the states and inputs of the individual

buildings where E(Ot) is the occupancy-based slack relax-

ation function defined early in (2). Constraint (11h) imposes

the constraints of the LOPF as discussed in the previous

section. The final constraint (11i) represents the idea of the

time-scales integration, as illustrated in Fig. 1, whereby the
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f(∆Ug, ūg,Ub) = J(ūg) +
hb

Tp

Tp/hb
∑

kb=1

[

c>b (t+ kbhb)ub(t+ kbhb)
]

+
hg

Tp

Tp/hg
∑

kg=1

[∆u>
g (t+ kghg)R∆ug(t+ kghg) (10)

building control variables (8) are kept constant between two

consecutive building instances. Since hb > hg , we assume

that between two consecutive building sampling instances

(i.e., kbhb and (kb+1)hb), the building controls ub(kbhb) are

all constant variables to be found. Hence, for all ∀ kghg ∈
[kbhb, (kb + 1)hb), ub(kbhb) = ub(kghg) = ūb.

OBtG:

min
Ub,∆Ug,ūg

f(∆Ug, ūg,Ub) (11a)

s.t. xg(t+ kghg) = fg(xg,ug,ub, ŵg | t, s) (11b)

∆umin
g ≤ ∆ug(t+ kghg) ≤ ∆umax

g (11c)

xmin
g ≤ xg(t+ kghg) ≤ xmax

g (11d)

∀ kg ∈ {1, . . . , Tp/hg}

xb(t+ kbhb) = fb(xb,ub, ŵb | t, s) (11e)

umin
b ≤ ub(t+ kbhb) ≤ umax

b (11f)

xmin
b ≤ xb(t+ kbhb) ≤ xmax

b + E(Ot) (11g)

∀ kb ∈ {1, . . . , Tp/hb}

(7b), (7d) (11h)

ub(t+ kghg) = ūb = ub(t+ kbhb) (11i)

∀ kghg ∈ [kbhb, (kb + 1)hb).

Algorithm 1 Online OBtG and LOPF Integration

1: input: OBtG forecasts and parameters
2: output: {ū∗

g,∆u
∗

g,u
∗

b}
3: while t < Tfinal

4: if t = κTp (multiple of Tp)
5: solve OBtG (11) for U∗

b ,∆U
∗

g, ū
∗

g

6: apply ū
∗

g ∀t ∈ [κTp, (κ+ 1)Tp]
7: apply U

∗

b(1) ∀t ∈ [t, t+ hb]
8: apply ∆U

∗

g(1) ∀t ∈ [t, t+ hg]
9: discard U

∗

b(2 : end),∆U
∗

g(2 : end)
10: else if (t = κ1hg) ∧ (t 6= κ2Tp) ∧ (t 6= κ3hb)
11: solve (11) without ūg,Ub, while eliminating (11e)–(11i)
12: apply ∆U

∗

g(1) ∀t ∈ [t, t+ hg]
13: discard ∆U

∗

g(2 : end)
14: else if (t = κ1hb) ∧ (t 6= κ2Tp)
15: solve (11) without ūg , (11h), and J(ūg)
16: apply U

∗

b(1) ∀t ∈ [t, t+ hb]
17: apply ∆U

∗

g(1) ∀t ∈ [t, t+ hg]
18: discard U

∗

b(2 : end),∆U
∗

g(2 : end)
19: end if
20: t← t+ hg

21: end while

Algorithm 1 illustrates a routine that implements OBtG’s

rolling horizon window along with the integration of the

LOPF problem. The proposed algorithm solution mimics

the idea depicted in Fig. 1. Given the OBtG parameters

(including the first s-initial steps of the discretized dynamics),

the algorithm computes the optimal solutions to the LOPF

problem and the joint MPC.

We assume that hg < hb < Tp << Tfinal and hb/hg ,

Tp/hb, Tp/hg are all positive integers. The algorithm starts

by finding the solution to the generator’s operating points ūg

for any multiple of the prediction horizon Tp, as well as the

deviation from this set-point ∆ug and ub up until the next

planning horizon, and so on. As in classical MPC routines,

only the first instance of the optimal control trajectory is

applied, while the rest are discarded. Note that the OBtG with

LOPF is only solved for when t (the counter) is a multiple

of Tp. If t is not a multiple of Tp, but a multiple of the

building’s sampling time hb, the building and grid controls

are computed. The final case captures the gap between

the two time-scales: where the building and grid controls

are applied, the building controls are kept constant from

the previous optimal computations, while grid controls are

computed in the meantime for every grid sampling time.

VI. CASE STUDIES

A. Experimental Setup

For the building HVAC system, one day of summer

weather data collected by a local weather station is used.

The overall coefficient of performance of the HVAC systems

in buildings is assumed to be constant and equal to 3. The

maximum cooling power is limited to 330KW per building.

Office hours are defined from 7:30am to 8:00pm, while early

start-up of the system is set from 7:00 am to 7:30 am.

The set-point for office hours is 21.4 ± 0.6◦C while the

set-point for non-office hours is 23.5 ± 0.5◦C. A night

setback strategy for non-office hours is used for the HVAC

baseline simulation. All the commercial building occupancy

profiles are simulated and generated using the LBNL occu-

pancy simulator [32] to produce the synthetic ground truth

occupancy data for individual building. We first introduce

the occupancy density multiplier based on the randomized

building size. Then, the original algorithm is modified to

randomize the user-predefined parameters of the occupancy

transitions among zones, including private cubicles, meeting

spaces, auxiliary rooms the first arrival and the last departure

times. The example occupancy profile is presented using 300

randomized buildings in Figure 2. The data used for the

simulations are available upon request.

B. Results and Comparison

This study investigates two cases: 1) a decoupled baseline,

and 2) a centralized OBtG integration with occupancy predic-

tions. For the decoupled baseline case, we use the traditional

bang-bang approach for building simulations and perform a

separate grid MPC where the building load is merely input to

the grid operations. The building controls are assumed to use

bang-bang control of ideal cooling demands. This means that
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a BtG framework on frequency regulation. The presented case

studies illustrate that an occupancy-aware BtG framework has

the potential to provide frequency regulation, while reducing

energy consumption. Although only the generator and HVAC

control variables are modeled in this paper, the presented

framework can be easily extended to incorporate distributed

energy resources and optimal power flow formulations in

distribution networks, with electric vehicles and deferrable

loads. We plan to study these important extensions to this

work.
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