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Contemporary science has been characterized by an exponential
growth in publications and a rise of team science. At the same
time, there has been an increase in the number of awarded Ph.D.
degrees, which has not been accompanied by a similar expansion
in the number of academic positions. In such a competitive envi-
ronment, an important measure of academic success is the ability
to maintain a long active career in science. In this paper, we study
workforce trends in three scientific disciplines over half a century.
We find dramatic shortening of careers of scientists across all three
disciplines. The time over which half of the cohort has left the field
has shortened from 35 years in the 1960s to only 5 years in 2010s.
In addition, we find a rapid rise (from 25% to 60% since 1960s) of a
group of scientists that spend their entire career only as supporting
authors without having led a publication. Altogether, the fraction
of entering researchers who achieve full careers has diminished,
while the class of temporary scientists has escalated. We provide
an interpretation of our empirical results in terms of a survival
model from which we infer potential factors of success in scientific
career survivability. Cohort attrition can be successfully modeled
by relatively simple hazard probability function. Although we find
statistically significant trends between survivability and author's
early productivity, neither it nor the citation impact of early work
or the level of initial collaboration can serve as reliable predictors
of ultimate survivability.

scientific workforce | scientific careers | career success

Contemporary science has been characterized by an expo-
nential growth in practitioners and publications (1) and a rise of
team science, both in terms of the increasing prevalence of team-
authored work and the growth of team sizes (2-4). The gradual
shift from individual to team science is driven by a variety of
factors, including increasing capital intensivity of science (5) and
the increased need for technicians and staff scientists (6). At the
same time, in recent decades there has been a substantial growth
in the number of awarded Ph.D. degrees (7), which has not been
accompanied by a similar growth in the number of academic
positions (8), leading to a growing concern over the lack of
opportunities for new PhDs in science (9, 10) and even warnings
regarding possible scientific workforce bubbles (11, 12). In an
environment with substantial growth in PhDs granted and only a
modest growth in the number of faculty positions, the idea of each
professor regularly reproducing herself in each cohort of graduate
students becomes untenable. These and similar data have led to
calls for rethinking academic careers, and to discussions of the
need for policy interventions to address this growing problem (5,
9,13).

How does the shifting landscape of science over the past
half century affect the roles of new researchers and their overall
careers? There is an abundance of studies that focus on the
criteria that may affect researchers' success in terms of impact
of their work, especially in terms of citations to publications.
However, another, and perhaps more fundamental aspect of
success is the ability to perform research over the full extent of
someone’s career, rather than to leave the field prematurely. A
smaller fraction of literature focuses on understanding the factors
leading to successful academic careers in this broader sense, and,

WWW.pnas.org -- ---

more recently, the factors contributing to abandoning scientific
careers (14-16). Prior work has identified productivity (14, 16-
20), impact (20, 21), number of collaborators (14, 17), gender
(22), prestige of PhD granting and hiring institutions (23, 24),
prestige of the advisors (24, 25), gender of the advisors (16) and
the level of specialization (26) as important factors correlated
with career success. Some of these studies have found that these
factors are correlated. For example, there is a correlation between
citation success of early papers and later increase in productivity
(27). There is also a reported correlation between gender and
productivity (19, 28, 29), gender and citations, and gender and
collaboration. Finally, there is a correlation between institutional
prestige and productivity (30, 31) as well as institutional prestige
and impact (32). Directionality of these correlation is difficult to
establish and is not the focus of this paper.

On the other hand, there are relatively few studies that focus
on modeling scientific careers (30, 33-38) in the context of sur-
vivability. An early study of this type (35) used a small sample
(500 authors) during a seven-year period (1964-1970) and has
established a division of all authors into transient and continuants
and found that the levels of productivity are correlated with
career length. Two recent studies (36, 37) used survival analysis
and hazard models to examine gender differences in retention
of science and social science assistant professors. These studies
established that the chances of survival of assistant professors in
science and engineering are less than 50% and that the “median
time to departure is 10.9 years” (36) and that, in social sciences,
“half of all entering faculty have departed by year 9” (37).

Despite various efforts there is a clear gap in our knowledge
of careers of scientific workforce in general (and not only tenure-
track scientists). Furthermore, large-scale investigation of the
trends in careers of scientific workforce across entire disciplines
and over long periods of time (many decades) is still in its infancy.

In this study we analyze the changing careers of the scientific
workforce of entire disciplines without making assumptions re-
garding the position they have in the scientific community (i.e.,
not limiting to those who have tenure track jobs, as was the
case in many of the earlier studies). We specifically focus on the
role that different authors play in knowledge production. Fur-
thermore, we investigate whether one can identify early factors
(during a researcher’s apprenticeship phase) that would indicate
a scientist’s ability to maintain a research active career over
many years. Our big-data approach is facilitated by an extensive
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Fig. 1. Model of scientific careers. For each cohort of authors entering the field we determine the knowledge production role as a “lead author” (researcher who
at any time in their careers leads a production of a scientific publication) or a “supporting author” (those who will have never lead a publication). Furthermore,
each new author will fall into one of five categories of ultimate career status: transients (authors who only had one publication), dropouts (authors who leave
the field prematurely at different levels of their careers) and full-career scientists (authors who ultimately survive in the field). In each survival category there
will be some authors classified as lead and some as supporting (the repeated red curve). We follow fifty cohorts starting from the 1960s.
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Fig. 2. The fraction of each cohort who contribute or will contribute to the
knowledge production as lead authors. The status of lead author means that
the author has led a publication at any time in his/her career. An increasing
fraction of entering authors never acquire the lead role but participate in
knowledge production solely as supporting scientists.

longitudinal dataset containing millions of bibliographic items
covering the entire period of contemporary science.

In order to capture the above-stated changes in the demo-
graphics of the scientific workforce, we created a survival model
of authors based both on the primary role they play in the produc-
tion of knowledge and their ultimate survival status in science.
Each author is placed in one of two categories based on their
primary authorship roles: lead authors and supporting authors.
Lead authors are all authors who have lead a publication at any
time in their career, whereas the supporting authors are the ones
who have never that role in their career. Furthermore, we place
each author (whether lead or supporting) into one of the five
categories in terms of their ultimate survival status: transients
(authors with a single publication), junior dropouts (multi-paper
authors leaving after 0-10 years after the first publication), early-
career dropouts (multi-paper authors leaving after 11-15 years
after the first publication), mid-career dropouts (multi-paper au-
thors leaving after 16-20 years after the first publication), and full
career scientists (multi-paper authors who have careers longer
than 20 years). This classification is presented schematically in
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Fig. 3. The fraction of each cohort who has published only one paper
(transient authors). The share of transients has increased in the last two
decades, especially in ecology and robotics. The trend in the fraction of
authors who are lead authors (Figure 1) remain similar when transients are
excluded from cohorts.

Figure 1. The balance between supporting and lead authors in
each of the survival categories is different, as indicated by the
tilted curve in Figure 1. Most transient scientists belong to the
supporting author group, whereas, as we move towards the full-
career status, the proportion shifts in favor of lead authors. In
order to study the changing landscape of scientific careers in
terms of knowledge production roles and survivability, we focus
our analysis on cohorts — a group of authors who first appear
on the scientific stage at the same time (in the same year). Our
study is facilitated by the availability of extensive longitudinal data
allowing us to follow up half a century of cohorts and to assess
their eventual careers.

In this study we focus on researcher cohorts in three scien-
tific disciplines covering different areas of science: astronomy
(physical sciences), ecology (life sciences) and robotics (engi-
neering and computer science). We focus on researchers who
have published in principal journals belonging to these fields
(listed in SI Appendix). These are the journals that are well
established, usually publish a large fraction of original research in
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Fig. 5. Hazard model. Hazard probabilities for lead authors (panel A) and supporting authors (panel B). The comparison of linear + constant hazard model
(dotted lines) with the empirical survival functions in the field of astronomy (panel C).
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Fig. 6. Early predictors of survivability. Normalized productivity (panel A), impact (panel B) and collaboration (panel C) metrics based on the publication from
the first five years of author’s career are shown for lead (full lines) and supporting (dashed lines) authors in two disciplines for authors of different survival
status: junior dropouts (J; leaving after 6-10 years after the first publication), early-career dropouts (E; 11-15 years), mid-career dropouts (M; 16-20 years), and
finally the scientists who achieved full careers (F; =20 years).

a particular field, and are considered to be good representatives
of those fields. We used a number of studies to identify the
core journals for each discipline. For astronomy, (39) identified
a list of core journals; the list used for ecology came from (40,
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41). We define authors and derive their metrics from principal
journals alone. Some of these authors may publish some fraction
of their work in other journals (either other journals in the same
or related area or in some cases in multidisciplinary journals).
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Table 1. Cox proportional hazard regressions, for lead authors, by cohort.

Lead authors (1) All (2) All (3) (4) (5) (6) (7)
1960s 1970s 1980s 1990s 2000s
Number of BO1***  BOi***  g45* 950***  Q25***  BRE***  BS7***
publications (.004) (.004) (.021) (.013) (.012) (.008) (.009)
Average citations  .999 .987**  99Q***  gg94* .998 1.000
per paper (.001) (.004) (.003) (.002) (.001) (.001)
Maximum citation 1.000
on a paper (.000)
Number of 1.001 1.001 1.042 975 963** 996 997
collaborators (.003) (.003) (.032) (.016) (.012) (.005) (.005)
Cases 34037 34037 1862 4764 6195 9511 11705
Exits 9034 9034 617 1227 1843 3531 1816
LR Chi-square 111149 111052 2214 82.20 160.91 557.17 508.79
p>chi-square .00 .00 .00 .00 .00 .00 .00

Productivity, citations and collaborators pertain to author's first five years of the career.

***p<0,001, **p<0.01, *p<0.05.

Table 2. Cox proportional hazard regressions, for supporting authors, by cohort.

Supporting (1) All (2) All (3) 1960s (4) 1970s (5) 1980s (6) 1990s (7) 2000s

authors

Number of 966***  Qpp*** 972 1.056 1.042 1.017 .93g***

publications (.008) (.008) (.099) (.066) (.046) (.015) (.012)

Average 1.001** 1.003 .990* 1.005* 1.001* 1.000

citations per {.000) (.007) (.005) (.002) (.000) {.000)

paper

Maximum 1.000*

citation on a {.000)

paper

Number of 1.006 1.003 1.223 1.038 964 .942* .994

collaborators  (.015) {.016) (.244) (.093) (.061) (.023) (.024)

Cases 10677 10677 195 761 1540 3136 5045

Exits 4290 4290 91 308 767 1865 1259

LR Chi-square 59.16 55.76 1.83 7.70 5.77 10.95 103.24

p>chi-square .00 .00 .61 .05 12 .01 .00

Productivity, citations and collaborators pertain to author's first five years of the career.

***p<0,001, **p<0.01, *p<0.05.

Table 3. Cox proportional hazard regressions, for lead and supporting authors, by cohort.
(1) All (lead (2) AST (3) ECL (lead (4) ROB (5) All (6) AST (7) ECL (8) ROB
authors) (lead authors) (lead (supporting (supporting (supporting (supporting
authors) authors) authors) authors) authors) authors)

Number of B x** g2 *x** BeT*** 924 *** .966*** (,008) 1969 *** (,082) 1.012(.052) 1.105 (.099)
publications (.004) {.005) (.012) (.024)
Average citations .999 (.001)  1.001 (.001) .999 (.001) 1996 (.003) 1.001** (.000) 1.001** (.000) 1.009*** (.001) .992 (.005)
per publication
Number of 1.001 (.003) 1.001 (.003) 1.018(.009) .979(.018) 1.006 (.015) 1.019 (.016) .937 (.066) .822 (.102)
collaborators
Cases 34037 22178 9499 2360 10677 6791 2988 898
Exits 9034 4613 3488 933 4290 2476 1409 405
LR Chi-square 1111.49 417.21 129.20 27.42 59.16 39.73 26.73 6.33
p>chi-square .00 .00 .00 .00 .00 .00 .00 .09

Productivity, citations and collaborators pertain to author’s first five years of the career. ***p<0.001, **p<0.01, *p<0.05.
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This incompleteness will reduce the metrics, and in some cases
may affect the determination of career length or authorship role.
Quantifying the incompleteness and its effects is difficult given
the lack of topical classification at the article level. However,
since the analyses in the paper are relative (one time period
vs. another, authors with one set of characteristics vs. another),
the incompleteness will not affect some time periods or authors
more than the others, so the relative trends should be unaffected.
Our choice is conservative because the alternative, including all
works that match some name, would greatly exacerbate the name
disambiguation problem and potentially confounds the results.

All of the analyses are derived from the bibliographic data ex-
tracted from the full Clarivate Analytics Web of Science database.
We used the entire temporal span of the database (from 1900
to 2015) to establish the starting and the ending years of activity
of each author and thus identify the cohorts. For astronomy and
ecology we follow cohorts from 1961 and for robotics since 1985
(none of the core robotics journals published prior to 1983). The
number of authors belonging to these cohorts and included in the
analysis is 71,164 in astronomy, 20,704 in ecology and 17,646 in
robotics.

To identify unique authors, we perform, for each field-specific
dataset separately, disambiguation of author names using the
hybrid initials method. The scheme represents an improvement
over standard initials methods because it either ignores or takes
into account the middle initial depending on the name frequency
(42), minimizing the splitting of unique authors due to inconsis-
tent use of middle initial while maximizing the author separation.
Percentages of authors whose identity has been compromised due
to either splitting or merging have been estimated by simulation
and are between 3 and 5% (42), which is below a level that would
significantly affect our results. Ambiguity is relatively low because
we focus on principal journals alone.

The roles that authors play in knowledge production (lead
and supporting) are established from author lists in the following
way. Authors on single authored papers are given a lead author
status. In order to establish the roles in multi-authored papers,
we have first verified that in all three disciplines under study the
author lists are ordered by author contributions (with the first
author almost always matching the corresponding author), except
in rare cases when they are ordered alphabetically. We find no
evidence for a deliberate alphabetical listing in papers with fewer
than ~4 authors, and in such cases we adopt the first author as
a lead author. For longer lists of authors we check if the author
list is alphabetical (based on up to seven first-listed authors), and
if it is not, again take the first listed author as a lead author.
If the list is alphabetical, we determine the lead author only if
the corresponding author is not the first author. The fraction
of articles for which the lead author could not be determined is
relatively small (1.6%, 0.2% and 0.3% for astronomy, ecology and
robotics, respectively).

For each unique author we establish the cohort year as the
year when he or she first appeared as an author in any role (lead
author or a supporting author). Since our data extend to periods
prior to the starting time for the analysis, the cohort year, as well
as the year of the departure from the field, can be established
reliably. An author is considered currently active if he or she
has published (in any role) in the last three years covered by
database. Of the active authors some have achieved full-career
status (defined as at least 20 years of active publishing), whereas
for others their ultimate survival status is currently unknown and
they are excluded from those analyses where such information is
required.

RESULTS

Growth of supporting-author scientists

Footline Author

Previous results on the growth of team science and the
changing structure of such teams allows us to propose that one
component of the changing career demographics of scientist is
a differentiation into heterogeneous career paths, with some
scientists becoming lead authors and others specializing as non-
lead supporting team members. Here we establish the extent to
which each of these groups has contributed to the creation of
knowledge over the last half century.

Figure 2 shows the fraction of authors from each cohort who
at any point in their career will contribute to the field as lead
authors. The fraction of lead authors has been experiencing a
dramatic downward trend in all three disciplines since the 1960s,
leading to a complementary increase in the share of supporting
authors. Furthermore, the proportion of lead authors has been
similar in all three fields, indicating that the shift of roles may
follow a universal pattern. While in the early cohorts, from the
1960s and 1970s, the vast majority (~75%) of entering authors
had a lead-author role, this percent has dropped to less than
40% in most recent cohorts. The strong shift is unrelated to the
presence of transient authors. If those were excluded from the
cohort, the drop in the share of lead authors remains similar:
from ~85% in the 1960s to ~50% in the current decade. Is the
increasing fraction of supporting authors an inevitable outcome
of increasing team sizes? To test this possibility we performed
modeling in which we went through all the papers in each dataset
and tried to replace coauthors (all authors except the lead author)
who are classified as supporting authors with the authors who
have the status of being lead authors and were active at the time
of paper publication. In this modeling the number of authors per
paper remains the same, as well as the individual (lead-author)
productivity (because we only replace coauthors) and yet, we were
able to populate mock author lists solely with lead authors. This
demonstrates that having large team sizes does not automatically
require the recruitment of supporting scientists. It also signifies
that large teams are not entirely the product of collaboration
among eventual full-role scientists (which may be more prevalent
in small teams) but rather involves a recruitment of a special
workforce of supporting scientists.

Survival function and the decreased half-life of cohorts

The minimal level of contribution to scientific knowledge is
the production of a single paper. The existence of such authors
was first pointed to by Price and Glrsey in 1976 (13), who
named this type of author “transients” and established that they
accounted for 25% of the population of scientists in the late 1960s.
In Figure 3 we find that the fraction of transients has remained
relatively constant in most cohorts, although this category of
authors has started to increase in recent cohorts across all three
fields (since about the 1990s), especially in robotics and ecology.
Notably, we also find that unlike the fraction of lead authors
which is universal, the number of transients is field dependent,
with levels in astronomy similar to the ones Price & Glrsey
found, and much higher rates (50-70%) in ecology and robotics.
Interestingly, one quarter of recent transients, in all three fields,
were lead authors. This fraction was as high as one half in the
1960s. This suggests that the threshold for lead authorship is often
crossed even in the population that never genuinely embarks on
a research path in that discipline.

For authors who persist after the initial publication we em-
ploy survival analysis to study their scientific career longevity. In
Figure 4, we show the survival curves of select cohorts spanning
the period of the most recent four decades. Survival curves are
calculated as the fraction of a cohort remaining after x years.
While the survival curves of contemporaneous cohorts in differ-
ent fields have different slopes, we see that in each field the curves
undergo a similar evolution: from relatively long survival times
in the 1980s, to very rapid attrition of the scientific workforce
in most recent times. We observe that until the 1980s (1990s for

PNAS | Issue Date | Volume | Issue Number | 5

613
614
615
616
617
618
619
620
621
622
623
624
625
626
627

671
672
673
674
675
676
677
678
679
680



astronomy), more than half of each cohort had “full” (20+ year)
careers. However, in recent decades, it is no longer the case. The
results correspond to a continuous decline in the expected career
length.

In order to expand the survival analysis to every cohort and
cover the full period from 1961, we calculate, for each cohort,
its half-life, the time it takes to lose 50% of the cohort. Half-
lives are determined from a linear fit to the survival function,
regardless of whether the cohort has yet reached 50%. Half-lives
for the three fields as a function of cohort year are shown in
the lower right panel of Figure 4. In astronomy, the half-life has
dropped from about 37 years in 1960s to just 5 years in 2007. In
ecology and robotics, the half-lives are even shorter, and have also
been decreasing at similar rates. When we analyze lead authors
and supporting authors separately, we find that in ecology and
robotics their half-lives are similar, whereas in astronomy the half-
lives of supporting authors are shorter than those of the lead
authors by about 5 years. Most recently (2010 cohort) half-lives
are 9 and 4 years respectively.

Career progression model

To pave the way for a more fundamental understanding of the
processes that lead to the attrition of the workforce, we describe
the career trajectory of an individual researcher using a simplified
version of the model of Figure 1. In the simplified version, we
focus only on non-transient authors. Further we neglect the differ-
ence among types of dropouts. During a career, a researcher can
be in one of the following four states: B the beginning of a career
(defined with the first paper), S achievement of the supporting au-
thor role, L achievement of the lead-author role and X cessation
of the career. An author can initially be in S state and transition
into L state. The § —»L transition is considered irreversible, i.e., L
-8§ is not allowed in the model. Authors continue in their states
until reaching state X. We train the model using the data at our
disposal. We find that the § —L transformation takes place in the
first five years of a career: authors who become leads achieve
this status quickly. For the survival model, we are interested in
the likelihood of observing the transitions S—X or L-X, i.e., the
hazard probability. We show the hazard probability in Figure
5, separately for lead and supporting authors. For lead authors
the hazard probability is relatively constant, at around 0.03. For
supporting authors, the exit probability is higher and shows a two-
mode behavior: decrease in the first 8 years and reaching a more
stable value subsequently. We model the hazard function as a
piece-wise linear+constant function:

h = a(t —tyreax) + b foOr t < fyeax, and h = b = const. for ¢ >
IlfIm=.ak1

where a b are constants and fy,.;x = 8 is the time where the
hazard function changes behavior. For astronomy, the model is
tested against the data in the right panel of Figure 5. The survival
curves are now based on all cohorts, so they represent time-
averaged survival for lead and supporting authors. The model
reproduces the salient features of the empirical curve. Remark-
ably, the analysis shows that the hazard is relatively constant
throughtout the career, i.e., that there are no punctuated bottle-
necks at which a large fraction of a cohort would leave the field.

Early indicators of scientific survivability

Given the increasing uncertainty of achieving a full career
in science, one wonders whether there are any characteristics of
scientists early in their careers that could indicate their survival
status (38). We define ‘early’ as the first five years of a researcher’s
presence in the field (what we might call their “apprenticeship”
years). Given our focus on the roles that scientists play in the pro-
duction of knowledge, we focus on the variables that are directly
related to this process: productivity, impact, and collaboration.
These variables have been identified in prior work as correlated
with career trajectories. We do not focus on some other variables
that have been identified as important for career longevity and
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success: such as gender and the prestige of an institution a scien-
tist is affiliated with, which are more pertinent in the context of
studies that focus on career aspects that involve institutional and
job roles (hiring, tenure and promotion). While our models do not
explicitly control for gender, two recent studies analyzing career
longevity of academic faculty found no differences in faculty
attrition by gender (except in the field of mathematics) since 1990
(37, 43).

In this analysis we look at the total productivity in the first
five years of a career (in any authorship role), and we examine
two types of impact: average impact of early work (the number
of citations per paper received in the first five years) and the
peak impact (the maximum number of citations received in a
5-yr window to a single, early-career publication). Finally, for
collaboration we focus on the number of direct collaborators in
the first five years of the career. Direct collaborators are defined
as coauthors on a paper led by the author in question, as well as all
the unique lead authors of papers on which the author in question
is a coauthor. If neither author is a lead on some publication they
do not constitute direct collaboration.

In order to aggregate the data from cohorts that span a long
time period, one needs to take into account that all three variables
have significantly increased over time. For example, a researcher
from the 1960 cohort who had 10 citations per paper may have
been the most impactful in that cohort (~100 percentile), whereas
the same number of citations for a cohort from 2000 may place the
researcher in middle of the cohort (~50 percentile). Therefore,
we establish normalized measures, by determining the percentiles
for each variable and for each author in a given cohort.

Figure 6 shows mean productivity, citation and collaboration
levels for authors of different survival categories: junior dropouts
(J; leaving after 6-10 years after the first publication), early-career
dropouts (E; 11-15 years), mid-career dropouts (M; 16-20 years),
and finally the scientists who achieved full careers (F; >20 years).
The values for robotics, which contains fewer cohorts and smaller
sample size is noisier and we omit it for clarity. The trends are
shown separately for lead and supporting authors. The trends
are fairly consistent between astronomy and ecology (with the
exception of collaboration). Furthermore we find that the trends
involving average citation per paper and maximum citation are
very similar and we show only the ones involving average citations.
Figure 6 reveals that lead and supporting authors follow different
trends. Overall, lead authors, regardless of survival category, have
significantly higher production and collaboration levels than sup-
porting authors, whereas their impact levels are similar. Support-
ing authors, while working on fewer papers and with fewer direct
collaborators, nevertheless contribute to projects of similar im-
pact. For lead authors there is a slight positive trend between the
early level of all three metrics and the eventual survival (except
for ecology and collaboration where there is no significant trend).
In particular, based on the means comparisons, lead researchers
who go on to full careers (F) tend to have, on average, higher
levels of productivity, citation and (for astronomy) collaboration.

The four-state career model which provides an estimate of the
career termination hazard rate by career state not only supports
the empirical survival functions well, but shows that the hazard
rate is relatively constant throughout the career, thus also sup-
porting the model developed by Petersen et al. (34).

The above plots focused on individual variables. To quan-
tify the effect of the variables on survival taking into account
internal correlations we use the Cox proportional hazard survival
model. For this analysis we use career lengths in annual incre-
ments (rather than grouping into only four categories) and the
Efron method to correct for ties. Although many of the cases
include careers of greater than 20 years, we recode career length
as maximizing at 20 (hence all careers greater than 20 years,
corresponding to full-career survival status, are treated as right
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truncated). In addition, because we are testing the effects of the
first five years of performance on subsequent exit, all our cases
in this analysis have career lengths of at least 6 years. We are
then testing, among the set of researchers who accumulate five
years of background experience, how career lengths differ by
publications, citations and number of collaborators during their
first five years (net of the effects of the other variables). We use
the untransformed publications and citations data, as we will be
focusing on comparisons within cohorts.

Given the very different survival curves for the lead and
supporting authors (Figure 5), we estimate the effects separately
for each group. Tables 1 and 2 give the models. Column 1 in
Tables 1 and 2 shows the effects of background characteristics
(publications, citations, number of collaborators) on hazards of
exit (with values greater than 1 increasing the rate of exit and
values less than 1 decreasing the rate of exit). The first panel
shows the results for lead authors and the second panel shows
the results for supporting authors. Column 2 repeats this analysis
using the maximum cites among the researchers first 5 years of
publications. We see that, when we control for the net effects
of the other indicators, across the 50 years (1960-2010) for lead
authors, publications significantly reduce the hazard of exit, while
there is little effect of citations (either measure) or number of col-
laborators. For supporting researchers, publications also have a
negative effect on exit, although the effect is weaker than for lead
authors. Citations (either measure) also have an effect, although
the effect is positive (increasing exit). Number of collaborators
has no effect.

A test of the proportional hazard assumption that the effects
of the predictors are constant over time rejects the null hypoth-
esis for publications (and is close to significant for citations).
Furthermore, the data above suggest that the career conditions
are changing over time. And, also, publications, citations and
collaborations rates have all been changing over time. Hence, we
estimate the effects across cohorts separately (columns 3 to 7).
For lead authors, we see that publications have consistently been a
significant predictor of career longevity. We also see that citations
reduced the hazard of exit in the early cohorts, but more recently,
the model is dominated by publications, with citations having
little independent effect. In contrast, for supporting authors,
publications have very weak effects until the most recent cohort.
Table 3 shows that these effects are largely consistent across fields,
although we find that the effect of publications is significant for
supporting researchers in astronomy.

In Tables 1 and 2, we report the hazard ratios from a mul-
tivariate Cox proportional hazard model. We are estimating the
relative hazard to exiting, truncating at 20 years (so we are esti-
mating the relative hazard of leaving academic publishing before
20 years). The table is reporting the change in the hazard ratio for
exiting from a one-unit change in each variable, controlling for
the effects of all the other variables. These hazard ratios can be
interpreted by estimating how far they are from 1.0. For example,
for lead authors across all years, publications have a coefficient
of .891 (column 1). This means that one publication reduces the
hazard of exit by about 11% (1.0-0.891 = 0.109). In terms of the
probability of achieving a full career, it grows gradually from 50%
for authors with one early publication to 85% for authors with
20 publications. In contrast, one citation reduces the hazard very
little (0.1%). Therefore, for lead investigators, each publication
has substantially more impact on survival than does each citation
(about 100 times greater). In contrast, for supporting authors, one
publication reduces the hazard of exit by about 3% (1.0-0.966),
while citations again have very little effect. However, looking
across the cohorts, we see this effect for supporting authors is
largely limited to the most recent cohort (column 7). We can
also see that, for the full span of cohorts (column 1), the effect
of publications for lead authors is much greater than that for
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supporting authors (11% v. 3%), and that when we compare
across cohorts (columns 3 to 7), the effect of publications for
reducing exit is stronger (the hazard ratio is lower) for lead than
for supporting authors.

DISCUSSION

Recent work on the organization of science has focused on the
internal structures of research teams, and argued that one likely
outcome of this shift in the nature of scientific work has been the
growth of dependent scientists, whose careers depend on being
members of such teams (6, 13). And, less obviously, there has
been a concomitant increase in high stakes evaluation and com-
petition for funding, hence increasing emphasis on productivity
(44-47). One solution to this new emphasis on productivity is
increasing division of labor (48, 49). The growth of scientific team
sizes is being accompanied by a transition in the organization of
scientific work from craft to bureaucratic industrial principles,
with increased division of labor and standardization of tasks (13,
50, 51). The result is a growth of scientists whose function is to
support the projects that others are lead on. Qur results confirm
this scenario, showing that increasing fraction of entering authors
never transition from supporting to lead author role. We also
show that such trend is not an inevitable outcome of the increas-
ing sizes of teams per se, but arises due to the different roles that
some authors now have in large teams compared to the roles that
members of smaller teams have (team rmembers vs. collaborators).
In some fields, such as ecology and robotics, lead and supporting
authors have similar half-lives, while in others, such as astronomy,
the half-lives of supporting authors is significantly shorter.

Of course, there are well known productivity advantages
from organizing teams with a division of labor, and with some
team members specializing in supporting roles (48). Hence, it is
perhaps not surprising that science is shifting to larger teams, with
more specialization, and that increasingly some scientists are spe-
cializing in supporting roles. Note that we are not assuming status
or skill distinctions in our classification of lead and supporting
authors (50). We are arguing that such supporting scientists are
critical to the production of contemporary science (6). However,
it is also the case that institutions, such as universities and funding
agencies, build around these traditional status distinctions, for ex-
ample, between post-doctoral scientists and tenure track profes-
sors (6). However, our survival analyses suggest that the criteria
predicting longevity for supporting scientists is quite distinct from
that for lead researchers and it may not be appropriate to impose
similar criteria on both groups when making decisions about who
to hire or renew. We argue there is a need to reform career
structures in universities to account for the changing nature of the
population composition and reproduction cycles in team science,
with social insect colonies rather than parent-child reproduction
as a more appropriate model.

While we cannot address this with our current data, we
point to a tension between the research production and teaching
functions that academic labs provide (5, 12, 44, 50, 52). These
two trends are bringing fundamental changes to scientific careers,
with decreasing opportunities for lead researcher positions and
increasing production of, and demand for, a scientific workforce
to fill positions as permanent supporting scientists. These trends
together suggest downward pressure on career longevity (as more
people exit the academic science labor force), and the growth of
dependent supporting scientist positions to support the relatively
shrinking share of lead researchers. However, one concern is
that such supporting scientist positions do not fit well with the
employment system in most universities, which are structured
around a graduate apprenticeship, a short period of post-doctoral
training, and then movement into a tenure track (and eventually
tenured) professor position (5). Instead these support workers
may be relegated to a series of short term post-doc contracts
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or other forms of contingent academic work. While this model
implies an up or out academic pipeline (with significant shares of
the research workforce dropping out of research active academic
positions at each stage), the growth of permanent supporting sci-
entists may suggest an alternative career path that, while perhaps
with shorter survival than the traditional lead researcher path,
may be a growing share of the academic labor force. Furthermore,
such careers may be premised on a different set of criteria than is
typically predictive of the career survival of lead researchers.
Our findings show that the shift in the mode of knowledge
production, from solo authors and small core teams (2) has
coincided with a stratification in the scientific workforce in terms
of their roles. The increased need for both the specialization
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and possession of specialized technical knowledge to manipulate
increasingly complex instrumentation and data, has created an
essential group of supporting contributors to knowledge. Unfor-
tunately, the existing job roles and educational structures may not
be responding to these changes. Our results suggest that, while
essential, these supporting researchers are suffering from greater
career instability and worse long-term career prospects in some
fields.
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