
Cross-Architecture Lifter Synthesis

Rijnard van Tonder and Claire Le Goues

Carnegie Mellon University,
{rvantonder,clegoues}@cs.cmu.edu

Abstract. Code translation is a staple component of program analysis.
A lifter is a code translation unit that translates low-level code to a
higher-level intermediate representation (IR). Lifters thus enable a host
of static and dynamic analyses for such low-level code. However, writing
a lifter is a tedious manual process which must be repeated for every
architecture an analysis aims to support. We introduce cross-architecture
lifter synthesis, a novel approach that automatically synthesizes lifters for
previously unsupported architectures. Our insight is that lifter synthesis
can be bootstrapped with existing IR sketches that exploit the shared
semantic properties of heterogeneous architecture instruction sets. We
show that our approach automates a significant amount of translation
effort for a previously unsupported instruction set, and that it enables
discovery of new bugs on new architecture targets through reuse of an
existing IR-based analysis.

1 Introduction

Intermediate representations (IRs) are a staple component of compilers [20, 23]
and program analyses [5, 8, 11, 18]. Code translation can generate programs in
an IR from high level source languages (e.g., compilers) or low level machine code
(e.g., decompilers). A lifter is a code translation unit that emits a higher level,
architecture-agnostic intermediate representation of architecture-specific lower-
level code. Lifters are central to low-level code analysis because they enable reuse
of architecture-agnostic analyses at the IR level (e.g., taint analysis, constraint
generation) [14, 22], and provide essential high level abstractions for program
analysis (CFG and function recovery) [9].

However, writing the translation layer for an IR is onerous, requiring manual
translation of architecture-specific instructions (e.g., for x86, ARM, MIPS) to the
target IR while preserving the native semantics. Modeling the semantics of a new
instruction set requires an engineer to consult instruction manuals numbering up
to 1,000s of pages per architecture [14, 15]. Recent work raises the importance
of automating the lifting process [14]. In our own past work, we identify the
potential to reuse existing analyses in the IR for new architectures,1 but are
faced with the undesirable prospect of writing new lifters from scratch.

We propose a novel synthesis technique to automate the lifting translation
process, with a goal of producing an IR program usable for further program
1 e.g., https://opam.ocaml.org/packages/bap-warn-unused/bap-warn-unused.1.3.0

https://opam.ocaml.org/packages/bap-warn-unused/bap-warn-unused.1.3.0

2

analysis (e.g., to find bugs). At a high level, our technique uses inductive synthesis
over finite input-output pairs of native instructions to infer semantically equiv-
alent instructions in the IR. We verify the correctness of synthesized instructions
by executing the IR (under associated operational semantics) and comparing
computational events with that of native execution. Our approach learns sketches
(templates) from existing IR instructions, that then drive synthesis. Two key in-
sights enable our synthesis approach. First, software exhibits a “natural” property:
code structure is repetitive and predictable [16]. Instruction architectures are
inherently heterogeneous, but they share similar semantic operations (e.g., move
instructions, arithmetic operations). Our approach mines sketches from existing
IR programs which preserve this underlying shared semantics. Moreover, be-
cause instructions are not distributed uniformly (e.g., move instructions are more
common) [6, 16], our approach (1) extends across heterogeneous architectures
and (2) achieves high translation coverage. Second, we parameterize synthesis
by exploiting statement structure to produce an efficient search.

Prior work only partially addresses the challenge of automatic lifting. Hasabnis
et al. [13, 14] observe the forward translation of compiler IR (GCC’s RTL) to
assembly code and produce an inverse mapping from assembly back to the original
RTL IR. However, this approach requires a forward translation from the IR to
assembly for each architecture. This approach is impossible if no such translation
exists (typical for low-level IRs, which lift directly from assembly [8, 22]). Related
synthesis approaches automate discovery of symbolic instruction encodings from
input-output pairs [10, 15]. By contrast, we address the unique challenge of cross-
translating the semantics of instructions to another target language (IR) that
supports additional program analysis abstractions (e.g., taint analysis, control
flow recovery, function recovery). Recent work in program synthesis has proposed
the notion of exploiting existing code for scaling synthesis [6]. To the best of our
knowledge, we are the first to demonstrate these ideas toward practical, real-world
application by enabling automatic lifter synthesis. Our contributions are as follows:

– Automatic Lifter Synthesis. We introduce a technique for automatically
synthesizing language translation components that lifts low-level code to an
IR. We demonstrate that lifter synthesis enables cross-language translation,
allowing analysis reuse on previously unsupported architectures.

– Learning Synthesis Templates. We show that mining sketches is effective
for translating across heterogeneous instruction architectures. Mining sketches
(a) preserves shared semantic properties across architectures and (b) scales
synthesis by efficiently constraining the candidate sketch search space.

– Experimental Evaluation. We validate our approach by synthesizing a
lifter for MIPS, a previously unsupported architecture in the Binary Analysis
Platform.2 On average, the synthesized lifter successfully translates 84.4% of
instructions to IR, across 28 binaries. Our technique complements additional
strategies for lifting the remainder of unlifted instructions (e.g., manually,
or with more aggressive synthesis exploration). The synthesized lifter allows

2 Available at https://github.com/BinaryAnalysisPlatform/bap

https://github.com/BinaryAnalysisPlatform/bap

3

a previous IR-based analysis to discover 29 new bugs in binaries for the
previously-unsupported architecture.

– Implementation. We release our tool and results at https://github.com/
squaresLab/SynthLift.

2 Overview and Problem Definition

We formulate IR translation as a syntax-guided synthesis problem [4]. We boot-
strap the approach by obtaining an initial set of programs in the IR translated
by some existing lifter targeting some other architecture/instruction set (e.g.,
x86 or ARM).3 We mine these IR programs to turn concrete program fragments
into sketches for use in synthesis. Given an unsupported architecture (for which
we do not yet have IR translation rules), we (A) collect input-output pairs ob-
served during native execution, and then (B) apply inductive inference over those
sketches to discover IR program fragments that satisfy those pairs. We use the
oracle-guided inductive synthesis [4] principle to invalidate candidate program
fragments using ground-truth input-output pairs.

Deconstruct IR IR Sketches I/O pairs and Operands� ⊵
R3 := R0 + (-1:s32)
R0 := R3 & R0� �
(a) Lifted IR code
for a source architec-
ture S (e.g., ARM).
-1:s32 means the
bitvector is inter-
preted as a signed
32-bit value.

� ⊵
??r := ??r + ??i:s32� �� ⊵
??r := ??r & ??r� �
(b) IR Sketches cre-
ated from concrete
statements in archi-
tecture S.

Lifter
SynthesisT� ⊵
r1 := r2 + i1:s32� �� ⊵
r3 := r4 & r5� �

� ⊵
addiuT r1,r2,i1� �� ⊵
andT r3,r4,r5� �
(c) Native execu-
tion trace in tar-
get architecture T
(e.g., MIPS) gener-
ates I/O pairs.

Fig. 1: Synthesizing IR from Sketches and I/O pairs.

Overview. Our goal is to use existing IR terms translated from instructions in
a source architecture S (like ARM) to synthesize satisfying IR translation rules
for instructions of a new target architecture T (like MIPS). The first step of lifter
synthesis deconstructs concrete IR terms (Figure 1b) from previously lifted code
in source architecture S (Figure 1a). Program sketches are syntactic templates
that define the search space for synthesis. A sketch is a partial implementation
of a program with missing expressions called holes [7]; we denote holes by ?? in
Fig. 1b. There are two types of holes in our IR sketches: variables, denoted by
??r, and immediate bit vector values, denoted by ??i (respectively corresponding
to registers and immediate values in the machine architecture).

The second step of synthesis (Fig 1c) collects concrete input-output pairs,
instruction operands, and instruction opcodes from the target architecture T that
3 Note that this is not a limiting assumption on generalizing the technique: an existing, functional

IR implies at least one existing translation layer implementation, as is the case with, e.g., REIL [8]
LLVM [19], VEX IR [21].

https://github.com/squaresLab/SynthLift
https://github.com/squaresLab/SynthLift

4

we want to lift. In the example, the target architecture is MIPS 4. We generate
traces of input-output pairs by dynamically executing one or more native MIPS
instructions. We use the LLVM disassembler to obtain static information of
instructions: their opcodes, syntactic register names, and immediate values.5
Static values denoting operands are converted to symbolical IR variables, which
we denote in the example by rx and ix respectively (x is fresh).

The LifterSynthesisT procedure then enumerates candidate IR sketches
and fills operand holes with the target T’s register and immediate values operand,
respectively. The procedure seeks an IR instruction and operand assignment
that satisfies all dynamic I/O observations for the native instruction in T when
executed according to the IR’s operational semantics. When successful, synthesis
produces a lifter rule that translates native instructions to the IR for the target T.
Translation Substitution. The synthesis procedure in Fig. 1 identifies IR
statements whose semantics (specified in Section 3) match the input-output
pairs of native execution translation rules. For example, an addiuT operand
with opcodes ⟨r1, r2, i1⟩ map to an IR statement r1 := r2 + i1:s32 (note that
syntactic register and immediate values are both converted into proper typed
values when translated into the IR). Translation binds concrete values to IR
operand variables rx, ix positionally (Figure 2).� ⊵

addiu v0 ,a0 ,(-1:s32)
and v0 ,v0 ,a0� �

LIFTT=MIPS
−−−−−−−−−−−−→

� ⊵
v0 := a0 + (-1:s32)
v0 := v0 & a0� �

Fig. 2: Lifting to a target T (MIPS)

In general, we do not know the correct order for applying operands obtained from
disassembly; we consider permutation of operands during synthesis in Section 4.
Restricting the Synthesis Search Space. The syntactic structure of instruc-
tions from native execution allows us to prune the search space of sketches. Fig. 1c
gives an intuition: the IR sketch ??r := ??r & ??r won’t be considered for the
addiuT ⟨r1,r2,i1⟩ MIPS instruction because the IR does not use an immediate
value. In practice, we find that pruning reduces the set of valid candidate sketches
to 83% per native instruction, on average.
Problem Scope. Our approach synthesizes instructions including arithmetic
operations, bitwise operations, and conditional jumps. We do not consider the
details of CPU-specific memory models and modes (e.g., concurrency, memory
segments, or privileged instructions). While important, these aspects do not
directly support the goal of modeling the essential dataflow properties of instruc-
tion semantics in the IR. Extension of the IR to additional architecture-specific
memory or permission models is possible, but we leave this consideration for
future work. For simplicity, we’ve demonstrated a one-to-one translation of native
instruction to IR instruction, wehereas IRs are typically designed to represent a
4 https://www.mips.com/products/architectures/mips32/
5 We use LLVM for convenience–dynamic binary instrumentation techniques can similarly provide

instruction operands and opcodes.

5

single native instruction in one or more IR instructions. We discuss one-to-many
translation in Section 4.

3 Synthesis Model

We perform oracle-guided synthesis of IR translation using dynamic execution
traces of native instructions for a target architecture T. For simplicity of introduc-
ing the model, we consider only one iteration of verifying instruction correctness.
In one iteration, our goal is to check whether a sequence of events produced
during a single step execution of a native instruction is syntactically equal to the
sequence of events produced by a executing a translation of the native instruction
to the IR. Our model assumes a sequential running process, i.e., executing a
native instruction is uninterruptible, and memory cannot be modified by con-
current processes. Further, we assume instruction output is invariant under the
same inputs. Our assumptions are consistent with the goal of tracking dataflow
properties of instruction semantics (e.g., taint analysis, constraint generation), as
well as those underlying previous work [10, 15]. In this section we introduce the
program model and operational semantics for comparing IR and native execution.
We use the BAP IR [1, 3], which performs competitively relative to other IRs [17].
However, the approach generalizes under the synthesis model and assumptions
presented in this section.

3.1 Comparing Executions

Program Model. The execution context of a program is modeled by state σ.
Both native and IR instructions operate on a state σ that comprises a memory
µ and variable bindings ∆. Memory µ is modeled by a partial function from
addresses to values nat → int. Variable bindings ∆ is modeled by a partial
function from variable names to values var → int.
Events. A sequence of events reify the effect of executing an instruction. Events
generated during native execution serve as the ground truth oracle for synthesis.
We denote events on registers by a 4-tuple ⟨action, REG, reg, value⟩ (including
flags). An action may be either a read operation R or a write operation W. We use
a syntactic value REG to disambiguate events on registers from those on memory.
A register reg may be any syntactic term corresponding to a register for a given
architecture (e.g., EAX for the x86 architecture). The value is a bitvector with
a word size for a given architecture. We denote events on memory by a 4-tuple
⟨action, MEM, addr, value⟩. Actions on memory are the same as for registers. A
read action on memory reads a bitvector value from a nonnegative address addr.
A write action on memory writes a bitvector value to a nonnegative address addr.
All events are syntactic elements; we say e1 = e2 if an event e1 is syntactically
equal to e2.
Comparing Events. For every instruction executed in the trace of the native
Architecture T, a single native instruction IT in state σT produces a sequence

6

of events ET. We denote the execution step by ⟨σT, IT,∅⟩ T
⇝ ⟨σ′T,−, ET⟩. For

convenience, we define a function stepT that returns the sequence of events after
executing the instructions: ET = stepT(σT, IT).

Next, consider execution for IR in an architecture-agnostic language IR. Our
goal is to generate a sequence of events EIR which is equivalent to ET by executing
a logical instruction (comprising one or more IR statements) denoted by IIR. We
denote an execution step in the IR by ⟨σIR, IIR,∅⟩ IR∗⇝ ⟨σ′IR,−, EIR⟩ and define a
convenience function stepIR that returns the sequence of events after execution
EIR = stepIR(σIR, IIR).

Executing an IR instruction requires an initial state σIR that simulates the
native architecture state σT. We introduce a function αIR that resolves register
and memory values from the trace, and maps these values to the initial IR
execution state, i.e., σIR = αIR(σT).

We now define an equivalence relation of execution ∼ as equal event sequences
generated from in-tandem single step execution of source and target languages.
Let liftIR be the function that translates a native instruction to target IR
instructions, where IIR = liftIR(IT). Then synthesis requires:

stepT(σT, IT) ∼ stepIR(αIR(σT), liftIR(IT))

which simplifies to checking ET ∼ EIR. If ET ∼ EIR holds, a synthesis iteration is
complete and IT lifts to IIR. We perform multiple such iterations to refine the
accuracy of translation, invalidating IR statements that do not satisfy all input-
output equivalence constraints. We defer details of the approach and algorithm
to Section 4.

3.2 Operational Semantics

Native Execution. The semantics of native execution is treated as a black
box, allowing us to observe input-output pairs of an instruction execution. We
use dynamic instrumentation to record sequences of events during an execution
trace. We support tracing with popular instrumentation frameworks QEMU 6and
Pin. 7 Dynamic events on registers, flags, and memory are recorded in the trace
and processed to produce ET, accepted as ground truth. For purposes of syn-
thesis, we synchronize byte ordering (endianness) for T and IR at the dynamic
instrumentation level, if needed.
IR Execution. We use an analysis-based IR to execute synthesized statements ac-
cording to an operational semantics.8 The BAP interpreter performs architecture-
agnostic execution of IR statements. Fig. 3 is a simplified version of the IR
grammar. Our work extends the operational semantics and interpreter to gen-
erate events during IR execution. For brevity, we elide the rules. The essential
changes entail event recording for each rule: variable assignments on registers
6 https://www.qemu.org/
7 https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
8 Note that IRs may lack a specified operational semantics. Our work emphasizes the importance

of using a formally specified IR to enable translation synthesis.

7

and reads produce Write and R events, respectively. The same follows for memory
accesses; the sequence rule appends events for two instructions, and so on. The
full IR grammar and operational semantics is available online [1]. As a concrete
example, executing the IR statement R2 := R0 results in the event sequence
EIR = [(R,REG,R0,0x1), (W,REG,R2,0x1)] (where R0 initially stores the value
0x1). The production of ground truth ET by native execution and EIR is compared
during synthesis iterations to discover IR statements that satisfy the observed
input-output pairs. Note that since we perform a synthesis iteration for one
native instruction at a time, execution of the IR code is synchronized with native
execution. Our operational semantics therefore does not continue execution by
advancing a program counter: instead, it iterates through the sequence of IR
statements and executes them until the sequence is empty.9

4 Synthesis Approach

We now explain how our synthesis approach generates translation rules that lift
native instructions to a sequence of IR statements as a function of the following
inputs: (A) A unique identifier for the instruction (i.e., opcode); (B) the set of
instruction operands (as purely syntactic values, i.e., register names and imme-
diate values); (C) a set of input-output pairs on register and memory; and (D)
a set of candidate sketches in the IR.

4.1 Sketches from Term Deconstruction

Our first key insight is that concrete IR terms (generated from existing lifters)
preserve semantic properties to correctly synthesize translation rules for new
architectures. Our technique deconstructs concrete IR terms to automatically
generate the set of sketch candidates for synthesis. The second key insight is that
the syntactic values of native instruction operands (register names and immediate
values) reduce the set of possible sketch candidates, making synthesis efficient.

We deconstruct concrete IR terms to generate sketches. Formally, a sketch is
a partial function λh.S, where S accepts a vector of arguments h, or holes, that
generate a concrete term S. The arity of S depends on the number of leaf nodes
in the AST of the IR term. The input domain consists of two kinds of terms: free
variables (e.g., corresponding to registers), and immediate values (i.e., constants).
Note that these two kinds of terms correspond to the leaf nodes var and imm in
the IR grammar, respectively (see Fig. 3).

As an example, suppose we encounter the concrete IR statement R1 := R0+5.
We recursively visit each term in the statement and generate holes for terminal
nodes, thereby deconstructing the statement to yield a sketch JSK as follows:

Jλh.SK def= _var := _var + _imm

9 Note that PC-relative instructions, such as jumps, still need access to a program counter variable
to enable synthesis. For this, an internal PC is kept in the execution environment.

8

Three holes are created: the first two operands refer to variables, and the
third operand refers to an immediate bitvector value. Given a vector of operands
o = ⟨R5, R6, 2⟩, we can perform a substitution in S:

J(λh.S) oK = R5 := R6+ 2

To apply a vector of operators, it must match the arity in S over the number of
variables |vs| and immediate values |is|. In our example, S has arity 3, partitioned
as an arity pair ⟨2, 1⟩ since |vs|= 2 and |is|= 1. We use Algorithm 1 to generate
a set of candidate sketches from a program in the IR by visiting each statement
in the program. The function ToSketch in line 4 takes a concrete term IIR
and turns it into a sketch containing holes (all concrete values in leaf nodes are
converted to holes). Line 5 obtains the operands of IIR and partitions them to
obtain the arity pair ⟨|vs|, |is|⟩. The result of Algorithm 1 produces a partial
function Lookup mapping unique arity pairs to a set of candidate sketches.

4.2 Synthesis

We perform syntax-guided inductive synthesis over sketches. The program synthe-
sis problem stipulates that the formula ∀x.ϕ(x, JP K(x)) be valid for all inputs x
for a synthesized program JP K [7]. The formula ϕ relates an input and output spec-
ification against a synthesized program JP K. For an oracle-based, syntax-guided
synthesis the general formula is

∀x.ϕ(x, JP K(x)) ≡ ∀x. oracle(x) = JP K(x)

for some equivalence relation =. In Section 3 we defined the equivalence relation
for IR and native execution as equivalence of event sequences. In terms of inputs
⟨σT, IT⟩ from source language T (as in Section 3) and sketches JSK, we define the
translation synthesis problem as finding JSK subject to:

∀⟨σT, IT⟩.ϕ(⟨σT, IT⟩, JSK(⟨σT, IT⟩)) ≡
stepT(σT, IT) ∼ stepIR(αIR(σT), J(λh.S) Ops(IT)K)

(1)

for each unique IT. The synthesis algorithm goal is to discover a sketch JSK
applied to the operands of native instruction Ops(IT) such that (1) holds.

Algorithm 2 describes the synthesis process. Input consists of the lookup
function produced by MineSketches and trace information T containing a set
of triples ⟨σT, IT, ET⟩ generated from dynamic executions ET = stepT(σT, IT).
Functions Code and Ops in line 2 of Algorithm 2 extracts a unique identifier
code associated with IT, and its operands as a vector o, respectively. In line 4,
instruction operands o, initial execution state σT, and computed events ET are
associated with unique instruction codes in the map Ψ . Candidate sketches S
are obtained from a partition of the instruction’s operands (lines 5 and 6).

SynthInsn enumerates through all candidate sketches to find a satisfying
assignment of operands that satisfy events. As mentioned in Section 2, we cannot
assume that the operand order returned by the disassembler guarantees the desired

9

program ::= stmt seq
stmt s ::=

var := exp
| jmp exp
| if (exp) (stmt seq)
else (stmt seq)

exp e ::=
exp

| var variable
| imm bitvector value
| mem[exp1] := exp2 memory store
| mem[exp] memory load
| exp1 binop exp2 binary operation
| unop exp unary operation
| cast : nat[exp] casts

Fig. 3: Simplified IR Grammar

Algorithm 1: Mine Sketches
Input:

PIR : program in IR.
Output:

Lookup : ⟨|vs|, |is|⟩ → S. Lookup
returns candidate sketches S for an arity
pair (instruction operand sizes)

1 MineSketches(PIR)
2 for BasicBlockIR ∈ Visit(PIR) do
3 for StmtIR ∈

Visit(BasicBlockIR) do
4 λh.S ← ToSketch(IIR)
5 ⟨|vs|, |is|⟩ ←

Partition(Ops(IIR))
6 Lookup← UpdateMap(
7 Lookup, ⟨|vs|, |is|⟩, λh.S
8)

9 ret Lookup

Algorithm 2: Synthesis
Input:

Lookup,T : a lookup function
produced by MineSketches and trace
input T.
T : a dynamic execution trace.

Output:
LiftT : code→ SIR : a function that

returns a set of valid sketches in the
target IR for the given native instruction
code.

1 Synthesize(Lookup, T)
2 for ⟨σT, IT, ET⟩ ∈ T do
3 code, o← Code(IT),Ops(IT)
4 Ψ ←

UpdateMap(Ψ, code, {o, σT, ET})

5 ⟨|vs|, |is|⟩ ← Partition(o)
6 S ← Lookup(⟨|vs|, |is|⟩)
7 R ← SynthInsn(
8 σT, o,S, ET, Ψ(code)
9)

10 LiftT ←
UpdateMap(LiftT, code,R)

11 ret LiftT

Algorithm 3: Synthesis Iteration
1 SynthInsn(σT, o,S, ET, ψ)
2 R ← ∅
3 for λh.S ∈ S do
4 for λh.Sp ∈ Perm(λh.S) do
5 CIR ← (λh.Sp) o
6 EIR ←

stepIR(CIR, αIR(σT))
7 if ET ∼ EIR ∧
8 Verify(ψ, λh.Sp) then
9 R ← R∪ {λh.Sp}

10 ret R
11
12 Verify(ψ, λh.S)
13 ret

⋀
⟨o,σT,ET⟩∈ψ

14 (ET ∼ stepIR(α(σIR), (λh.S) o))

Algorithm 4: Lift
1 LiftHelper(LiftT, IT)
2 λh.S ←

TakeFirst(LiftT(Code(IT)))
3 o← Ops(IT)
4 IIR ← (λh.S) o
5 ret IIR

semantics. In Algorithm 3, line 4, Perm generates sketches that permute the
order of input operands in λh.S. We discuss permutation strategies in Section 4.3.
Each permuting sketch λh.Sp applies o and generates a concrete IR term CIR
and executes it to produce EIR. Lines 7 and 8 verify the concrete term satisfies all
events for the instruction IT observed so far. The check ET ∼ EIR short circuits
the more expensive Verify check (line 12) as an optimization. Each satisfying
sketch is added to the result set R. Valid sketches in the result set are updated
in the map LiftT. Algorithm 4 synthesizes liftIR (introduced in Section 3) by
transforming the LiftIR map into a lookup function.

In summary, using Algorithms 1–4 we fully derive the desired translation
IIR = liftT(IT) from initial inputs PIR and TT:

10

LiftT = Synthesize(MineSketches(PIR), TT)
liftT = λ IT.(LiftHelper LiftIR)

4.3 Operand permutations and One-To-Many Translation

The disassembler may return instruction operands in any order to Ops(IT). We
observed that operand order tends to correspond roughly with a left-to-right
reading of assembly instruction semantics. For example, an instruction add R0, 8
corresponding to a semantic expression R0 = R0+ 8 would disassemble with the
operands in the order ⟨R0, R0, 8⟩ However, we also observed small discrepancies.
For example, memory store instructions in the IR grammar may swap the source
and destination operands compared to the disassembled order. Function Perm
thus implements a customizable permutation transformation on operands. Though
exhaustive enumeration is feasible for small numbers of operands, we have found
that only permuting adjacent operands proved effective in practice. When we
experimented with an exhaustive permutations approach, we observed no increase
in successful synthesis. Complexity of trying all adjacency swapping permutations
is fast: linear in arity (order O(|vs|+|is|)).

Our current implementation synthesizes one-to-many translation by preserv-
ing existing one-to-many mappings implemented in current ARM and x86 lifters.
This allows synthesis to discover, e.g., conditional branch statements. On the other
hand, relying on a rigid mapping may miss sketches such as multiple consecutive
assign statements. We leave sketch composition for synthesis to future work.

5 Evaluation

The goal of SynthLift is pragmatic: to synthesize lifter rules for new architec-
tures, alleviating the need to manually translate the majority of instructions.
The focus application is to enable existing analyses for unsupported architectures.
We target a previously unsupported architecture, MIPS, and show that the
synthesized lifter discovers new bugs in commercial off-the-shelf MIPS binaries.
Accordingly, we evaluate SynthLift as follows:

– Is SynthLift effective at enabling existing analyses for previously unsup-
ported architectures (Section 5.1).

– What is the speed and accuracy of SynthLift, and what percentage of
instructions can SynthLift recover in widely used programs (Section 5.2).

– How well does SynthLift generalize across architectures (Section 5.3)?

5.1 Analysis Reuse

We applied an existing taint-based analysis to find new bugs in COTS binaries
for MIPS [2]. The analysis checks for cases where results of C library functions

11

are unused. For example, some C POSIX functions are declared with a “warn
unused result” attribute that flags warnings at compile time. Our analysis follows
taint flows for function return values to detect such bugs in binaries, where source
code is not typically available. The analysis looks for cases where the return
value is overwritten without being read. We ran the analysis on 30 binaries in
the sbin directory of a COTS D-Link router. In total, we discovered 29 bugs
in 30 binaries; for brevity, we summarize 8 binaries comprising 17 bugs that
span a variety of functions handled by the analysis (Figure 4a). Not shown, we
discovered 12 additional bugs across 12 additional binaries for similar functions
as in Figure 4a. 11 binaries did not generate bug reports. We manually inspected
analysis results using a decompiler to confirm true positives; where possible, we
were able to confirm unchecked values for binaries that have source code (such
as ntpclient). We encountered two false positives. This happened when return
values of two consecutive malloc calls are inaccurately tracked in our ABI model
(note: the inaccuracy is not due to the synthesized instruction semantics). To
consider a large real-world example, we also lifted OpenSSL to recover 86% of
instructions, and confirmed that the analysis did not find any bugs.

Name # Functions

† iptables 3 fwrite
† ntpclient 1 send
† pppd 1 fwrite

rdnssd 1 setsockopt
speedtest 2 system, fgets
timer 2 read, shutdown
wakeOnLanProxy 1 shutdown
wcnd 8 system

(a) # indicates the number of un-
used return values in COTS MIPS
binaries. We show Function names
for which return values are not used.
† indicates that we found evidence
of the bug in source code.

% ARM-IR Sketches % x86-IR Sketches

20.9 _
v
:=_

v
11.9 _

v
:=_

i
14.5 _

v
:=_

i
8.6 jmp _

i
8.9 jmp _

i
5.1 _

v
:= mem[_

v
+ _

i
]

7.0 _
v
:= mem[_

v
+ _

i
] 4.4 mem[_

v
+ _

i
]:= _

v
5.6 _

v
:=_

v
= _

i
4.2 _

v
:=_

i
= _

v
5.6 _

v
:= hi : 1[_

v
] 4.2 _

v
:= hi : 1[_

v
]

5.5 mem[_
v
+ _

i
]:=_

v
4.0 mem[_

v
]:=_

i
4.6 _

v
:=_

v
−_

i
3.9 _

v
:=_

v
−_

i

(b) Distribution of single-statement sketches
mined from x86 and ARM IR programs.
Holes v denote a variable; i, an immediate.
We omit bit widths for brevity, though hi:1
denotes a cast which keeps the high bit of
the value (e.g., common for testing IR flags).

Fig. 4

5.2 Synthesizing the MIPS Lifter

To synthesize the MIPS lifter, we used IR sketches generated from 28 ARM Core-
utils10 binaries, and used 5 programs from the Hacker’s Delight benchmarks [24]
(compiled to MIPS) to generate dynamic input-output pairs. Coreutils is a set
of highly popular command-line utilities and representative of typical programs;
Hacker’s Delight programs perform a variety of bit-manipulation operations that
generate input-output pairs for a diverse set of native instructions.

10 https://www.gnu.org/software/coreutils/coreutils.html

https://www.gnu.org/software/coreutils/coreutils.html

12

End-to-end synthesis (mining sketches, processing traces, and lifter synthesis)
takes 58 seconds. Each native MIPS instruction starts with a set of 29 initial
sketches on average (using Alg. 2 Partition and instruction operands). On
average, successfully synthesized instructions complete with 2 satisfying sketches
(due to commutativity of binary operations). Synthesis converges quickly: Figure 5,
left boxplot, shows that synthesis discovers the final set of satisfying sketches
after only two input-output pairs for most instructions. The final set of satisfying
sketches verify over thousands of input-output events for typical instructions
(Figure 5). We observe that the distribution of input-output pairs by Hacker’s
Delight binaries mirror the intuition that common instructions like “load word”
(LW) represent a disproportionately large part of the programs.

L
W

S
W

A
D

D
iu

A
D

D
u

S
L

L

O
R

L
B

u

A
N

D
i

S
R

L

S
U

B
u

J
R

A
N

D

L
H

u

J
A

L

O
R

i

S
W

R

S
W

L

J
A

L
R

S
B

X
O

R

L
B

S
R

A
V

T
E

Q

M
U

L

L
L

B
E

Q
L

S
L

L
V

S
H

S
R

L
V

S
R

A

X
O

R
i J

B
L

T
Z

A
L

B
G

E
Z

S
Y

S
C

A
L
L

S
Y

N
C

S
D

C
1

Verified Events

E
v
e

n
ts

 (
th

o
u

s
a

n
d

s
)

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0

Instruction

1
2

5
1

0
5

0
2

0
0

Sketch Convergence
per Instruction

E
v
e

n
ts

Fig. 5: MIPS Lifter Synthesis. On the left, the number of iterations until synthesis
converges on the final set of satisfying sketches over all events. On the right, the number
of verified input-output pair events for successfully synthesized instructions.

We ran the synthesized lifter on the 28 MIPS Coreutils binaries in the Debian
distribution. To count lifter coverage, we take the percentage of individual native
MIPS instructions that fire a translation rule in the lifter. On average, the lifter
recovers 84.8% of instructions. Thus, 15.2% of instructions in the binary could
not be lifted (in practice, we substitute NOP instructions in the IR). Synthesis
fails when a suitable sketch cannot satisfy the semantics of an instruction. One
such instruction is LUi, or load upper immediate. To lift this instruction, we
ideally want an IR candidate such as _var := _imm << _imm2

, where imm2 is
16. However, such a candidate is never mined from the IR sourced from ARM.
In Section 5.4 we suggest further improvements to our technique to address such
cases.

5.3 Generalizing Across Architectures

BAP currently supports lifting for both the ARM and x86 architectures. To
validate our ability to synthesize across architectures, we targeted MIPS by
mining sketches lifted from the suite of x86 Coreutils programs. The x86-sourced
MIPS lifter synthesized 6 less instructions than the ARM version due to missing

13

a rotation sketch.11 Interestingly, the x86-sourced lifter recovered the same 84.8%
instructions when lifting the MIPS Coreutils test set. Figure 4b suggests why we
gain the same utility when synthesizing under different architectures: the eight
most frequent sketches for ARM and x86 are very similar, and account for the
majority of IR instructions.

5.4 Discussion

Mining versus Manually Specifying. Our approach demonstrates the applica-
bility and feasibility of mining sketches to enable a cross-architecture translation.
Figure 4b also suggests that manually specifying a small set of sketches is com-
petitive to mining sketches. However, we observe that manual specification poses
additional challenges compared to mining: (a) it is difficult to anticipate exactly
the set of sketches to specify; current approaches usually involve a human-in-
the-loop who must iteratively estimate or consult specification manuals [10];
(b) the set of effective sketches changed based on how the IR is designed (i.e.,
different IRs will require different sketch templates); (c) manual specification
does not naturally consider similarities of multiple heterogeneous architectures;
our summary in Figure 4b is a first result to show that sketches do translate
for IRs. Our approach sees manual specification as complementary: mining is an
effective approach for revealing initial common sketches (and how the IR-specific
design structure relates to sketches), and can automatically discern similarity in
e.g., architectures at the IR level. A human-in-the-loop can use this information
to make synthesis more effective.
Partial Instruction Set Recovery. We showed in Section 5.2 that the synthe-
sized lifter recovers a high percentage (roughly 85%) of instructions in typical
binaries. On the other hand, the lifter has a lower rate of coverage for the entire
MIPS instruction set, approximately 33 instructions of 45.12 While a greater
percentage of the instruction set is desirable, our goal is to (a) assess whether
translation can be synthesized “out-of-box” without specifically considering the
target architecture and (b) validate how well existing analyses can operate with
a partial lifter synthesized for a new architecture. Our evaluation reveals ample
opportunity for improving instruction set coverage (e.g., manually specifying
missing sketches) and existing work has shown nondeterminstic approaches, like
stochastic search [15] to be effective. At present, our goal is to demonstrate synthe-
sis effectiveness using a tractable method, i.e., using only the set of finite sketches
mined from existing rules. We leave the appeal of combining complementary
approaches to future work.

6 Related Work

Bornholt et al. [6] propose mining sketches for structure to scale program
synthesis—our work demonstrates the ability to fill this gap by mining IR
11 The missing rotation operator is however found in subexpressions of IR statements, but we fail

to generate the desired statement _
var

:=_
var

<< _
imm

.
12 Using Fig. 5, (excluding instructions TEQ, SYSCALL, SYNC, and SDC1 which are modeled differently in

the trace than actual MIPS semantics), and compared to a simplified MIPS ISA(goo.gl/YUEdiy).

goo.gl/YUEdiy

14

sketches to scale IR translation over heterogeneous architecture instruction sets.
Our work relates generally to syntax-guided synthesis over sketches [4, 7]. Related
work in inductive synthesis use I/O pairs to recover x86 semantics as SMT encod-
ings [10, 15]. Our approach similarly uses I/O pairs to infer semantics, but targets
IR translation for multiple architectures and mines sketches automatically in lieu
of manual specification. Hasabnis et al. leverage forward source-to-compiler-IR
translation [14] and symbolic execution of compilers [13] to lift low level instruc-
tions to the compiler IR. These approaches rely on the existence of a forward
translation routine (i.e., compiler) for each architecture, which then reverse the
mapping to generate assembly-to-IR rules. In contrast, our approach generalizes
to cross-architecture translation using a bootstrapped set of initial candidate
sketches and input-output pairs only—no existing translation is required for each
architecture target. Applications in static binary translation manually translate
dynamically executed QEMU instructions to static LLVM IR [9] for multiple
architectures; we believe our technique has the ability to automate the translation
process. Work on verifying correctness of low level IRs are complementary to the
lifter synthesis problem; related techniques can assert correctness of semantics
with respect to observed I/O-pairs [10, 12] or symbolic equivalence checking [17].

7 Conclusion

We have presented cross-architecture lifter synthesis, a new way to automatically
synthesize IR translation rules for new architectures by leveraging existing IR
programs. We demonstrated that our approach is effective at recovering a lifter
for a new architecture, and provides sufficient instruction coverage to enable
analysis reuse and discovery of new bugs. Synthesis could discover more rules by
generating candidates over the IR grammar (e.g., using stochastic search [4, 15]),
or by manually supplying a small number of plausible sketches (rather than
manual, per-instruction translation). We further believe our work has further
application for discovering semantic relations between different languages: lifter
synthesis reveals similar semantic properties across heterogeneous architectures
and can distinguish differences when cross-translation synthesis fails. Lifter
synthesis opens up new methods for language translation, e.g., by complementing
manual processes, and is amenable to automation assistance where sketches can
be manually specified (e.g., [10]). Finally, we believe the approach has broad
application to IRs generally, including automatic discovery and synthesis of
common semantics for IR-to-IR translation.

Acknowledgments

This work is partially supported under NSF grant number CCF-1563797. All
statements are those of the authors, and do not necessarily reflect the views of
the funding agency. The authors would like to thank the BAP Team for their
continued open source development and support for the BAP project.

15

Bibliography

[1] BAP IR Operational Semantics. https://github.com/BinaryAnalysisPlatform/
bil/releases/download/v0.1/bil.pdf (2018), online; accessed 23 April 2018

[2] BAP Warn Unused Analysis. https://opam.ocaml.org/packages/bap-warn-
unused/bap-warn-unused.1.3.0/ (2018), online; accessed 23 April 2018

[3] Binary Analysis Platform. https://github.com/BinaryAnalysisPlatform/bap
(2018), online; accessed 23 April 2018

[4] Alur, R., Bodík, R., Juniwal, G., Martin, M.M.K., Raghothaman, M., Seshia, S.A.,
Singh, R., Solar-Lezama, A., Torlak, E., Udupa, A.: Syntax-guided synthesis. In:
Formal Methods in Computer-Aided Design. pp. 1–8 (2013)

[5] Balakrishnan, G., Reps, T.: Analyzing Memory Accesses in x86 Executables.
Compiler Construction pp. 2732–2733 (2004)

[6] Bornholt, J., Torlak, E.: Scaling program synthesis by exploiting existing code.
Machine Learning for Programming Languages (2015)

[7] Bornholt, J., Torlak, E., Grossman, D., Ceze, L.: Optimizing synthesis with metas-
ketches. In: POPL ’16. pp. 775–788 (2016)

[8] Dullien, T., Porst, S.: REIL: A platform-independent intermediate representation
of disassembled code for static code analysis. In: CanSecWest ’09

[9] Federico, A.D., Payer, M., Agosta, G.: rev.ng: a unified binary analysis framework
to recover cfgs and function boundaries. In: CC ’17. pp. 131–141 (2017)

[10] Godefroid, P., Taly, A.: Automated synthesis of symbolic instruction encodings
from I/O samples. In: PLDI ’12. pp. 441–452 (2012)

[11] Gotovchits, I., van Tonder, R., Brumley, D.: Saluki: Finding Taint-style Vulnera-
bilities with Static Property Checking. In: BAR ’18 (2018)

[12] Hasabnis, N., Qiao, R., Sekar, R.: Checking correctness of code generator architec-
ture specifications. In: CGO ’15. pp. 167–178 (2015)

[13] Hasabnis, N., Sekar, R.: Extracting instruction semantics via symbolic execution
of code generators. In: FSE ’16. pp. 301–313 (2016)

[14] Hasabnis, N., Sekar, R.: Lifting assembly to intermediate representation: A novel
approach leveraging compilers. In: ASPLOS ’16. pp. 311–324 (2016)

[15] Heule, S., Schkufza, E., Sharma, R., Aiken, A.: Stratified synthesis: automatically
learning the x86-64 instruction set. In: PLDI ’16. pp. 237–250 (2016)

[16] Hindle, A., Barr, E.T., Gabel, M., Su, Z., Devanbu, P.T.: On the naturalness of
software. Communications of the ACM 59(5), 122–131 (2016)

[17] Kim, S., Faerevaag, M., Junk, M., Jung, S., Oh, D., Lee, J., Cha, S.K.: Testing
intermediate representations for binary analysis. In: ASE ’17 (2017)

[18] Kinder, J., Veith, H.: In: Precise Static Analysis of Untrusted Driver Binaries. pp.
43–50. FMCAD ’10 (2010)

[19] Lattner, C., Adve, V.S.: LLVM: A compilation framework for lifelong program
analysis & transformation. In: CGO ’04. pp. 75–88 (2004)

[20] Le, V., Sun, C., Su, Z.: Randomized stress-testing of link-time optimizers. pp.
327–337. ISSTA ’15 (2015)

[21] Molnar, D., Li, X.C., Wagner, D.A.: Dynamic test generation to find integer bugs
in x86 binary linux programs. In: USENIX Security Symposium ’09

[22] Schwartz, E.J., Avgerinos, T., Brumley, D.: All you ever wanted to know about
dynamic taint analysis and forward symbolic execution (but might have been afraid
to ask). In: IEEE Security and Privacy. pp. 317–331 (2010)

[23] Sun, C., Le, V., Zhang, Q., Su, Z.: Toward understanding compiler bugs in GCC
and LLVM. In: ISSTA ’16. pp. 294–305 (2016)

[24] Warren, H.S.: Hacker’s delight. Pearson Education (2013)

https://github.com/BinaryAnalysisPlatform/bil/releases/download/v0.1/bil.pdf
https://github.com/BinaryAnalysisPlatform/bil/releases/download/v0.1/bil.pdf
https://opam.ocaml.org/packages/bap-warn-unused/bap-warn-unused.1.3.0/
https://opam.ocaml.org/packages/bap-warn-unused/bap-warn-unused.1.3.0/
https://github.com/BinaryAnalysisPlatform/bap

	Lecture Notes in Computer Science
	Introduction
	Overview and Problem Definition
	Synthesis Model
	Comparing Executions
	Operational Semantics

	Synthesis Approach
	Sketches from Term Deconstruction
	Synthesis
	Operand permutations and One-To-Many Translation

	Evaluation
	Analysis Reuse
	Synthesizing the MIPS Lifter
	Generalizing Across Architectures
	Discussion

	Related Work
	Conclusion

